summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorGyorgy Sarvari <skandigraun@gmail.com>2025-08-29 11:18:16 +0200
committerRichard Purdie <richard.purdie@linuxfoundation.org>2025-09-01 23:07:06 +0100
commit4ad510a63fd88b7907b2a1b8feceace9758397d0 (patch)
tree689ae8fabb960a1a452944b2647f1b9279b6e7a5
parent8ebdd79442e8719721567160c1f56e4ccf6b1cf7 (diff)
downloadpoky-4ad510a63fd88b7907b2a1b8feceace9758397d0.tar.gz
vte: upgrade 0.78.2 -> 0.80.3
0004-fast_float-Add-single-header-library-for-from_char-i.patch and 0005-color-parser-Use-fast_float-implementation-for-from_.patch patches dropped: upstream has adopted the changes, and oe-core also provides now fastfloat, no need to vendor it with a patch. 0002-lib-Typo-fix.patch is dropped, because it was a backport, and it is included in this release. Shortlog: https://gitlab.gnome.org/GNOME/vte/-/compare/0.80.3...0.78.2 (From OE-Core rev: 0a849dc7edeecb6c16a8a0fe347015d6d85e9dfd) Signed-off-by: Gyorgy Sarvari <skandigraun@gmail.com> Signed-off-by: Mathieu Dubois-Briand <mathieu.dubois-briand@bootlin.com> Signed-off-by: Richard Purdie <richard.purdie@linuxfoundation.org>
-rw-r--r--meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch25
-rw-r--r--meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch3922
-rw-r--r--meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch102
-rw-r--r--meta/recipes-support/vte/vte_0.80.3.bb (renamed from meta/recipes-support/vte/vte_0.78.2.bb)14
4 files changed, 6 insertions, 4057 deletions
diff --git a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch b/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch
deleted file mode 100644
index 410d506806..0000000000
--- a/meta/recipes-support/vte/vte/0002-lib-Typo-fix.patch
+++ /dev/null
@@ -1,25 +0,0 @@
1From 6b7440996819c12ec32bfaf4e73b27baeb273207 Mon Sep 17 00:00:00 2001
2From: Christian Persch <chpe@src.gnome.org>
3Date: Thu, 5 Sep 2024 23:59:05 +0200
4Subject: [PATCH 2/3] lib: Typo fix
5
6Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2816
7Upstream-Status: Backport [https://gitlab.gnome.org/GNOME/vte/-/commit/e24087d953d9352c8bc46074e2662c80f9bfbc2d]
8Signed-off-by: Khem Raj <raj.khem@gmail.com>
9---
10 src/vteinternal.hh | 2 +-
11 1 file changed, 1 insertion(+), 1 deletion(-)
12
13diff --git a/src/vteinternal.hh b/src/vteinternal.hh
14index 051e78c..b1adc19 100644
15--- a/src/vteinternal.hh
16+++ b/src/vteinternal.hh
17@@ -1233,7 +1233,7 @@ public:
18 void reset_decoder();
19
20 void feed(std::string_view const& data,
21- bool start_processsing_ = true);
22+ bool start_processing_ = true);
23 void feed_child(char const* data,
24 size_t length) { assert(data); feed_child({data, length}); }
25 void feed_child(std::string_view const& str);
diff --git a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch b/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch
deleted file mode 100644
index 731dba729d..0000000000
--- a/meta/recipes-support/vte/vte/0004-fast_float-Add-single-header-library-for-from_char-i.patch
+++ /dev/null
@@ -1,3922 +0,0 @@
1From 2a32e43e43b04771a3357d3d4ccbafa7714e0114 Mon Sep 17 00:00:00 2001
2From: Khem Raj <raj.khem@gmail.com>
3Date: Fri, 4 Oct 2024 21:21:11 -0700
4Subject: [PATCH 4/5] fast_float: Add single header library for from_char
5 implementation
6
7Document the process to re-generate the file whenever new release
8is made for fast_float upstream.
9
10This would make it work with llvm libc++
11
12Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888]
13Signed-off-by: Khem Raj <raj.khem@gmail.com>
14---
15 README.md | 17 +
16 src/fast_float.hh | 3869 +++++++++++++++++++++++++++++++++++++++++++++
17 2 files changed, 3886 insertions(+)
18 create mode 100644 src/fast_float.hh
19
20diff --git a/README.md b/README.md
21index a32465a9..20ed5ba2 100644
22--- a/README.md
23+++ b/README.md
24@@ -21,6 +21,23 @@ on download.gnome.org, but please note that any tarball for releases
25 after 0.60.3 were made by either the gnome release team or other
26 gnome contributors, but not by a VTE maintainer.
27
28+fast_float library[1] is used to provide from_chars implementation for faster
29+and more portable parsing of 64 decimal strings.
30+
31+fast_float.hh is an amalgamation of the entire library,
32+which can be regenerated by using amalgamate.py script provided by
33+fast_float repository. Following command can be used to re-generate the
34+header file
35+
36+```
37+git clone https://github.com/fastfloat/fast_float
38+cd fast_float
39+git checkout v6.1.6
40+python3 ./script/amalgamate.py --license=MIT > $VTE_SRC/src/fast_float.hh
41+```
42+
43+[1]: https://github.com/fastfloat/fast_float
44+
45 Installation
46 ------------
47
48diff --git a/src/fast_float.hh b/src/fast_float.hh
49new file mode 100644
50index 00000000..e0d5dd53
51--- /dev/null
52+++ b/src/fast_float.hh
53@@ -0,0 +1,3869 @@
54+// fast_float by Daniel Lemire
55+// fast_float by João Paulo Magalhaes
56+//
57+//
58+// with contributions from Eugene Golushkov
59+// with contributions from Maksim Kita
60+// with contributions from Marcin Wojdyr
61+// with contributions from Neal Richardson
62+// with contributions from Tim Paine
63+// with contributions from Fabio Pellacini
64+// with contributions from Lénárd Szolnoki
65+// with contributions from Jan Pharago
66+// with contributions from Maya Warrier
67+// with contributions from Taha Khokhar
68+//
69+//
70+// MIT License Notice
71+//
72+// MIT License
73+//
74+// Copyright (c) 2021 The fast_float authors
75+//
76+// Permission is hereby granted, free of charge, to any
77+// person obtaining a copy of this software and associated
78+// documentation files (the "Software"), to deal in the
79+// Software without restriction, including without
80+// limitation the rights to use, copy, modify, merge,
81+// publish, distribute, sublicense, and/or sell copies of
82+// the Software, and to permit persons to whom the Software
83+// is furnished to do so, subject to the following
84+// conditions:
85+//
86+// The above copyright notice and this permission notice
87+// shall be included in all copies or substantial portions
88+// of the Software.
89+//
90+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
91+// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
92+// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
93+// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
94+// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
95+// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
96+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
97+// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
98+// DEALINGS IN THE SOFTWARE.
99+//
100+
101+#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
102+#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
103+
104+#ifdef __has_include
105+#if __has_include(<version>)
106+#include <version>
107+#endif
108+#endif
109+
110+// Testing for https://wg21.link/N3652, adopted in C++14
111+#if __cpp_constexpr >= 201304
112+#define FASTFLOAT_CONSTEXPR14 constexpr
113+#else
114+#define FASTFLOAT_CONSTEXPR14
115+#endif
116+
117+#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
118+#define FASTFLOAT_HAS_BIT_CAST 1
119+#else
120+#define FASTFLOAT_HAS_BIT_CAST 0
121+#endif
122+
123+#if defined(__cpp_lib_is_constant_evaluated) && \
124+ __cpp_lib_is_constant_evaluated >= 201811L
125+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
126+#else
127+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
128+#endif
129+
130+// Testing for relevant C++20 constexpr library features
131+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \
132+ __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
133+#define FASTFLOAT_CONSTEXPR20 constexpr
134+#define FASTFLOAT_IS_CONSTEXPR 1
135+#else
136+#define FASTFLOAT_CONSTEXPR20
137+#define FASTFLOAT_IS_CONSTEXPR 0
138+#endif
139+
140+#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
141+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0
142+#else
143+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1
144+#endif
145+
146+#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
147+
148+#ifndef FASTFLOAT_FLOAT_COMMON_H
149+#define FASTFLOAT_FLOAT_COMMON_H
150+
151+#include <cfloat>
152+#include <cstdint>
153+#include <cassert>
154+#include <cstring>
155+#include <type_traits>
156+#include <system_error>
157+#ifdef __has_include
158+#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > 202002L)
159+#include <stdfloat>
160+#endif
161+#endif
162+
163+namespace fast_float {
164+
165+#define FASTFLOAT_JSONFMT (1 << 5)
166+#define FASTFLOAT_FORTRANFMT (1 << 6)
167+
168+enum chars_format {
169+ scientific = 1 << 0,
170+ fixed = 1 << 2,
171+ hex = 1 << 3,
172+ no_infnan = 1 << 4,
173+ // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6
174+ json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan,
175+ // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed.
176+ json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific,
177+ fortran = FASTFLOAT_FORTRANFMT | fixed | scientific,
178+ general = fixed | scientific
179+};
180+
181+template <typename UC> struct from_chars_result_t {
182+ UC const *ptr;
183+ std::errc ec;
184+};
185+using from_chars_result = from_chars_result_t<char>;
186+
187+template <typename UC> struct parse_options_t {
188+ constexpr explicit parse_options_t(chars_format fmt = chars_format::general,
189+ UC dot = UC('.'))
190+ : format(fmt), decimal_point(dot) {}
191+
192+ /** Which number formats are accepted */
193+ chars_format format;
194+ /** The character used as decimal point */
195+ UC decimal_point;
196+};
197+using parse_options = parse_options_t<char>;
198+
199+} // namespace fast_float
200+
201+#if FASTFLOAT_HAS_BIT_CAST
202+#include <bit>
203+#endif
204+
205+#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
206+ defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || \
207+ defined(__MINGW64__) || defined(__s390x__) || \
208+ (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \
209+ defined(__PPC64LE__)) || \
210+ defined(__loongarch64))
211+#define FASTFLOAT_64BIT 1
212+#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
213+ defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \
214+ defined(__MINGW32__) || defined(__EMSCRIPTEN__))
215+#define FASTFLOAT_32BIT 1
216+#else
217+ // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
218+// We can never tell the register width, but the SIZE_MAX is a good
219+// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max
220+// portability.
221+#if SIZE_MAX == 0xffff
222+#error Unknown platform (16-bit, unsupported)
223+#elif SIZE_MAX == 0xffffffff
224+#define FASTFLOAT_32BIT 1
225+#elif SIZE_MAX == 0xffffffffffffffff
226+#define FASTFLOAT_64BIT 1
227+#else
228+#error Unknown platform (not 32-bit, not 64-bit?)
229+#endif
230+#endif
231+
232+#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || \
233+ (defined(_M_ARM64) && !defined(__MINGW32__))
234+#include <intrin.h>
235+#endif
236+
237+#if defined(_MSC_VER) && !defined(__clang__)
238+#define FASTFLOAT_VISUAL_STUDIO 1
239+#endif
240+
241+#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__
242+#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
243+#elif defined _WIN32
244+#define FASTFLOAT_IS_BIG_ENDIAN 0
245+#else
246+#if defined(__APPLE__) || defined(__FreeBSD__)
247+#include <machine/endian.h>
248+#elif defined(sun) || defined(__sun)
249+#include <sys/byteorder.h>
250+#elif defined(__MVS__)
251+#include <sys/endian.h>
252+#else
253+#ifdef __has_include
254+#if __has_include(<endian.h>)
255+#include <endian.h>
256+#endif //__has_include(<endian.h>)
257+#endif //__has_include
258+#endif
259+#
260+#ifndef __BYTE_ORDER__
261+// safe choice
262+#define FASTFLOAT_IS_BIG_ENDIAN 0
263+#endif
264+#
265+#ifndef __ORDER_LITTLE_ENDIAN__
266+// safe choice
267+#define FASTFLOAT_IS_BIG_ENDIAN 0
268+#endif
269+#
270+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
271+#define FASTFLOAT_IS_BIG_ENDIAN 0
272+#else
273+#define FASTFLOAT_IS_BIG_ENDIAN 1
274+#endif
275+#endif
276+
277+#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && \
278+ (defined(_M_AMD64) || defined(_M_X64) || \
279+ (defined(_M_IX86_FP) && _M_IX86_FP == 2)))
280+#define FASTFLOAT_SSE2 1
281+#endif
282+
283+#if defined(__aarch64__) || defined(_M_ARM64)
284+#define FASTFLOAT_NEON 1
285+#endif
286+
287+#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON)
288+#define FASTFLOAT_HAS_SIMD 1
289+#endif
290+
291+#if defined(__GNUC__)
292+// disable -Wcast-align=strict (GCC only)
293+#define FASTFLOAT_SIMD_DISABLE_WARNINGS \
294+ _Pragma("GCC diagnostic push") \
295+ _Pragma("GCC diagnostic ignored \"-Wcast-align\"")
296+#else
297+#define FASTFLOAT_SIMD_DISABLE_WARNINGS
298+#endif
299+
300+#if defined(__GNUC__)
301+#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop")
302+#else
303+#define FASTFLOAT_SIMD_RESTORE_WARNINGS
304+#endif
305+
306+#ifdef FASTFLOAT_VISUAL_STUDIO
307+#define fastfloat_really_inline __forceinline
308+#else
309+#define fastfloat_really_inline inline __attribute__((always_inline))
310+#endif
311+
312+#ifndef FASTFLOAT_ASSERT
313+#define FASTFLOAT_ASSERT(x) \
314+ { ((void)(x)); }
315+#endif
316+
317+#ifndef FASTFLOAT_DEBUG_ASSERT
318+#define FASTFLOAT_DEBUG_ASSERT(x) \
319+ { ((void)(x)); }
320+#endif
321+
322+// rust style `try!()` macro, or `?` operator
323+#define FASTFLOAT_TRY(x) \
324+ { \
325+ if (!(x)) \
326+ return false; \
327+ }
328+
329+#define FASTFLOAT_ENABLE_IF(...) \
330+ typename std::enable_if<(__VA_ARGS__), int>::type
331+
332+namespace fast_float {
333+
334+fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() {
335+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED
336+ return std::is_constant_evaluated();
337+#else
338+ return false;
339+#endif
340+}
341+
342+template <typename T>
343+fastfloat_really_inline constexpr bool is_supported_float_type() {
344+ return std::is_same<T, float>::value || std::is_same<T, double>::value
345+#if __STDCPP_FLOAT32_T__
346+ || std::is_same<T, std::float32_t>::value
347+#endif
348+#if __STDCPP_FLOAT64_T__
349+ || std::is_same<T, std::float64_t>::value
350+#endif
351+ ;
352+}
353+
354+template <typename UC>
355+fastfloat_really_inline constexpr bool is_supported_char_type() {
356+ return std::is_same<UC, char>::value || std::is_same<UC, wchar_t>::value ||
357+ std::is_same<UC, char16_t>::value || std::is_same<UC, char32_t>::value;
358+}
359+
360+// Compares two ASCII strings in a case insensitive manner.
361+template <typename UC>
362+inline FASTFLOAT_CONSTEXPR14 bool
363+fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) {
364+ char running_diff{0};
365+ for (size_t i = 0; i < length; ++i) {
366+ running_diff |= (char(input1[i]) ^ char(input2[i]));
367+ }
368+ return (running_diff == 0) || (running_diff == 32);
369+}
370+
371+#ifndef FLT_EVAL_METHOD
372+#error "FLT_EVAL_METHOD should be defined, please include cfloat."
373+#endif
374+
375+// a pointer and a length to a contiguous block of memory
376+template <typename T> struct span {
377+ const T *ptr;
378+ size_t length;
379+ constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {}
380+ constexpr span() : ptr(nullptr), length(0) {}
381+
382+ constexpr size_t len() const noexcept { return length; }
383+
384+ FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept {
385+ FASTFLOAT_DEBUG_ASSERT(index < length);
386+ return ptr[index];
387+ }
388+};
389+
390+struct value128 {
391+ uint64_t low;
392+ uint64_t high;
393+ constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
394+ constexpr value128() : low(0), high(0) {}
395+};
396+
397+/* Helper C++14 constexpr generic implementation of leading_zeroes */
398+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int
399+leading_zeroes_generic(uint64_t input_num, int last_bit = 0) {
400+ if (input_num & uint64_t(0xffffffff00000000)) {
401+ input_num >>= 32;
402+ last_bit |= 32;
403+ }
404+ if (input_num & uint64_t(0xffff0000)) {
405+ input_num >>= 16;
406+ last_bit |= 16;
407+ }
408+ if (input_num & uint64_t(0xff00)) {
409+ input_num >>= 8;
410+ last_bit |= 8;
411+ }
412+ if (input_num & uint64_t(0xf0)) {
413+ input_num >>= 4;
414+ last_bit |= 4;
415+ }
416+ if (input_num & uint64_t(0xc)) {
417+ input_num >>= 2;
418+ last_bit |= 2;
419+ }
420+ if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */
421+ last_bit |= 1;
422+ }
423+ return 63 - last_bit;
424+}
425+
426+/* result might be undefined when input_num is zero */
427+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int
428+leading_zeroes(uint64_t input_num) {
429+ assert(input_num > 0);
430+ if (cpp20_and_in_constexpr()) {
431+ return leading_zeroes_generic(input_num);
432+ }
433+#ifdef FASTFLOAT_VISUAL_STUDIO
434+#if defined(_M_X64) || defined(_M_ARM64)
435+ unsigned long leading_zero = 0;
436+ // Search the mask data from most significant bit (MSB)
437+ // to least significant bit (LSB) for a set bit (1).
438+ _BitScanReverse64(&leading_zero, input_num);
439+ return (int)(63 - leading_zero);
440+#else
441+ return leading_zeroes_generic(input_num);
442+#endif
443+#else
444+ return __builtin_clzll(input_num);
445+#endif
446+}
447+
448+// slow emulation routine for 32-bit
449+fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) {
450+ return x * (uint64_t)y;
451+}
452+
453+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
454+umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) {
455+ uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
456+ uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
457+ uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
458+ uint64_t adbc_carry = (uint64_t)(adbc < ad);
459+ uint64_t lo = bd + (adbc << 32);
460+ *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
461+ (adbc_carry << 32) + (uint64_t)(lo < bd);
462+ return lo;
463+}
464+
465+#ifdef FASTFLOAT_32BIT
466+
467+// slow emulation routine for 32-bit
468+#if !defined(__MINGW64__)
469+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab,
470+ uint64_t cd,
471+ uint64_t *hi) {
472+ return umul128_generic(ab, cd, hi);
473+}
474+#endif // !__MINGW64__
475+
476+#endif // FASTFLOAT_32BIT
477+
478+// compute 64-bit a*b
479+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
480+full_multiplication(uint64_t a, uint64_t b) {
481+ if (cpp20_and_in_constexpr()) {
482+ value128 answer;
483+ answer.low = umul128_generic(a, b, &answer.high);
484+ return answer;
485+ }
486+ value128 answer;
487+#if defined(_M_ARM64) && !defined(__MINGW32__)
488+ // ARM64 has native support for 64-bit multiplications, no need to emulate
489+ // But MinGW on ARM64 doesn't have native support for 64-bit multiplications
490+ answer.high = __umulh(a, b);
491+ answer.low = a * b;
492+#elif defined(FASTFLOAT_32BIT) || \
493+ (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64))
494+ answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
495+#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__)
496+ __uint128_t r = ((__uint128_t)a) * b;
497+ answer.low = uint64_t(r);
498+ answer.high = uint64_t(r >> 64);
499+#else
500+ answer.low = umul128_generic(a, b, &answer.high);
501+#endif
502+ return answer;
503+}
504+
505+struct adjusted_mantissa {
506+ uint64_t mantissa{0};
507+ int32_t power2{0}; // a negative value indicates an invalid result
508+ adjusted_mantissa() = default;
509+ constexpr bool operator==(const adjusted_mantissa &o) const {
510+ return mantissa == o.mantissa && power2 == o.power2;
511+ }
512+ constexpr bool operator!=(const adjusted_mantissa &o) const {
513+ return mantissa != o.mantissa || power2 != o.power2;
514+ }
515+};
516+
517+// Bias so we can get the real exponent with an invalid adjusted_mantissa.
518+constexpr static int32_t invalid_am_bias = -0x8000;
519+
520+// used for binary_format_lookup_tables<T>::max_mantissa
521+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;
522+
523+template <typename T, typename U = void> struct binary_format_lookup_tables;
524+
525+template <typename T> struct binary_format : binary_format_lookup_tables<T> {
526+ using equiv_uint =
527+ typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
528+
529+ static inline constexpr int mantissa_explicit_bits();
530+ static inline constexpr int minimum_exponent();
531+ static inline constexpr int infinite_power();
532+ static inline constexpr int sign_index();
533+ static inline constexpr int
534+ min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
535+ static inline constexpr int max_exponent_fast_path();
536+ static inline constexpr int max_exponent_round_to_even();
537+ static inline constexpr int min_exponent_round_to_even();
538+ static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
539+ static inline constexpr uint64_t
540+ max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
541+ static inline constexpr int largest_power_of_ten();
542+ static inline constexpr int smallest_power_of_ten();
543+ static inline constexpr T exact_power_of_ten(int64_t power);
544+ static inline constexpr size_t max_digits();
545+ static inline constexpr equiv_uint exponent_mask();
546+ static inline constexpr equiv_uint mantissa_mask();
547+ static inline constexpr equiv_uint hidden_bit_mask();
548+};
549+
550+template <typename U> struct binary_format_lookup_tables<double, U> {
551+ static constexpr double powers_of_ten[] = {
552+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
553+ 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
554+
555+ // Largest integer value v so that (5**index * v) <= 1<<53.
556+ // 0x20000000000000 == 1 << 53
557+ static constexpr uint64_t max_mantissa[] = {
558+ 0x20000000000000,
559+ 0x20000000000000 / 5,
560+ 0x20000000000000 / (5 * 5),
561+ 0x20000000000000 / (5 * 5 * 5),
562+ 0x20000000000000 / (5 * 5 * 5 * 5),
563+ 0x20000000000000 / (constant_55555),
564+ 0x20000000000000 / (constant_55555 * 5),
565+ 0x20000000000000 / (constant_55555 * 5 * 5),
566+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5),
567+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5),
568+ 0x20000000000000 / (constant_55555 * constant_55555),
569+ 0x20000000000000 / (constant_55555 * constant_55555 * 5),
570+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5),
571+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5),
572+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555),
573+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5),
574+ 0x20000000000000 /
575+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5),
576+ 0x20000000000000 /
577+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
578+ 0x20000000000000 /
579+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5),
580+ 0x20000000000000 /
581+ (constant_55555 * constant_55555 * constant_55555 * constant_55555),
582+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
583+ constant_55555 * 5),
584+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
585+ constant_55555 * 5 * 5),
586+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
587+ constant_55555 * 5 * 5 * 5),
588+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
589+ constant_55555 * 5 * 5 * 5 * 5)};
590+};
591+
592+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
593+
594+template <typename U>
595+constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[];
596+
597+template <typename U>
598+constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[];
599+
600+#endif
601+
602+template <typename U> struct binary_format_lookup_tables<float, U> {
603+ static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
604+ 1e6f, 1e7f, 1e8f, 1e9f, 1e10f};
605+
606+ // Largest integer value v so that (5**index * v) <= 1<<24.
607+ // 0x1000000 == 1<<24
608+ static constexpr uint64_t max_mantissa[] = {
609+ 0x1000000,
610+ 0x1000000 / 5,
611+ 0x1000000 / (5 * 5),
612+ 0x1000000 / (5 * 5 * 5),
613+ 0x1000000 / (5 * 5 * 5 * 5),
614+ 0x1000000 / (constant_55555),
615+ 0x1000000 / (constant_55555 * 5),
616+ 0x1000000 / (constant_55555 * 5 * 5),
617+ 0x1000000 / (constant_55555 * 5 * 5 * 5),
618+ 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
619+ 0x1000000 / (constant_55555 * constant_55555),
620+ 0x1000000 / (constant_55555 * constant_55555 * 5)};
621+};
622+
623+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
624+
625+template <typename U>
626+constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[];
627+
628+template <typename U>
629+constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[];
630+
631+#endif
632+
633+template <>
634+inline constexpr int binary_format<double>::min_exponent_fast_path() {
635+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
636+ return 0;
637+#else
638+ return -22;
639+#endif
640+}
641+
642+template <>
643+inline constexpr int binary_format<float>::min_exponent_fast_path() {
644+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
645+ return 0;
646+#else
647+ return -10;
648+#endif
649+}
650+
651+template <>
652+inline constexpr int binary_format<double>::mantissa_explicit_bits() {
653+ return 52;
654+}
655+template <>
656+inline constexpr int binary_format<float>::mantissa_explicit_bits() {
657+ return 23;
658+}
659+
660+template <>
661+inline constexpr int binary_format<double>::max_exponent_round_to_even() {
662+ return 23;
663+}
664+
665+template <>
666+inline constexpr int binary_format<float>::max_exponent_round_to_even() {
667+ return 10;
668+}
669+
670+template <>
671+inline constexpr int binary_format<double>::min_exponent_round_to_even() {
672+ return -4;
673+}
674+
675+template <>
676+inline constexpr int binary_format<float>::min_exponent_round_to_even() {
677+ return -17;
678+}
679+
680+template <> inline constexpr int binary_format<double>::minimum_exponent() {
681+ return -1023;
682+}
683+template <> inline constexpr int binary_format<float>::minimum_exponent() {
684+ return -127;
685+}
686+
687+template <> inline constexpr int binary_format<double>::infinite_power() {
688+ return 0x7FF;
689+}
690+template <> inline constexpr int binary_format<float>::infinite_power() {
691+ return 0xFF;
692+}
693+
694+template <> inline constexpr int binary_format<double>::sign_index() {
695+ return 63;
696+}
697+template <> inline constexpr int binary_format<float>::sign_index() {
698+ return 31;
699+}
700+
701+template <>
702+inline constexpr int binary_format<double>::max_exponent_fast_path() {
703+ return 22;
704+}
705+template <>
706+inline constexpr int binary_format<float>::max_exponent_fast_path() {
707+ return 10;
708+}
709+
710+template <>
711+inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
712+ return uint64_t(2) << mantissa_explicit_bits();
713+}
714+template <>
715+inline constexpr uint64_t
716+binary_format<double>::max_mantissa_fast_path(int64_t power) {
717+ // caller is responsible to ensure that
718+ // power >= 0 && power <= 22
719+ //
720+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
721+ return (void)max_mantissa[0], max_mantissa[power];
722+}
723+template <>
724+inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
725+ return uint64_t(2) << mantissa_explicit_bits();
726+}
727+template <>
728+inline constexpr uint64_t
729+binary_format<float>::max_mantissa_fast_path(int64_t power) {
730+ // caller is responsible to ensure that
731+ // power >= 0 && power <= 10
732+ //
733+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
734+ return (void)max_mantissa[0], max_mantissa[power];
735+}
736+
737+template <>
738+inline constexpr double
739+binary_format<double>::exact_power_of_ten(int64_t power) {
740+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
741+ return (void)powers_of_ten[0], powers_of_ten[power];
742+}
743+template <>
744+inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
745+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
746+ return (void)powers_of_ten[0], powers_of_ten[power];
747+}
748+
749+template <> inline constexpr int binary_format<double>::largest_power_of_ten() {
750+ return 308;
751+}
752+template <> inline constexpr int binary_format<float>::largest_power_of_ten() {
753+ return 38;
754+}
755+
756+template <>
757+inline constexpr int binary_format<double>::smallest_power_of_ten() {
758+ return -342;
759+}
760+template <> inline constexpr int binary_format<float>::smallest_power_of_ten() {
761+ return -64;
762+}
763+
764+template <> inline constexpr size_t binary_format<double>::max_digits() {
765+ return 769;
766+}
767+template <> inline constexpr size_t binary_format<float>::max_digits() {
768+ return 114;
769+}
770+
771+template <>
772+inline constexpr binary_format<float>::equiv_uint
773+binary_format<float>::exponent_mask() {
774+ return 0x7F800000;
775+}
776+template <>
777+inline constexpr binary_format<double>::equiv_uint
778+binary_format<double>::exponent_mask() {
779+ return 0x7FF0000000000000;
780+}
781+
782+template <>
783+inline constexpr binary_format<float>::equiv_uint
784+binary_format<float>::mantissa_mask() {
785+ return 0x007FFFFF;
786+}
787+template <>
788+inline constexpr binary_format<double>::equiv_uint
789+binary_format<double>::mantissa_mask() {
790+ return 0x000FFFFFFFFFFFFF;
791+}
792+
793+template <>
794+inline constexpr binary_format<float>::equiv_uint
795+binary_format<float>::hidden_bit_mask() {
796+ return 0x00800000;
797+}
798+template <>
799+inline constexpr binary_format<double>::equiv_uint
800+binary_format<double>::hidden_bit_mask() {
801+ return 0x0010000000000000;
802+}
803+
804+template <typename T>
805+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
806+to_float(bool negative, adjusted_mantissa am, T &value) {
807+ using fastfloat_uint = typename binary_format<T>::equiv_uint;
808+ fastfloat_uint word = (fastfloat_uint)am.mantissa;
809+ word |= fastfloat_uint(am.power2)
810+ << binary_format<T>::mantissa_explicit_bits();
811+ word |= fastfloat_uint(negative) << binary_format<T>::sign_index();
812+#if FASTFLOAT_HAS_BIT_CAST
813+ value = std::bit_cast<T>(word);
814+#else
815+ ::memcpy(&value, &word, sizeof(T));
816+#endif
817+}
818+
819+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
820+template <typename = void> struct space_lut {
821+ static constexpr bool value[] = {
822+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
823+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
824+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
825+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
826+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
827+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
828+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
829+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
830+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
831+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
832+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
833+};
834+
835+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
836+
837+template <typename T> constexpr bool space_lut<T>::value[];
838+
839+#endif
840+
841+inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; }
842+#endif
843+
844+template <typename UC> static constexpr uint64_t int_cmp_zeros() {
845+ static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4),
846+ "Unsupported character size");
847+ return (sizeof(UC) == 1) ? 0x3030303030303030
848+ : (sizeof(UC) == 2)
849+ ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 |
850+ uint64_t(UC('0')) << 16 | UC('0'))
851+ : (uint64_t(UC('0')) << 32 | UC('0'));
852+}
853+template <typename UC> static constexpr int int_cmp_len() {
854+ return sizeof(uint64_t) / sizeof(UC);
855+}
856+template <typename UC> static constexpr UC const *str_const_nan() {
857+ return nullptr;
858+}
859+template <> constexpr char const *str_const_nan<char>() { return "nan"; }
860+template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return L"nan"; }
861+template <> constexpr char16_t const *str_const_nan<char16_t>() {
862+ return u"nan";
863+}
864+template <> constexpr char32_t const *str_const_nan<char32_t>() {
865+ return U"nan";
866+}
867+template <typename UC> static constexpr UC const *str_const_inf() {
868+ return nullptr;
869+}
870+template <> constexpr char const *str_const_inf<char>() { return "infinity"; }
871+template <> constexpr wchar_t const *str_const_inf<wchar_t>() {
872+ return L"infinity";
873+}
874+template <> constexpr char16_t const *str_const_inf<char16_t>() {
875+ return u"infinity";
876+}
877+template <> constexpr char32_t const *str_const_inf<char32_t>() {
878+ return U"infinity";
879+}
880+
881+template <typename = void> struct int_luts {
882+ static constexpr uint8_t chdigit[] = {
883+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
884+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
885+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
886+ 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255,
887+ 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
888+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
889+ 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17,
890+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
891+ 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
892+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
893+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
894+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
895+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
896+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
897+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
898+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
899+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
900+ 255};
901+
902+ static constexpr size_t maxdigits_u64[] = {
903+ 64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16,
904+ 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13};
905+
906+ static constexpr uint64_t min_safe_u64[] = {
907+ 9223372036854775808ull, 12157665459056928801ull, 4611686018427387904,
908+ 7450580596923828125, 4738381338321616896, 3909821048582988049,
909+ 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull,
910+ 5559917313492231481, 2218611106740436992, 8650415919381337933,
911+ 2177953337809371136, 6568408355712890625, 1152921504606846976,
912+ 2862423051509815793, 6746640616477458432, 15181127029874798299ull,
913+ 1638400000000000000, 3243919932521508681, 6221821273427820544,
914+ 11592836324538749809ull, 876488338465357824, 1490116119384765625,
915+ 2481152873203736576, 4052555153018976267, 6502111422497947648,
916+ 10260628712958602189ull, 15943230000000000000ull, 787662783788549761,
917+ 1152921504606846976, 1667889514952984961, 2386420683693101056,
918+ 3379220508056640625, 4738381338321616896};
919+};
920+
921+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
922+
923+template <typename T> constexpr uint8_t int_luts<T>::chdigit[];
924+
925+template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[];
926+
927+template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[];
928+
929+#endif
930+
931+template <typename UC>
932+fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) {
933+ return int_luts<>::chdigit[static_cast<unsigned char>(c)];
934+}
935+
936+fastfloat_really_inline constexpr size_t max_digits_u64(int base) {
937+ return int_luts<>::maxdigits_u64[base - 2];
938+}
939+
940+// If a u64 is exactly max_digits_u64() in length, this is
941+// the value below which it has definitely overflowed.
942+fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) {
943+ return int_luts<>::min_safe_u64[base - 2];
944+}
945+
946+} // namespace fast_float
947+
948+#endif
949+
950+
951+#ifndef FASTFLOAT_FAST_FLOAT_H
952+#define FASTFLOAT_FAST_FLOAT_H
953+
954+
955+namespace fast_float {
956+/**
957+ * This function parses the character sequence [first,last) for a number. It
958+ * parses floating-point numbers expecting a locale-indepent format equivalent
959+ * to what is used by std::strtod in the default ("C") locale. The resulting
960+ * floating-point value is the closest floating-point values (using either float
961+ * or double), using the "round to even" convention for values that would
962+ * otherwise fall right in-between two values. That is, we provide exact parsing
963+ * according to the IEEE standard.
964+ *
965+ * Given a successful parse, the pointer (`ptr`) in the returned value is set to
966+ * point right after the parsed number, and the `value` referenced is set to the
967+ * parsed value. In case of error, the returned `ec` contains a representative
968+ * error, otherwise the default (`std::errc()`) value is stored.
969+ *
970+ * The implementation does not throw and does not allocate memory (e.g., with
971+ * `new` or `malloc`).
972+ *
973+ * Like the C++17 standard, the `fast_float::from_chars` functions take an
974+ * optional last argument of the type `fast_float::chars_format`. It is a bitset
975+ * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt &
976+ * fast_float::chars_format::scientific` are set to determine whether we allow
977+ * the fixed point and scientific notation respectively. The default is
978+ * `fast_float::chars_format::general` which allows both `fixed` and
979+ * `scientific`.
980+ */
981+template <typename T, typename UC = char,
982+ typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())>
983+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
984+from_chars(UC const *first, UC const *last, T &value,
985+ chars_format fmt = chars_format::general) noexcept;
986+
987+/**
988+ * Like from_chars, but accepts an `options` argument to govern number parsing.
989+ */
990+template <typename T, typename UC = char>
991+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
992+from_chars_advanced(UC const *first, UC const *last, T &value,
993+ parse_options_t<UC> options) noexcept;
994+/**
995+ * from_chars for integer types.
996+ */
997+template <typename T, typename UC = char,
998+ typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())>
999+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
1000+from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept;
1001+
1002+} // namespace fast_float
1003+#endif // FASTFLOAT_FAST_FLOAT_H
1004+
1005+#ifndef FASTFLOAT_ASCII_NUMBER_H
1006+#define FASTFLOAT_ASCII_NUMBER_H
1007+
1008+#include <cctype>
1009+#include <cstdint>
1010+#include <cstring>
1011+#include <iterator>
1012+#include <limits>
1013+#include <type_traits>
1014+
1015+
1016+#ifdef FASTFLOAT_SSE2
1017+#include <emmintrin.h>
1018+#endif
1019+
1020+#ifdef FASTFLOAT_NEON
1021+#include <arm_neon.h>
1022+#endif
1023+
1024+namespace fast_float {
1025+
1026+template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() {
1027+#ifdef FASTFLOAT_HAS_SIMD
1028+ return std::is_same<UC, char16_t>::value;
1029+#else
1030+ return false;
1031+#endif
1032+}
1033+
1034+// Next function can be micro-optimized, but compilers are entirely
1035+// able to optimize it well.
1036+template <typename UC>
1037+fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
1038+ return !(c > UC('9') || c < UC('0'));
1039+}
1040+
1041+fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
1042+ return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 |
1043+ (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 |
1044+ (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 |
1045+ (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56;
1046+}
1047+
1048+// Read 8 UC into a u64. Truncates UC if not char.
1049+template <typename UC>
1050+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
1051+read8_to_u64(const UC *chars) {
1052+ if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
1053+ uint64_t val = 0;
1054+ for (int i = 0; i < 8; ++i) {
1055+ val |= uint64_t(uint8_t(*chars)) << (i * 8);
1056+ ++chars;
1057+ }
1058+ return val;
1059+ }
1060+ uint64_t val;
1061+ ::memcpy(&val, chars, sizeof(uint64_t));
1062+#if FASTFLOAT_IS_BIG_ENDIAN == 1
1063+ // Need to read as-if the number was in little-endian order.
1064+ val = byteswap(val);
1065+#endif
1066+ return val;
1067+}
1068+
1069+#ifdef FASTFLOAT_SSE2
1070+
1071+fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) {
1072+ FASTFLOAT_SIMD_DISABLE_WARNINGS
1073+ const __m128i packed = _mm_packus_epi16(data, data);
1074+#ifdef FASTFLOAT_64BIT
1075+ return uint64_t(_mm_cvtsi128_si64(packed));
1076+#else
1077+ uint64_t value;
1078+ // Visual Studio + older versions of GCC don't support _mm_storeu_si64
1079+ _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed);
1080+ return value;
1081+#endif
1082+ FASTFLOAT_SIMD_RESTORE_WARNINGS
1083+}
1084+
1085+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
1086+ FASTFLOAT_SIMD_DISABLE_WARNINGS
1087+ return simd_read8_to_u64(
1088+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)));
1089+ FASTFLOAT_SIMD_RESTORE_WARNINGS
1090+}
1091+
1092+#elif defined(FASTFLOAT_NEON)
1093+
1094+fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) {
1095+ FASTFLOAT_SIMD_DISABLE_WARNINGS
1096+ uint8x8_t utf8_packed = vmovn_u16(data);
1097+ return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
1098+ FASTFLOAT_SIMD_RESTORE_WARNINGS
1099+}
1100+
1101+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
1102+ FASTFLOAT_SIMD_DISABLE_WARNINGS
1103+ return simd_read8_to_u64(
1104+ vld1q_u16(reinterpret_cast<const uint16_t *>(chars)));
1105+ FASTFLOAT_SIMD_RESTORE_WARNINGS
1106+}
1107+
1108+#endif // FASTFLOAT_SSE2
1109+
1110+// MSVC SFINAE is broken pre-VS2017
1111+#if defined(_MSC_VER) && _MSC_VER <= 1900
1112+template <typename UC>
1113+#else
1114+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
1115+#endif
1116+// dummy for compile
1117+uint64_t simd_read8_to_u64(UC const *) {
1118+ return 0;
1119+}
1120+
1121+// credit @aqrit
1122+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t
1123+parse_eight_digits_unrolled(uint64_t val) {
1124+ const uint64_t mask = 0x000000FF000000FF;
1125+ const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
1126+ const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
1127+ val -= 0x3030303030303030;
1128+ val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
1129+ val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
1130+ return uint32_t(val);
1131+}
1132+
1133+// Call this if chars are definitely 8 digits.
1134+template <typename UC>
1135+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t
1136+parse_eight_digits_unrolled(UC const *chars) noexcept {
1137+ if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
1138+ return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
1139+ }
1140+ return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
1141+}
1142+
1143+// credit @aqrit
1144+fastfloat_really_inline constexpr bool
1145+is_made_of_eight_digits_fast(uint64_t val) noexcept {
1146+ return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
1147+ 0x8080808080808080));
1148+}
1149+
1150+#ifdef FASTFLOAT_HAS_SIMD
1151+
1152+// Call this if chars might not be 8 digits.
1153+// Using this style (instead of is_made_of_eight_digits_fast() then
1154+// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice.
1155+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
1156+simd_parse_if_eight_digits_unrolled(const char16_t *chars,
1157+ uint64_t &i) noexcept {
1158+ if (cpp20_and_in_constexpr()) {
1159+ return false;
1160+ }
1161+#ifdef FASTFLOAT_SSE2
1162+ FASTFLOAT_SIMD_DISABLE_WARNINGS
1163+ const __m128i data =
1164+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars));
1165+
1166+ // (x - '0') <= 9
1167+ // http://0x80.pl/articles/simd-parsing-int-sequences.html
1168+ const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
1169+ const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
1170+
1171+ if (_mm_movemask_epi8(t1) == 0) {
1172+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
1173+ return true;
1174+ } else
1175+ return false;
1176+ FASTFLOAT_SIMD_RESTORE_WARNINGS
1177+#elif defined(FASTFLOAT_NEON)
1178+ FASTFLOAT_SIMD_DISABLE_WARNINGS
1179+ const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t *>(chars));
1180+
1181+ // (x - '0') <= 9
1182+ // http://0x80.pl/articles/simd-parsing-int-sequences.html
1183+ const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
1184+ const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
1185+
1186+ if (vminvq_u16(mask) == 0xFFFF) {
1187+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
1188+ return true;
1189+ } else
1190+ return false;
1191+ FASTFLOAT_SIMD_RESTORE_WARNINGS
1192+#else
1193+ (void)chars;
1194+ (void)i;
1195+ return false;
1196+#endif // FASTFLOAT_SSE2
1197+}
1198+
1199+#endif // FASTFLOAT_HAS_SIMD
1200+
1201+// MSVC SFINAE is broken pre-VS2017
1202+#if defined(_MSC_VER) && _MSC_VER <= 1900
1203+template <typename UC>
1204+#else
1205+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
1206+#endif
1207+// dummy for compile
1208+bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) {
1209+ return 0;
1210+}
1211+
1212+template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0>
1213+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
1214+loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) {
1215+ if (!has_simd_opt<UC>()) {
1216+ return;
1217+ }
1218+ while ((std::distance(p, pend) >= 8) &&
1219+ simd_parse_if_eight_digits_unrolled(
1220+ p, i)) { // in rare cases, this will overflow, but that's ok
1221+ p += 8;
1222+ }
1223+}
1224+
1225+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
1226+loop_parse_if_eight_digits(const char *&p, const char *const pend,
1227+ uint64_t &i) {
1228+ // optimizes better than parse_if_eight_digits_unrolled() for UC = char.
1229+ while ((std::distance(p, pend) >= 8) &&
1230+ is_made_of_eight_digits_fast(read8_to_u64(p))) {
1231+ i = i * 100000000 +
1232+ parse_eight_digits_unrolled(read8_to_u64(
1233+ p)); // in rare cases, this will overflow, but that's ok
1234+ p += 8;
1235+ }
1236+}
1237+
1238+enum class parse_error {
1239+ no_error,
1240+ // [JSON-only] The minus sign must be followed by an integer.
1241+ missing_integer_after_sign,
1242+ // A sign must be followed by an integer or dot.
1243+ missing_integer_or_dot_after_sign,
1244+ // [JSON-only] The integer part must not have leading zeros.
1245+ leading_zeros_in_integer_part,
1246+ // [JSON-only] The integer part must have at least one digit.
1247+ no_digits_in_integer_part,
1248+ // [JSON-only] If there is a decimal point, there must be digits in the
1249+ // fractional part.
1250+ no_digits_in_fractional_part,
1251+ // The mantissa must have at least one digit.
1252+ no_digits_in_mantissa,
1253+ // Scientific notation requires an exponential part.
1254+ missing_exponential_part,
1255+};
1256+
1257+template <typename UC> struct parsed_number_string_t {
1258+ int64_t exponent{0};
1259+ uint64_t mantissa{0};
1260+ UC const *lastmatch{nullptr};
1261+ bool negative{false};
1262+ bool valid{false};
1263+ bool too_many_digits{false};
1264+ // contains the range of the significant digits
1265+ span<const UC> integer{}; // non-nullable
1266+ span<const UC> fraction{}; // nullable
1267+ parse_error error{parse_error::no_error};
1268+};
1269+
1270+using byte_span = span<const char>;
1271+using parsed_number_string = parsed_number_string_t<char>;
1272+
1273+template <typename UC>
1274+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
1275+report_parse_error(UC const *p, parse_error error) {
1276+ parsed_number_string_t<UC> answer;
1277+ answer.valid = false;
1278+ answer.lastmatch = p;
1279+ answer.error = error;
1280+ return answer;
1281+}
1282+
1283+// Assuming that you use no more than 19 digits, this will
1284+// parse an ASCII string.
1285+template <typename UC>
1286+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
1287+parse_number_string(UC const *p, UC const *pend,
1288+ parse_options_t<UC> options) noexcept {
1289+ chars_format const fmt = options.format;
1290+ UC const decimal_point = options.decimal_point;
1291+
1292+ parsed_number_string_t<UC> answer;
1293+ answer.valid = false;
1294+ answer.too_many_digits = false;
1295+ answer.negative = (*p == UC('-'));
1296+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
1297+ if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) {
1298+#else
1299+ if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
1300+#endif
1301+ ++p;
1302+ if (p == pend) {
1303+ return report_parse_error<UC>(
1304+ p, parse_error::missing_integer_or_dot_after_sign);
1305+ }
1306+ if (fmt & FASTFLOAT_JSONFMT) {
1307+ if (!is_integer(*p)) { // a sign must be followed by an integer
1308+ return report_parse_error<UC>(p,
1309+ parse_error::missing_integer_after_sign);
1310+ }
1311+ } else {
1312+ if (!is_integer(*p) &&
1313+ (*p !=
1314+ decimal_point)) { // a sign must be followed by an integer or the dot
1315+ return report_parse_error<UC>(
1316+ p, parse_error::missing_integer_or_dot_after_sign);
1317+ }
1318+ }
1319+ }
1320+ UC const *const start_digits = p;
1321+
1322+ uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
1323+
1324+ while ((p != pend) && is_integer(*p)) {
1325+ // a multiplication by 10 is cheaper than an arbitrary integer
1326+ // multiplication
1327+ i = 10 * i +
1328+ uint64_t(*p -
1329+ UC('0')); // might overflow, we will handle the overflow later
1330+ ++p;
1331+ }
1332+ UC const *const end_of_integer_part = p;
1333+ int64_t digit_count = int64_t(end_of_integer_part - start_digits);
1334+ answer.integer = span<const UC>(start_digits, size_t(digit_count));
1335+ if (fmt & FASTFLOAT_JSONFMT) {
1336+ // at least 1 digit in integer part, without leading zeros
1337+ if (digit_count == 0) {
1338+ return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part);
1339+ }
1340+ if ((start_digits[0] == UC('0') && digit_count > 1)) {
1341+ return report_parse_error<UC>(start_digits,
1342+ parse_error::leading_zeros_in_integer_part);
1343+ }
1344+ }
1345+
1346+ int64_t exponent = 0;
1347+ const bool has_decimal_point = (p != pend) && (*p == decimal_point);
1348+ if (has_decimal_point) {
1349+ ++p;
1350+ UC const *before = p;
1351+ // can occur at most twice without overflowing, but let it occur more, since
1352+ // for integers with many digits, digit parsing is the primary bottleneck.
1353+ loop_parse_if_eight_digits(p, pend, i);
1354+
1355+ while ((p != pend) && is_integer(*p)) {
1356+ uint8_t digit = uint8_t(*p - UC('0'));
1357+ ++p;
1358+ i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
1359+ }
1360+ exponent = before - p;
1361+ answer.fraction = span<const UC>(before, size_t(p - before));
1362+ digit_count -= exponent;
1363+ }
1364+ if (fmt & FASTFLOAT_JSONFMT) {
1365+ // at least 1 digit in fractional part
1366+ if (has_decimal_point && exponent == 0) {
1367+ return report_parse_error<UC>(p,
1368+ parse_error::no_digits_in_fractional_part);
1369+ }
1370+ } else if (digit_count ==
1371+ 0) { // we must have encountered at least one integer!
1372+ return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa);
1373+ }
1374+ int64_t exp_number = 0; // explicit exponential part
1375+ if (((fmt & chars_format::scientific) && (p != pend) &&
1376+ ((UC('e') == *p) || (UC('E') == *p))) ||
1377+ ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) &&
1378+ ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) ||
1379+ (UC('D') == *p)))) {
1380+ UC const *location_of_e = p;
1381+ if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) ||
1382+ (UC('D') == *p)) {
1383+ ++p;
1384+ }
1385+ bool neg_exp = false;
1386+ if ((p != pend) && (UC('-') == *p)) {
1387+ neg_exp = true;
1388+ ++p;
1389+ } else if ((p != pend) &&
1390+ (UC('+') ==
1391+ *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
1392+ ++p;
1393+ }
1394+ if ((p == pend) || !is_integer(*p)) {
1395+ if (!(fmt & chars_format::fixed)) {
1396+ // The exponential part is invalid for scientific notation, so it must
1397+ // be a trailing token for fixed notation. However, fixed notation is
1398+ // disabled, so report a scientific notation error.
1399+ return report_parse_error<UC>(p, parse_error::missing_exponential_part);
1400+ }
1401+ // Otherwise, we will be ignoring the 'e'.
1402+ p = location_of_e;
1403+ } else {
1404+ while ((p != pend) && is_integer(*p)) {
1405+ uint8_t digit = uint8_t(*p - UC('0'));
1406+ if (exp_number < 0x10000000) {
1407+ exp_number = 10 * exp_number + digit;
1408+ }
1409+ ++p;
1410+ }
1411+ if (neg_exp) {
1412+ exp_number = -exp_number;
1413+ }
1414+ exponent += exp_number;
1415+ }
1416+ } else {
1417+ // If it scientific and not fixed, we have to bail out.
1418+ if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) {
1419+ return report_parse_error<UC>(p, parse_error::missing_exponential_part);
1420+ }
1421+ }
1422+ answer.lastmatch = p;
1423+ answer.valid = true;
1424+
1425+ // If we frequently had to deal with long strings of digits,
1426+ // we could extend our code by using a 128-bit integer instead
1427+ // of a 64-bit integer. However, this is uncommon.
1428+ //
1429+ // We can deal with up to 19 digits.
1430+ if (digit_count > 19) { // this is uncommon
1431+ // It is possible that the integer had an overflow.
1432+ // We have to handle the case where we have 0.0000somenumber.
1433+ // We need to be mindful of the case where we only have zeroes...
1434+ // E.g., 0.000000000...000.
1435+ UC const *start = start_digits;
1436+ while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
1437+ if (*start == UC('0')) {
1438+ digit_count--;
1439+ }
1440+ start++;
1441+ }
1442+
1443+ if (digit_count > 19) {
1444+ answer.too_many_digits = true;
1445+ // Let us start again, this time, avoiding overflows.
1446+ // We don't need to check if is_integer, since we use the
1447+ // pre-tokenized spans from above.
1448+ i = 0;
1449+ p = answer.integer.ptr;
1450+ UC const *int_end = p + answer.integer.len();
1451+ const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
1452+ while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
1453+ i = i * 10 + uint64_t(*p - UC('0'));
1454+ ++p;
1455+ }
1456+ if (i >= minimal_nineteen_digit_integer) { // We have a big integers
1457+ exponent = end_of_integer_part - p + exp_number;
1458+ } else { // We have a value with a fractional component.
1459+ p = answer.fraction.ptr;
1460+ UC const *frac_end = p + answer.fraction.len();
1461+ while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
1462+ i = i * 10 + uint64_t(*p - UC('0'));
1463+ ++p;
1464+ }
1465+ exponent = answer.fraction.ptr - p + exp_number;
1466+ }
1467+ // We have now corrected both exponent and i, to a truncated value
1468+ }
1469+ }
1470+ answer.exponent = exponent;
1471+ answer.mantissa = i;
1472+ return answer;
1473+}
1474+
1475+template <typename T, typename UC>
1476+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
1477+parse_int_string(UC const *p, UC const *pend, T &value, int base) {
1478+ from_chars_result_t<UC> answer;
1479+
1480+ UC const *const first = p;
1481+
1482+ bool negative = (*p == UC('-'));
1483+ if (!std::is_signed<T>::value && negative) {
1484+ answer.ec = std::errc::invalid_argument;
1485+ answer.ptr = first;
1486+ return answer;
1487+ }
1488+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
1489+ if ((*p == UC('-')) || (*p == UC('+'))) {
1490+#else
1491+ if (*p == UC('-')) {
1492+#endif
1493+ ++p;
1494+ }
1495+
1496+ UC const *const start_num = p;
1497+
1498+ while (p != pend && *p == UC('0')) {
1499+ ++p;
1500+ }
1501+
1502+ const bool has_leading_zeros = p > start_num;
1503+
1504+ UC const *const start_digits = p;
1505+
1506+ uint64_t i = 0;
1507+ if (base == 10) {
1508+ loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible
1509+ }
1510+ while (p != pend) {
1511+ uint8_t digit = ch_to_digit(*p);
1512+ if (digit >= base) {
1513+ break;
1514+ }
1515+ i = uint64_t(base) * i + digit; // might overflow, check this later
1516+ p++;
1517+ }
1518+
1519+ size_t digit_count = size_t(p - start_digits);
1520+
1521+ if (digit_count == 0) {
1522+ if (has_leading_zeros) {
1523+ value = 0;
1524+ answer.ec = std::errc();
1525+ answer.ptr = p;
1526+ } else {
1527+ answer.ec = std::errc::invalid_argument;
1528+ answer.ptr = first;
1529+ }
1530+ return answer;
1531+ }
1532+
1533+ answer.ptr = p;
1534+
1535+ // check u64 overflow
1536+ size_t max_digits = max_digits_u64(base);
1537+ if (digit_count > max_digits) {
1538+ answer.ec = std::errc::result_out_of_range;
1539+ return answer;
1540+ }
1541+ // this check can be eliminated for all other types, but they will all require
1542+ // a max_digits(base) equivalent
1543+ if (digit_count == max_digits && i < min_safe_u64(base)) {
1544+ answer.ec = std::errc::result_out_of_range;
1545+ return answer;
1546+ }
1547+
1548+ // check other types overflow
1549+ if (!std::is_same<T, uint64_t>::value) {
1550+ if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) {
1551+ answer.ec = std::errc::result_out_of_range;
1552+ return answer;
1553+ }
1554+ }
1555+
1556+ if (negative) {
1557+#ifdef FASTFLOAT_VISUAL_STUDIO
1558+#pragma warning(push)
1559+#pragma warning(disable : 4146)
1560+#endif
1561+ // this weird workaround is required because:
1562+ // - converting unsigned to signed when its value is greater than signed max
1563+ // is UB pre-C++23.
1564+ // - reinterpret_casting (~i + 1) would work, but it is not constexpr
1565+ // this is always optimized into a neg instruction (note: T is an integer
1566+ // type)
1567+ value = T(-std::numeric_limits<T>::max() -
1568+ T(i - uint64_t(std::numeric_limits<T>::max())));
1569+#ifdef FASTFLOAT_VISUAL_STUDIO
1570+#pragma warning(pop)
1571+#endif
1572+ } else {
1573+ value = T(i);
1574+ }
1575+
1576+ answer.ec = std::errc();
1577+ return answer;
1578+}
1579+
1580+} // namespace fast_float
1581+
1582+#endif
1583+
1584+#ifndef FASTFLOAT_FAST_TABLE_H
1585+#define FASTFLOAT_FAST_TABLE_H
1586+
1587+#include <cstdint>
1588+
1589+namespace fast_float {
1590+
1591+/**
1592+ * When mapping numbers from decimal to binary,
1593+ * we go from w * 10^q to m * 2^p but we have
1594+ * 10^q = 5^q * 2^q, so effectively
1595+ * we are trying to match
1596+ * w * 2^q * 5^q to m * 2^p. Thus the powers of two
1597+ * are not a concern since they can be represented
1598+ * exactly using the binary notation, only the powers of five
1599+ * affect the binary significand.
1600+ */
1601+
1602+/**
1603+ * The smallest non-zero float (binary64) is 2^-1074.
1604+ * We take as input numbers of the form w x 10^q where w < 2^64.
1605+ * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076.
1606+ * However, we have that
1607+ * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074.
1608+ * Thus it is possible for a number of the form w * 10^-342 where
1609+ * w is a 64-bit value to be a non-zero floating-point number.
1610+ *********
1611+ * Any number of form w * 10^309 where w>= 1 is going to be
1612+ * infinite in binary64 so we never need to worry about powers
1613+ * of 5 greater than 308.
1614+ */
1615+template <class unused = void> struct powers_template {
1616+
1617+ constexpr static int smallest_power_of_five =
1618+ binary_format<double>::smallest_power_of_ten();
1619+ constexpr static int largest_power_of_five =
1620+ binary_format<double>::largest_power_of_ten();
1621+ constexpr static int number_of_entries =
1622+ 2 * (largest_power_of_five - smallest_power_of_five + 1);
1623+ // Powers of five from 5^-342 all the way to 5^308 rounded toward one.
1624+ constexpr static uint64_t power_of_five_128[number_of_entries] = {
1625+ 0xeef453d6923bd65a, 0x113faa2906a13b3f,
1626+ 0x9558b4661b6565f8, 0x4ac7ca59a424c507,
1627+ 0xbaaee17fa23ebf76, 0x5d79bcf00d2df649,
1628+ 0xe95a99df8ace6f53, 0xf4d82c2c107973dc,
1629+ 0x91d8a02bb6c10594, 0x79071b9b8a4be869,
1630+ 0xb64ec836a47146f9, 0x9748e2826cdee284,
1631+ 0xe3e27a444d8d98b7, 0xfd1b1b2308169b25,
1632+ 0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7,
1633+ 0xb208ef855c969f4f, 0xbdbd2d335e51a935,
1634+ 0xde8b2b66b3bc4723, 0xad2c788035e61382,
1635+ 0x8b16fb203055ac76, 0x4c3bcb5021afcc31,
1636+ 0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d,
1637+ 0xd953e8624b85dd78, 0xd71d6dad34a2af0d,
1638+ 0x87d4713d6f33aa6b, 0x8672648c40e5ad68,
1639+ 0xa9c98d8ccb009506, 0x680efdaf511f18c2,
1640+ 0xd43bf0effdc0ba48, 0x212bd1b2566def2,
1641+ 0x84a57695fe98746d, 0x14bb630f7604b57,
1642+ 0xa5ced43b7e3e9188, 0x419ea3bd35385e2d,
1643+ 0xcf42894a5dce35ea, 0x52064cac828675b9,
1644+ 0x818995ce7aa0e1b2, 0x7343efebd1940993,
1645+ 0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8,
1646+ 0xca66fa129f9b60a6, 0xd41a26e077774ef6,
1647+ 0xfd00b897478238d0, 0x8920b098955522b4,
1648+ 0x9e20735e8cb16382, 0x55b46e5f5d5535b0,
1649+ 0xc5a890362fddbc62, 0xeb2189f734aa831d,
1650+ 0xf712b443bbd52b7b, 0xa5e9ec7501d523e4,
1651+ 0x9a6bb0aa55653b2d, 0x47b233c92125366e,
1652+ 0xc1069cd4eabe89f8, 0x999ec0bb696e840a,
1653+ 0xf148440a256e2c76, 0xc00670ea43ca250d,
1654+ 0x96cd2a865764dbca, 0x380406926a5e5728,
1655+ 0xbc807527ed3e12bc, 0xc605083704f5ecf2,
1656+ 0xeba09271e88d976b, 0xf7864a44c633682e,
1657+ 0x93445b8731587ea3, 0x7ab3ee6afbe0211d,
1658+ 0xb8157268fdae9e4c, 0x5960ea05bad82964,
1659+ 0xe61acf033d1a45df, 0x6fb92487298e33bd,
1660+ 0x8fd0c16206306bab, 0xa5d3b6d479f8e056,
1661+ 0xb3c4f1ba87bc8696, 0x8f48a4899877186c,
1662+ 0xe0b62e2929aba83c, 0x331acdabfe94de87,
1663+ 0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14,
1664+ 0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9,
1665+ 0xdb71e91432b1a24a, 0xc9e82cd9f69d6150,
1666+ 0x892731ac9faf056e, 0xbe311c083a225cd2,
1667+ 0xab70fe17c79ac6ca, 0x6dbd630a48aaf406,
1668+ 0xd64d3d9db981787d, 0x92cbbccdad5b108,
1669+ 0x85f0468293f0eb4e, 0x25bbf56008c58ea5,
1670+ 0xa76c582338ed2621, 0xaf2af2b80af6f24e,
1671+ 0xd1476e2c07286faa, 0x1af5af660db4aee1,
1672+ 0x82cca4db847945ca, 0x50d98d9fc890ed4d,
1673+ 0xa37fce126597973c, 0xe50ff107bab528a0,
1674+ 0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8,
1675+ 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a,
1676+ 0x9faacf3df73609b1, 0x77b191618c54e9ac,
1677+ 0xc795830d75038c1d, 0xd59df5b9ef6a2417,
1678+ 0xf97ae3d0d2446f25, 0x4b0573286b44ad1d,
1679+ 0x9becce62836ac577, 0x4ee367f9430aec32,
1680+ 0xc2e801fb244576d5, 0x229c41f793cda73f,
1681+ 0xf3a20279ed56d48a, 0x6b43527578c1110f,
1682+ 0x9845418c345644d6, 0x830a13896b78aaa9,
1683+ 0xbe5691ef416bd60c, 0x23cc986bc656d553,
1684+ 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8,
1685+ 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9,
1686+ 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53,
1687+ 0xe858ad248f5c22c9, 0xd1b3400f8f9cff68,
1688+ 0x91376c36d99995be, 0x23100809b9c21fa1,
1689+ 0xb58547448ffffb2d, 0xabd40a0c2832a78a,
1690+ 0xe2e69915b3fff9f9, 0x16c90c8f323f516c,
1691+ 0x8dd01fad907ffc3b, 0xae3da7d97f6792e3,
1692+ 0xb1442798f49ffb4a, 0x99cd11cfdf41779c,
1693+ 0xdd95317f31c7fa1d, 0x40405643d711d583,
1694+ 0x8a7d3eef7f1cfc52, 0x482835ea666b2572,
1695+ 0xad1c8eab5ee43b66, 0xda3243650005eecf,
1696+ 0xd863b256369d4a40, 0x90bed43e40076a82,
1697+ 0x873e4f75e2224e68, 0x5a7744a6e804a291,
1698+ 0xa90de3535aaae202, 0x711515d0a205cb36,
1699+ 0xd3515c2831559a83, 0xd5a5b44ca873e03,
1700+ 0x8412d9991ed58091, 0xe858790afe9486c2,
1701+ 0xa5178fff668ae0b6, 0x626e974dbe39a872,
1702+ 0xce5d73ff402d98e3, 0xfb0a3d212dc8128f,
1703+ 0x80fa687f881c7f8e, 0x7ce66634bc9d0b99,
1704+ 0xa139029f6a239f72, 0x1c1fffc1ebc44e80,
1705+ 0xc987434744ac874e, 0xa327ffb266b56220,
1706+ 0xfbe9141915d7a922, 0x4bf1ff9f0062baa8,
1707+ 0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9,
1708+ 0xc4ce17b399107c22, 0xcb550fb4384d21d3,
1709+ 0xf6019da07f549b2b, 0x7e2a53a146606a48,
1710+ 0x99c102844f94e0fb, 0x2eda7444cbfc426d,
1711+ 0xc0314325637a1939, 0xfa911155fefb5308,
1712+ 0xf03d93eebc589f88, 0x793555ab7eba27ca,
1713+ 0x96267c7535b763b5, 0x4bc1558b2f3458de,
1714+ 0xbbb01b9283253ca2, 0x9eb1aaedfb016f16,
1715+ 0xea9c227723ee8bcb, 0x465e15a979c1cadc,
1716+ 0x92a1958a7675175f, 0xbfacd89ec191ec9,
1717+ 0xb749faed14125d36, 0xcef980ec671f667b,
1718+ 0xe51c79a85916f484, 0x82b7e12780e7401a,
1719+ 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810,
1720+ 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15,
1721+ 0xdfbdcece67006ac9, 0x67a791e093e1d49a,
1722+ 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0,
1723+ 0xaecc49914078536d, 0x58fae9f773886e18,
1724+ 0xda7f5bf590966848, 0xaf39a475506a899e,
1725+ 0x888f99797a5e012d, 0x6d8406c952429603,
1726+ 0xaab37fd7d8f58178, 0xc8e5087ba6d33b83,
1727+ 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64,
1728+ 0x855c3be0a17fcd26, 0x5cf2eea09a55067f,
1729+ 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e,
1730+ 0xd0601d8efc57b08b, 0xf13b94daf124da26,
1731+ 0x823c12795db6ce57, 0x76c53d08d6b70858,
1732+ 0xa2cb1717b52481ed, 0x54768c4b0c64ca6e,
1733+ 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09,
1734+ 0xfe5d54150b090b02, 0xd3f93b35435d7c4c,
1735+ 0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf,
1736+ 0xc6b8e9b0709f109a, 0x359ab6419ca1091b,
1737+ 0xf867241c8cc6d4c0, 0xc30163d203c94b62,
1738+ 0x9b407691d7fc44f8, 0x79e0de63425dcf1d,
1739+ 0xc21094364dfb5636, 0x985915fc12f542e4,
1740+ 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d,
1741+ 0x979cf3ca6cec5b5a, 0xa705992ceecf9c42,
1742+ 0xbd8430bd08277231, 0x50c6ff782a838353,
1743+ 0xece53cec4a314ebd, 0xa4f8bf5635246428,
1744+ 0x940f4613ae5ed136, 0x871b7795e136be99,
1745+ 0xb913179899f68584, 0x28e2557b59846e3f,
1746+ 0xe757dd7ec07426e5, 0x331aeada2fe589cf,
1747+ 0x9096ea6f3848984f, 0x3ff0d2c85def7621,
1748+ 0xb4bca50b065abe63, 0xfed077a756b53a9,
1749+ 0xe1ebce4dc7f16dfb, 0xd3e8495912c62894,
1750+ 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c,
1751+ 0xb080392cc4349dec, 0xbd8d794d96aacfb3,
1752+ 0xdca04777f541c567, 0xecf0d7a0fc5583a0,
1753+ 0x89e42caaf9491b60, 0xf41686c49db57244,
1754+ 0xac5d37d5b79b6239, 0x311c2875c522ced5,
1755+ 0xd77485cb25823ac7, 0x7d633293366b828b,
1756+ 0x86a8d39ef77164bc, 0xae5dff9c02033197,
1757+ 0xa8530886b54dbdeb, 0xd9f57f830283fdfc,
1758+ 0xd267caa862a12d66, 0xd072df63c324fd7b,
1759+ 0x8380dea93da4bc60, 0x4247cb9e59f71e6d,
1760+ 0xa46116538d0deb78, 0x52d9be85f074e608,
1761+ 0xcd795be870516656, 0x67902e276c921f8b,
1762+ 0x806bd9714632dff6, 0xba1cd8a3db53b6,
1763+ 0xa086cfcd97bf97f3, 0x80e8a40eccd228a4,
1764+ 0xc8a883c0fdaf7df0, 0x6122cd128006b2cd,
1765+ 0xfad2a4b13d1b5d6c, 0x796b805720085f81,
1766+ 0x9cc3a6eec6311a63, 0xcbe3303674053bb0,
1767+ 0xc3f490aa77bd60fc, 0xbedbfc4411068a9c,
1768+ 0xf4f1b4d515acb93b, 0xee92fb5515482d44,
1769+ 0x991711052d8bf3c5, 0x751bdd152d4d1c4a,
1770+ 0xbf5cd54678eef0b6, 0xd262d45a78a0635d,
1771+ 0xef340a98172aace4, 0x86fb897116c87c34,
1772+ 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0,
1773+ 0xbae0a846d2195712, 0x8974836059cca109,
1774+ 0xe998d258869facd7, 0x2bd1a438703fc94b,
1775+ 0x91ff83775423cc06, 0x7b6306a34627ddcf,
1776+ 0xb67f6455292cbf08, 0x1a3bc84c17b1d542,
1777+ 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93,
1778+ 0x8e938662882af53e, 0x547eb47b7282ee9c,
1779+ 0xb23867fb2a35b28d, 0xe99e619a4f23aa43,
1780+ 0xdec681f9f4c31f31, 0x6405fa00e2ec94d4,
1781+ 0x8b3c113c38f9f37e, 0xde83bc408dd3dd04,
1782+ 0xae0b158b4738705e, 0x9624ab50b148d445,
1783+ 0xd98ddaee19068c76, 0x3badd624dd9b0957,
1784+ 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6,
1785+ 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c,
1786+ 0xd47487cc8470652b, 0x7647c3200069671f,
1787+ 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073,
1788+ 0xa5fb0a17c777cf09, 0xf468107100525890,
1789+ 0xcf79cc9db955c2cc, 0x7182148d4066eeb4,
1790+ 0x81ac1fe293d599bf, 0xc6f14cd848405530,
1791+ 0xa21727db38cb002f, 0xb8ada00e5a506a7c,
1792+ 0xca9cf1d206fdc03b, 0xa6d90811f0e4851c,
1793+ 0xfd442e4688bd304a, 0x908f4a166d1da663,
1794+ 0x9e4a9cec15763e2e, 0x9a598e4e043287fe,
1795+ 0xc5dd44271ad3cdba, 0x40eff1e1853f29fd,
1796+ 0xf7549530e188c128, 0xd12bee59e68ef47c,
1797+ 0x9a94dd3e8cf578b9, 0x82bb74f8301958ce,
1798+ 0xc13a148e3032d6e7, 0xe36a52363c1faf01,
1799+ 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1,
1800+ 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9,
1801+ 0xbcb2b812db11a5de, 0x7415d448f6b6f0e7,
1802+ 0xebdf661791d60f56, 0x111b495b3464ad21,
1803+ 0x936b9fcebb25c995, 0xcab10dd900beec34,
1804+ 0xb84687c269ef3bfb, 0x3d5d514f40eea742,
1805+ 0xe65829b3046b0afa, 0xcb4a5a3112a5112,
1806+ 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab,
1807+ 0xb3f4e093db73a093, 0x59ed216765690f56,
1808+ 0xe0f218b8d25088b8, 0x306869c13ec3532c,
1809+ 0x8c974f7383725573, 0x1e414218c73a13fb,
1810+ 0xafbd2350644eeacf, 0xe5d1929ef90898fa,
1811+ 0xdbac6c247d62a583, 0xdf45f746b74abf39,
1812+ 0x894bc396ce5da772, 0x6b8bba8c328eb783,
1813+ 0xab9eb47c81f5114f, 0x66ea92f3f326564,
1814+ 0xd686619ba27255a2, 0xc80a537b0efefebd,
1815+ 0x8613fd0145877585, 0xbd06742ce95f5f36,
1816+ 0xa798fc4196e952e7, 0x2c48113823b73704,
1817+ 0xd17f3b51fca3a7a0, 0xf75a15862ca504c5,
1818+ 0x82ef85133de648c4, 0x9a984d73dbe722fb,
1819+ 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba,
1820+ 0xcc963fee10b7d1b3, 0x318df905079926a8,
1821+ 0xffbbcfe994e5c61f, 0xfdf17746497f7052,
1822+ 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633,
1823+ 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0,
1824+ 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0,
1825+ 0x9c1661a651213e2d, 0x6bea10ca65c084e,
1826+ 0xc31bfa0fe5698db8, 0x486e494fcff30a62,
1827+ 0xf3e2f893dec3f126, 0x5a89dba3c3efccfa,
1828+ 0x986ddb5c6b3a76b7, 0xf89629465a75e01c,
1829+ 0xbe89523386091465, 0xf6bbb397f1135823,
1830+ 0xee2ba6c0678b597f, 0x746aa07ded582e2c,
1831+ 0x94db483840b717ef, 0xa8c2a44eb4571cdc,
1832+ 0xba121a4650e4ddeb, 0x92f34d62616ce413,
1833+ 0xe896a0d7e51e1566, 0x77b020baf9c81d17,
1834+ 0x915e2486ef32cd60, 0xace1474dc1d122e,
1835+ 0xb5b5ada8aaff80b8, 0xd819992132456ba,
1836+ 0xe3231912d5bf60e6, 0x10e1fff697ed6c69,
1837+ 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1,
1838+ 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2,
1839+ 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde,
1840+ 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b,
1841+ 0xad4ab7112eb3929d, 0x86c16c98d2c953c6,
1842+ 0xd89d64d57a607744, 0xe871c7bf077ba8b7,
1843+ 0x87625f056c7c4a8b, 0x11471cd764ad4972,
1844+ 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf,
1845+ 0xd389b47879823479, 0x4aff1d108d4ec2c3,
1846+ 0x843610cb4bf160cb, 0xcedf722a585139ba,
1847+ 0xa54394fe1eedb8fe, 0xc2974eb4ee658828,
1848+ 0xce947a3da6a9273e, 0x733d226229feea32,
1849+ 0x811ccc668829b887, 0x806357d5a3f525f,
1850+ 0xa163ff802a3426a8, 0xca07c2dcb0cf26f7,
1851+ 0xc9bcff6034c13052, 0xfc89b393dd02f0b5,
1852+ 0xfc2c3f3841f17c67, 0xbbac2078d443ace2,
1853+ 0x9d9ba7832936edc0, 0xd54b944b84aa4c0d,
1854+ 0xc5029163f384a931, 0xa9e795e65d4df11,
1855+ 0xf64335bcf065d37d, 0x4d4617b5ff4a16d5,
1856+ 0x99ea0196163fa42e, 0x504bced1bf8e4e45,
1857+ 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6,
1858+ 0xf07da27a82c37088, 0x5d767327bb4e5a4c,
1859+ 0x964e858c91ba2655, 0x3a6a07f8d510f86f,
1860+ 0xbbe226efb628afea, 0x890489f70a55368b,
1861+ 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e,
1862+ 0x92c8ae6b464fc96f, 0x3b0b8bc90012929d,
1863+ 0xb77ada0617e3bbcb, 0x9ce6ebb40173744,
1864+ 0xe55990879ddcaabd, 0xcc420a6a101d0515,
1865+ 0x8f57fa54c2a9eab6, 0x9fa946824a12232d,
1866+ 0xb32df8e9f3546564, 0x47939822dc96abf9,
1867+ 0xdff9772470297ebd, 0x59787e2b93bc56f7,
1868+ 0x8bfbea76c619ef36, 0x57eb4edb3c55b65a,
1869+ 0xaefae51477a06b03, 0xede622920b6b23f1,
1870+ 0xdab99e59958885c4, 0xe95fab368e45eced,
1871+ 0x88b402f7fd75539b, 0x11dbcb0218ebb414,
1872+ 0xaae103b5fcd2a881, 0xd652bdc29f26a119,
1873+ 0xd59944a37c0752a2, 0x4be76d3346f0495f,
1874+ 0x857fcae62d8493a5, 0x6f70a4400c562ddb,
1875+ 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952,
1876+ 0xd097ad07a71f26b2, 0x7e2000a41346a7a7,
1877+ 0x825ecc24c873782f, 0x8ed400668c0c28c8,
1878+ 0xa2f67f2dfa90563b, 0x728900802f0f32fa,
1879+ 0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9,
1880+ 0xfea126b7d78186bc, 0xe2f610c84987bfa8,
1881+ 0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9,
1882+ 0xc6ede63fa05d3143, 0x91503d1c79720dbb,
1883+ 0xf8a95fcf88747d94, 0x75a44c6397ce912a,
1884+ 0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba,
1885+ 0xc24452da229b021b, 0xfbe85badce996168,
1886+ 0xf2d56790ab41c2a2, 0xfae27299423fb9c3,
1887+ 0x97c560ba6b0919a5, 0xdccd879fc967d41a,
1888+ 0xbdb6b8e905cb600f, 0x5400e987bbc1c920,
1889+ 0xed246723473e3813, 0x290123e9aab23b68,
1890+ 0x9436c0760c86e30b, 0xf9a0b6720aaf6521,
1891+ 0xb94470938fa89bce, 0xf808e40e8d5b3e69,
1892+ 0xe7958cb87392c2c2, 0xb60b1d1230b20e04,
1893+ 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2,
1894+ 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3,
1895+ 0xe2280b6c20dd5232, 0x25c6da63c38de1b0,
1896+ 0x8d590723948a535f, 0x579c487e5a38ad0e,
1897+ 0xb0af48ec79ace837, 0x2d835a9df0c6d851,
1898+ 0xdcdb1b2798182244, 0xf8e431456cf88e65,
1899+ 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff,
1900+ 0xac8b2d36eed2dac5, 0xe272467e3d222f3f,
1901+ 0xd7adf884aa879177, 0x5b0ed81dcc6abb0f,
1902+ 0x86ccbb52ea94baea, 0x98e947129fc2b4e9,
1903+ 0xa87fea27a539e9a5, 0x3f2398d747b36224,
1904+ 0xd29fe4b18e88640e, 0x8eec7f0d19a03aad,
1905+ 0x83a3eeeef9153e89, 0x1953cf68300424ac,
1906+ 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7,
1907+ 0xcdb02555653131b6, 0x3792f412cb06794d,
1908+ 0x808e17555f3ebf11, 0xe2bbd88bbee40bd0,
1909+ 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4,
1910+ 0xc8de047564d20a8b, 0xf245825a5a445275,
1911+ 0xfb158592be068d2e, 0xeed6e2f0f0d56712,
1912+ 0x9ced737bb6c4183d, 0x55464dd69685606b,
1913+ 0xc428d05aa4751e4c, 0xaa97e14c3c26b886,
1914+ 0xf53304714d9265df, 0xd53dd99f4b3066a8,
1915+ 0x993fe2c6d07b7fab, 0xe546a8038efe4029,
1916+ 0xbf8fdb78849a5f96, 0xde98520472bdd033,
1917+ 0xef73d256a5c0f77c, 0x963e66858f6d4440,
1918+ 0x95a8637627989aad, 0xdde7001379a44aa8,
1919+ 0xbb127c53b17ec159, 0x5560c018580d5d52,
1920+ 0xe9d71b689dde71af, 0xaab8f01e6e10b4a6,
1921+ 0x9226712162ab070d, 0xcab3961304ca70e8,
1922+ 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22,
1923+ 0xe45c10c42a2b3b05, 0x8cb89a7db77c506a,
1924+ 0x8eb98a7a9a5b04e3, 0x77f3608e92adb242,
1925+ 0xb267ed1940f1c61c, 0x55f038b237591ed3,
1926+ 0xdf01e85f912e37a3, 0x6b6c46dec52f6688,
1927+ 0x8b61313bbabce2c6, 0x2323ac4b3b3da015,
1928+ 0xae397d8aa96c1b77, 0xabec975e0a0d081a,
1929+ 0xd9c7dced53c72255, 0x96e7bd358c904a21,
1930+ 0x881cea14545c7575, 0x7e50d64177da2e54,
1931+ 0xaa242499697392d2, 0xdde50bd1d5d0b9e9,
1932+ 0xd4ad2dbfc3d07787, 0x955e4ec64b44e864,
1933+ 0x84ec3c97da624ab4, 0xbd5af13bef0b113e,
1934+ 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e,
1935+ 0xcfb11ead453994ba, 0x67de18eda5814af2,
1936+ 0x81ceb32c4b43fcf4, 0x80eacf948770ced7,
1937+ 0xa2425ff75e14fc31, 0xa1258379a94d028d,
1938+ 0xcad2f7f5359a3b3e, 0x96ee45813a04330,
1939+ 0xfd87b5f28300ca0d, 0x8bca9d6e188853fc,
1940+ 0x9e74d1b791e07e48, 0x775ea264cf55347e,
1941+ 0xc612062576589dda, 0x95364afe032a819e,
1942+ 0xf79687aed3eec551, 0x3a83ddbd83f52205,
1943+ 0x9abe14cd44753b52, 0xc4926a9672793543,
1944+ 0xc16d9a0095928a27, 0x75b7053c0f178294,
1945+ 0xf1c90080baf72cb1, 0x5324c68b12dd6339,
1946+ 0x971da05074da7bee, 0xd3f6fc16ebca5e04,
1947+ 0xbce5086492111aea, 0x88f4bb1ca6bcf585,
1948+ 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6,
1949+ 0x9392ee8e921d5d07, 0x3aff322e62439fd0,
1950+ 0xb877aa3236a4b449, 0x9befeb9fad487c3,
1951+ 0xe69594bec44de15b, 0x4c2ebe687989a9b4,
1952+ 0x901d7cf73ab0acd9, 0xf9d37014bf60a11,
1953+ 0xb424dc35095cd80f, 0x538484c19ef38c95,
1954+ 0xe12e13424bb40e13, 0x2865a5f206b06fba,
1955+ 0x8cbccc096f5088cb, 0xf93f87b7442e45d4,
1956+ 0xafebff0bcb24aafe, 0xf78f69a51539d749,
1957+ 0xdbe6fecebdedd5be, 0xb573440e5a884d1c,
1958+ 0x89705f4136b4a597, 0x31680a88f8953031,
1959+ 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e,
1960+ 0xd6bf94d5e57a42bc, 0x3d32907604691b4d,
1961+ 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110,
1962+ 0xa7c5ac471b478423, 0xfcf80dc33721d54,
1963+ 0xd1b71758e219652b, 0xd3c36113404ea4a9,
1964+ 0x83126e978d4fdf3b, 0x645a1cac083126ea,
1965+ 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4,
1966+ 0xcccccccccccccccc, 0xcccccccccccccccd,
1967+ 0x8000000000000000, 0x0,
1968+ 0xa000000000000000, 0x0,
1969+ 0xc800000000000000, 0x0,
1970+ 0xfa00000000000000, 0x0,
1971+ 0x9c40000000000000, 0x0,
1972+ 0xc350000000000000, 0x0,
1973+ 0xf424000000000000, 0x0,
1974+ 0x9896800000000000, 0x0,
1975+ 0xbebc200000000000, 0x0,
1976+ 0xee6b280000000000, 0x0,
1977+ 0x9502f90000000000, 0x0,
1978+ 0xba43b74000000000, 0x0,
1979+ 0xe8d4a51000000000, 0x0,
1980+ 0x9184e72a00000000, 0x0,
1981+ 0xb5e620f480000000, 0x0,
1982+ 0xe35fa931a0000000, 0x0,
1983+ 0x8e1bc9bf04000000, 0x0,
1984+ 0xb1a2bc2ec5000000, 0x0,
1985+ 0xde0b6b3a76400000, 0x0,
1986+ 0x8ac7230489e80000, 0x0,
1987+ 0xad78ebc5ac620000, 0x0,
1988+ 0xd8d726b7177a8000, 0x0,
1989+ 0x878678326eac9000, 0x0,
1990+ 0xa968163f0a57b400, 0x0,
1991+ 0xd3c21bcecceda100, 0x0,
1992+ 0x84595161401484a0, 0x0,
1993+ 0xa56fa5b99019a5c8, 0x0,
1994+ 0xcecb8f27f4200f3a, 0x0,
1995+ 0x813f3978f8940984, 0x4000000000000000,
1996+ 0xa18f07d736b90be5, 0x5000000000000000,
1997+ 0xc9f2c9cd04674ede, 0xa400000000000000,
1998+ 0xfc6f7c4045812296, 0x4d00000000000000,
1999+ 0x9dc5ada82b70b59d, 0xf020000000000000,
2000+ 0xc5371912364ce305, 0x6c28000000000000,
2001+ 0xf684df56c3e01bc6, 0xc732000000000000,
2002+ 0x9a130b963a6c115c, 0x3c7f400000000000,
2003+ 0xc097ce7bc90715b3, 0x4b9f100000000000,
2004+ 0xf0bdc21abb48db20, 0x1e86d40000000000,
2005+ 0x96769950b50d88f4, 0x1314448000000000,
2006+ 0xbc143fa4e250eb31, 0x17d955a000000000,
2007+ 0xeb194f8e1ae525fd, 0x5dcfab0800000000,
2008+ 0x92efd1b8d0cf37be, 0x5aa1cae500000000,
2009+ 0xb7abc627050305ad, 0xf14a3d9e40000000,
2010+ 0xe596b7b0c643c719, 0x6d9ccd05d0000000,
2011+ 0x8f7e32ce7bea5c6f, 0xe4820023a2000000,
2012+ 0xb35dbf821ae4f38b, 0xdda2802c8a800000,
2013+ 0xe0352f62a19e306e, 0xd50b2037ad200000,
2014+ 0x8c213d9da502de45, 0x4526f422cc340000,
2015+ 0xaf298d050e4395d6, 0x9670b12b7f410000,
2016+ 0xdaf3f04651d47b4c, 0x3c0cdd765f114000,
2017+ 0x88d8762bf324cd0f, 0xa5880a69fb6ac800,
2018+ 0xab0e93b6efee0053, 0x8eea0d047a457a00,
2019+ 0xd5d238a4abe98068, 0x72a4904598d6d880,
2020+ 0x85a36366eb71f041, 0x47a6da2b7f864750,
2021+ 0xa70c3c40a64e6c51, 0x999090b65f67d924,
2022+ 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d,
2023+ 0x82818f1281ed449f, 0xbff8f10e7a8921a4,
2024+ 0xa321f2d7226895c7, 0xaff72d52192b6a0d,
2025+ 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490,
2026+ 0xfee50b7025c36a08, 0x2f236d04753d5b4,
2027+ 0x9f4f2726179a2245, 0x1d762422c946590,
2028+ 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5,
2029+ 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2,
2030+ 0x9b934c3b330c8577, 0x63cc55f49f88eb2f,
2031+ 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb,
2032+ 0xf316271c7fc3908a, 0x8bef464e3945ef7a,
2033+ 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac,
2034+ 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317,
2035+ 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd,
2036+ 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a,
2037+ 0xb975d6b6ee39e436, 0xb3e2fd538e122b44,
2038+ 0xe7d34c64a9c85d44, 0x60dbbca87196b616,
2039+ 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd,
2040+ 0xb51d13aea4a488dd, 0x6babab6398bdbe41,
2041+ 0xe264589a4dcdab14, 0xc696963c7eed2dd1,
2042+ 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2,
2043+ 0xb0de65388cc8ada8, 0x3b25a55f43294bcb,
2044+ 0xdd15fe86affad912, 0x49ef0eb713f39ebe,
2045+ 0x8a2dbf142dfcc7ab, 0x6e3569326c784337,
2046+ 0xacb92ed9397bf996, 0x49c2c37f07965404,
2047+ 0xd7e77a8f87daf7fb, 0xdc33745ec97be906,
2048+ 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3,
2049+ 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c,
2050+ 0xd2d80db02aabd62b, 0xf50a3fa490c30190,
2051+ 0x83c7088e1aab65db, 0x792667c6da79e0fa,
2052+ 0xa4b8cab1a1563f52, 0x577001b891185938,
2053+ 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86,
2054+ 0x80b05e5ac60b6178, 0x544f8158315b05b4,
2055+ 0xa0dc75f1778e39d6, 0x696361ae3db1c721,
2056+ 0xc913936dd571c84c, 0x3bc3a19cd1e38e9,
2057+ 0xfb5878494ace3a5f, 0x4ab48a04065c723,
2058+ 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76,
2059+ 0xc45d1df942711d9a, 0x3ba5d0bd324f8394,
2060+ 0xf5746577930d6500, 0xca8f44ec7ee36479,
2061+ 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb,
2062+ 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e,
2063+ 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e,
2064+ 0x95d04aee3b80ece5, 0xbba1f1d158724a12,
2065+ 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97,
2066+ 0xea1575143cf97226, 0xf52d09d71a3293bd,
2067+ 0x924d692ca61be758, 0x593c2626705f9c56,
2068+ 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c,
2069+ 0xe498f455c38b997a, 0xb6dfb9c0f956447,
2070+ 0x8edf98b59a373fec, 0x4724bd4189bd5eac,
2071+ 0xb2977ee300c50fe7, 0x58edec91ec2cb657,
2072+ 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed,
2073+ 0x8b865b215899f46c, 0xbd79e0d20082ee74,
2074+ 0xae67f1e9aec07187, 0xecd8590680a3aa11,
2075+ 0xda01ee641a708de9, 0xe80e6f4820cc9495,
2076+ 0x884134fe908658b2, 0x3109058d147fdcdd,
2077+ 0xaa51823e34a7eede, 0xbd4b46f0599fd415,
2078+ 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a,
2079+ 0x850fadc09923329e, 0x3e2cf6bc604ddb0,
2080+ 0xa6539930bf6bff45, 0x84db8346b786151c,
2081+ 0xcfe87f7cef46ff16, 0xe612641865679a63,
2082+ 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e,
2083+ 0xa26da3999aef7749, 0xe3be5e330f38f09d,
2084+ 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5,
2085+ 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6,
2086+ 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa,
2087+ 0xc646d63501a1511d, 0xb281e1fd541501b8,
2088+ 0xf7d88bc24209a565, 0x1f225a7ca91a4226,
2089+ 0x9ae757596946075f, 0x3375788de9b06958,
2090+ 0xc1a12d2fc3978937, 0x52d6b1641c83ae,
2091+ 0xf209787bb47d6b84, 0xc0678c5dbd23a49a,
2092+ 0x9745eb4d50ce6332, 0xf840b7ba963646e0,
2093+ 0xbd176620a501fbff, 0xb650e5a93bc3d898,
2094+ 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe,
2095+ 0x93ba47c980e98cdf, 0xc66f336c36b10137,
2096+ 0xb8a8d9bbe123f017, 0xb80b0047445d4184,
2097+ 0xe6d3102ad96cec1d, 0xa60dc059157491e5,
2098+ 0x9043ea1ac7e41392, 0x87c89837ad68db2f,
2099+ 0xb454e4a179dd1877, 0x29babe4598c311fb,
2100+ 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a,
2101+ 0x8ce2529e2734bb1d, 0x1899e4a65f58660c,
2102+ 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f,
2103+ 0xdc21a1171d42645d, 0x76707543f4fa1f73,
2104+ 0x899504ae72497eba, 0x6a06494a791c53a8,
2105+ 0xabfa45da0edbde69, 0x487db9d17636892,
2106+ 0xd6f8d7509292d603, 0x45a9d2845d3c42b6,
2107+ 0x865b86925b9bc5c2, 0xb8a2392ba45a9b2,
2108+ 0xa7f26836f282b732, 0x8e6cac7768d7141e,
2109+ 0xd1ef0244af2364ff, 0x3207d795430cd926,
2110+ 0x8335616aed761f1f, 0x7f44e6bd49e807b8,
2111+ 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6,
2112+ 0xcd036837130890a1, 0x36dba887c37a8c0f,
2113+ 0x802221226be55a64, 0xc2494954da2c9789,
2114+ 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c,
2115+ 0xc83553c5c8965d3d, 0x6f92829494e5acc7,
2116+ 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9,
2117+ 0x9c69a97284b578d7, 0xff2a760414536efb,
2118+ 0xc38413cf25e2d70d, 0xfef5138519684aba,
2119+ 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69,
2120+ 0x98bf2f79d5993802, 0xef2f773ffbd97a61,
2121+ 0xbeeefb584aff8603, 0xaafb550ffacfd8fa,
2122+ 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38,
2123+ 0x952ab45cfa97a0b2, 0xdd945a747bf26183,
2124+ 0xba756174393d88df, 0x94f971119aeef9e4,
2125+ 0xe912b9d1478ceb17, 0x7a37cd5601aab85d,
2126+ 0x91abb422ccb812ee, 0xac62e055c10ab33a,
2127+ 0xb616a12b7fe617aa, 0x577b986b314d6009,
2128+ 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b,
2129+ 0x8e41ade9fbebc27d, 0x14588f13be847307,
2130+ 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8,
2131+ 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb,
2132+ 0x8aec23d680043bee, 0x25de7bb9480d5854,
2133+ 0xada72ccc20054ae9, 0xaf561aa79a10ae6a,
2134+ 0xd910f7ff28069da4, 0x1b2ba1518094da04,
2135+ 0x87aa9aff79042286, 0x90fb44d2f05d0842,
2136+ 0xa99541bf57452b28, 0x353a1607ac744a53,
2137+ 0xd3fa922f2d1675f2, 0x42889b8997915ce8,
2138+ 0x847c9b5d7c2e09b7, 0x69956135febada11,
2139+ 0xa59bc234db398c25, 0x43fab9837e699095,
2140+ 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb,
2141+ 0x8161afb94b44f57d, 0x1d1be0eebac278f5,
2142+ 0xa1ba1ba79e1632dc, 0x6462d92a69731732,
2143+ 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe,
2144+ 0xfcb2cb35e702af78, 0x5cda735244c3d43e,
2145+ 0x9defbf01b061adab, 0x3a0888136afa64a7,
2146+ 0xc56baec21c7a1916, 0x88aaa1845b8fdd0,
2147+ 0xf6c69a72a3989f5b, 0x8aad549e57273d45,
2148+ 0x9a3c2087a63f6399, 0x36ac54e2f678864b,
2149+ 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd,
2150+ 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5,
2151+ 0x969eb7c47859e743, 0x9f644ae5a4b1b325,
2152+ 0xbc4665b596706114, 0x873d5d9f0dde1fee,
2153+ 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea,
2154+ 0x9316ff75dd87cbd8, 0x9a7f12442d588f2,
2155+ 0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f,
2156+ 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa,
2157+ 0x8fa475791a569d10, 0xf96e017d694487bc,
2158+ 0xb38d92d760ec4455, 0x37c981dcc395a9ac,
2159+ 0xe070f78d3927556a, 0x85bbe253f47b1417,
2160+ 0x8c469ab843b89562, 0x93956d7478ccec8e,
2161+ 0xaf58416654a6babb, 0x387ac8d1970027b2,
2162+ 0xdb2e51bfe9d0696a, 0x6997b05fcc0319e,
2163+ 0x88fcf317f22241e2, 0x441fece3bdf81f03,
2164+ 0xab3c2fddeeaad25a, 0xd527e81cad7626c3,
2165+ 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074,
2166+ 0x85c7056562757456, 0xf6872d5667844e49,
2167+ 0xa738c6bebb12d16c, 0xb428f8ac016561db,
2168+ 0xd106f86e69d785c7, 0xe13336d701beba52,
2169+ 0x82a45b450226b39c, 0xecc0024661173473,
2170+ 0xa34d721642b06084, 0x27f002d7f95d0190,
2171+ 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4,
2172+ 0xff290242c83396ce, 0x7e67047175a15271,
2173+ 0x9f79a169bd203e41, 0xf0062c6e984d386,
2174+ 0xc75809c42c684dd1, 0x52c07b78a3e60868,
2175+ 0xf92e0c3537826145, 0xa7709a56ccdf8a82,
2176+ 0x9bbcc7a142b17ccb, 0x88a66076400bb691,
2177+ 0xc2abf989935ddbfe, 0x6acff893d00ea435,
2178+ 0xf356f7ebf83552fe, 0x583f6b8c4124d43,
2179+ 0x98165af37b2153de, 0xc3727a337a8b704a,
2180+ 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c,
2181+ 0xeda2ee1c7064130c, 0x1162def06f79df73,
2182+ 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8,
2183+ 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692,
2184+ 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437,
2185+ 0x910ab1d4db9914a0, 0x1d9c9892400a22a2,
2186+ 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b,
2187+ 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d,
2188+ 0x8da471a9de737e24, 0x5ceaecfed289e5d2,
2189+ 0xb10d8e1456105dad, 0x7425a83e872c5f47,
2190+ 0xdd50f1996b947518, 0xd12f124e28f77719,
2191+ 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f,
2192+ 0xace73cbfdc0bfb7b, 0x636cc64d1001550b,
2193+ 0xd8210befd30efa5a, 0x3c47f7e05401aa4e,
2194+ 0x8714a775e3e95c78, 0x65acfaec34810a71,
2195+ 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d,
2196+ 0xd31045a8341ca07c, 0x1ede48111209a050,
2197+ 0x83ea2b892091e44d, 0x934aed0aab460432,
2198+ 0xa4e4b66b68b65d60, 0xf81da84d5617853f,
2199+ 0xce1de40642e3f4b9, 0x36251260ab9d668e,
2200+ 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019,
2201+ 0xa1075a24e4421730, 0xb24cf65b8612f81f,
2202+ 0xc94930ae1d529cfc, 0xdee033f26797b627,
2203+ 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1,
2204+ 0x9d412e0806e88aa5, 0x8e1f289560ee864e,
2205+ 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2,
2206+ 0xf5b5d7ec8acb58a2, 0xae10af696774b1db,
2207+ 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29,
2208+ 0xbff610b0cc6edd3f, 0x17fd090a58d32af3,
2209+ 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0,
2210+ 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e,
2211+ 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1,
2212+ 0xea53df5fd18d5513, 0x84c86189216dc5ed,
2213+ 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4,
2214+ 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1,
2215+ 0xe4d5e82392a40515, 0xfabaf3feaa5334a,
2216+ 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e,
2217+ 0xb2c71d5bca9023f8, 0x743e20e9ef511012,
2218+ 0xdf78e4b2bd342cf6, 0x914da9246b255416,
2219+ 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e,
2220+ 0xae9672aba3d0c320, 0xa184ac2473b529b1,
2221+ 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e,
2222+ 0x8865899617fb1871, 0x7e2fa67c7a658892,
2223+ 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7,
2224+ 0xd51ea6fa85785631, 0x552a74227f3ea565,
2225+ 0x8533285c936b35de, 0xd53a88958f87275f,
2226+ 0xa67ff273b8460356, 0x8a892abaf368f137,
2227+ 0xd01fef10a657842c, 0x2d2b7569b0432d85,
2228+ 0x8213f56a67f6b29b, 0x9c3b29620e29fc73,
2229+ 0xa298f2c501f45f42, 0x8349f3ba91b47b8f,
2230+ 0xcb3f2f7642717713, 0x241c70a936219a73,
2231+ 0xfe0efb53d30dd4d7, 0xed238cd383aa0110,
2232+ 0x9ec95d1463e8a506, 0xf4363804324a40aa,
2233+ 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5,
2234+ 0xf81aa16fdc1b81da, 0xdd94b7868e94050a,
2235+ 0x9b10a4e5e9913128, 0xca7cf2b4191c8326,
2236+ 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0,
2237+ 0xf24a01a73cf2dccf, 0xbc633b39673c8cec,
2238+ 0x976e41088617ca01, 0xd5be0503e085d813,
2239+ 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18,
2240+ 0xec9c459d51852ba2, 0xddf8e7d60ed1219e,
2241+ 0x93e1ab8252f33b45, 0xcabb90e5c942b503,
2242+ 0xb8da1662e7b00a17, 0x3d6a751f3b936243,
2243+ 0xe7109bfba19c0c9d, 0xcc512670a783ad4,
2244+ 0x906a617d450187e2, 0x27fb2b80668b24c5,
2245+ 0xb484f9dc9641e9da, 0xb1f9f660802dedf6,
2246+ 0xe1a63853bbd26451, 0x5e7873f8a0396973,
2247+ 0x8d07e33455637eb2, 0xdb0b487b6423e1e8,
2248+ 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62,
2249+ 0xdc5c5301c56b75f7, 0x7641a140cc7810fb,
2250+ 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d,
2251+ 0xac2820d9623bf429, 0x546345fa9fbdcd44,
2252+ 0xd732290fbacaf133, 0xa97c177947ad4095,
2253+ 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d,
2254+ 0xa81f301449ee8c70, 0x5c68f256bfff5a74,
2255+ 0xd226fc195c6a2f8c, 0x73832eec6fff3111,
2256+ 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab,
2257+ 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55,
2258+ 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb,
2259+ 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3,
2260+ 0xa0555e361951c366, 0xd7e105bcc332621f,
2261+ 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7,
2262+ 0xfa856334878fc150, 0xb14f98f6f0feb951,
2263+ 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3,
2264+ 0xc3b8358109e84f07, 0xa862f80ec4700c8,
2265+ 0xf4a642e14c6262c8, 0xcd27bb612758c0fa,
2266+ 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c,
2267+ 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3,
2268+ 0xeeea5d5004981478, 0x1858ccfce06cac74,
2269+ 0x95527a5202df0ccb, 0xf37801e0c43ebc8,
2270+ 0xbaa718e68396cffd, 0xd30560258f54e6ba,
2271+ 0xe950df20247c83fd, 0x47c6b82ef32a2069,
2272+ 0x91d28b7416cdd27e, 0x4cdc331d57fa5441,
2273+ 0xb6472e511c81471d, 0xe0133fe4adf8e952,
2274+ 0xe3d8f9e563a198e5, 0x58180fddd97723a6,
2275+ 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648,
2276+ };
2277+};
2278+
2279+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
2280+
2281+template <class unused>
2282+constexpr uint64_t
2283+ powers_template<unused>::power_of_five_128[number_of_entries];
2284+
2285+#endif
2286+
2287+using powers = powers_template<>;
2288+
2289+} // namespace fast_float
2290+
2291+#endif
2292+
2293+#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
2294+#define FASTFLOAT_DECIMAL_TO_BINARY_H
2295+
2296+#include <cfloat>
2297+#include <cinttypes>
2298+#include <cmath>
2299+#include <cstdint>
2300+#include <cstdlib>
2301+#include <cstring>
2302+
2303+namespace fast_float {
2304+
2305+// This will compute or rather approximate w * 5**q and return a pair of 64-bit
2306+// words approximating the result, with the "high" part corresponding to the
2307+// most significant bits and the low part corresponding to the least significant
2308+// bits.
2309+//
2310+template <int bit_precision>
2311+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
2312+compute_product_approximation(int64_t q, uint64_t w) {
2313+ const int index = 2 * int(q - powers::smallest_power_of_five);
2314+ // For small values of q, e.g., q in [0,27], the answer is always exact
2315+ // because The line value128 firstproduct = full_multiplication(w,
2316+ // power_of_five_128[index]); gives the exact answer.
2317+ value128 firstproduct =
2318+ full_multiplication(w, powers::power_of_five_128[index]);
2319+ static_assert((bit_precision >= 0) && (bit_precision <= 64),
2320+ " precision should be in (0,64]");
2321+ constexpr uint64_t precision_mask =
2322+ (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
2323+ : uint64_t(0xFFFFFFFFFFFFFFFF);
2324+ if ((firstproduct.high & precision_mask) ==
2325+ precision_mask) { // could further guard with (lower + w < lower)
2326+ // regarding the second product, we only need secondproduct.high, but our
2327+ // expectation is that the compiler will optimize this extra work away if
2328+ // needed.
2329+ value128 secondproduct =
2330+ full_multiplication(w, powers::power_of_five_128[index + 1]);
2331+ firstproduct.low += secondproduct.high;
2332+ if (secondproduct.high > firstproduct.low) {
2333+ firstproduct.high++;
2334+ }
2335+ }
2336+ return firstproduct;
2337+}
2338+
2339+namespace detail {
2340+/**
2341+ * For q in (0,350), we have that
2342+ * f = (((152170 + 65536) * q ) >> 16);
2343+ * is equal to
2344+ * floor(p) + q
2345+ * where
2346+ * p = log(5**q)/log(2) = q * log(5)/log(2)
2347+ *
2348+ * For negative values of q in (-400,0), we have that
2349+ * f = (((152170 + 65536) * q ) >> 16);
2350+ * is equal to
2351+ * -ceil(p) + q
2352+ * where
2353+ * p = log(5**-q)/log(2) = -q * log(5)/log(2)
2354+ */
2355+constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
2356+ return (((152170 + 65536) * q) >> 16) + 63;
2357+}
2358+} // namespace detail
2359+
2360+// create an adjusted mantissa, biased by the invalid power2
2361+// for significant digits already multiplied by 10 ** q.
2362+template <typename binary>
2363+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa
2364+compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
2365+ int hilz = int(w >> 63) ^ 1;
2366+ adjusted_mantissa answer;
2367+ answer.mantissa = w << hilz;
2368+ int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
2369+ answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 +
2370+ invalid_am_bias);
2371+ return answer;
2372+}
2373+
2374+// w * 10 ** q, without rounding the representation up.
2375+// the power2 in the exponent will be adjusted by invalid_am_bias.
2376+template <typename binary>
2377+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
2378+compute_error(int64_t q, uint64_t w) noexcept {
2379+ int lz = leading_zeroes(w);
2380+ w <<= lz;
2381+ value128 product =
2382+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
2383+ return compute_error_scaled<binary>(q, product.high, lz);
2384+}
2385+
2386+// w * 10 ** q
2387+// The returned value should be a valid ieee64 number that simply need to be
2388+// packed. However, in some very rare cases, the computation will fail. In such
2389+// cases, we return an adjusted_mantissa with a negative power of 2: the caller
2390+// should recompute in such cases.
2391+template <typename binary>
2392+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
2393+compute_float(int64_t q, uint64_t w) noexcept {
2394+ adjusted_mantissa answer;
2395+ if ((w == 0) || (q < binary::smallest_power_of_ten())) {
2396+ answer.power2 = 0;
2397+ answer.mantissa = 0;
2398+ // result should be zero
2399+ return answer;
2400+ }
2401+ if (q > binary::largest_power_of_ten()) {
2402+ // we want to get infinity:
2403+ answer.power2 = binary::infinite_power();
2404+ answer.mantissa = 0;
2405+ return answer;
2406+ }
2407+ // At this point in time q is in [powers::smallest_power_of_five,
2408+ // powers::largest_power_of_five].
2409+
2410+ // We want the most significant bit of i to be 1. Shift if needed.
2411+ int lz = leading_zeroes(w);
2412+ w <<= lz;
2413+
2414+ // The required precision is binary::mantissa_explicit_bits() + 3 because
2415+ // 1. We need the implicit bit
2416+ // 2. We need an extra bit for rounding purposes
2417+ // 3. We might lose a bit due to the "upperbit" routine (result too small,
2418+ // requiring a shift)
2419+
2420+ value128 product =
2421+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
2422+ // The computed 'product' is always sufficient.
2423+ // Mathematical proof:
2424+ // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to
2425+ // appear) See script/mushtak_lemire.py
2426+
2427+ // The "compute_product_approximation" function can be slightly slower than a
2428+ // branchless approach: value128 product = compute_product(q, w); but in
2429+ // practice, we can win big with the compute_product_approximation if its
2430+ // additional branch is easily predicted. Which is best is data specific.
2431+ int upperbit = int(product.high >> 63);
2432+ int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;
2433+
2434+ answer.mantissa = product.high >> shift;
2435+
2436+ answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz -
2437+ binary::minimum_exponent());
2438+ if (answer.power2 <= 0) { // we have a subnormal?
2439+ // Here have that answer.power2 <= 0 so -answer.power2 >= 0
2440+ if (-answer.power2 + 1 >=
2441+ 64) { // if we have more than 64 bits below the minimum exponent, you
2442+ // have a zero for sure.
2443+ answer.power2 = 0;
2444+ answer.mantissa = 0;
2445+ // result should be zero
2446+ return answer;
2447+ }
2448+ // next line is safe because -answer.power2 + 1 < 64
2449+ answer.mantissa >>= -answer.power2 + 1;
2450+ // Thankfully, we can't have both "round-to-even" and subnormals because
2451+ // "round-to-even" only occurs for powers close to 0.
2452+ answer.mantissa += (answer.mantissa & 1); // round up
2453+ answer.mantissa >>= 1;
2454+ // There is a weird scenario where we don't have a subnormal but just.
2455+ // Suppose we start with 2.2250738585072013e-308, we end up
2456+ // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
2457+ // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
2458+ // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
2459+ // subnormal, but we can only know this after rounding.
2460+ // So we only declare a subnormal if we are smaller than the threshold.
2461+ answer.power2 =
2462+ (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits()))
2463+ ? 0
2464+ : 1;
2465+ return answer;
2466+ }
2467+
2468+ // usually, we round *up*, but if we fall right in between and and we have an
2469+ // even basis, we need to round down
2470+ // We are only concerned with the cases where 5**q fits in single 64-bit word.
2471+ if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) &&
2472+ (q <= binary::max_exponent_round_to_even()) &&
2473+ ((answer.mantissa & 3) == 1)) { // we may fall between two floats!
2474+ // To be in-between two floats we need that in doing
2475+ // answer.mantissa = product.high >> (upperbit + 64 -
2476+ // binary::mantissa_explicit_bits() - 3);
2477+ // ... we dropped out only zeroes. But if this happened, then we can go
2478+ // back!!!
2479+ if ((answer.mantissa << shift) == product.high) {
2480+ answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
2481+ }
2482+ }
2483+
2484+ answer.mantissa += (answer.mantissa & 1); // round up
2485+ answer.mantissa >>= 1;
2486+ if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
2487+ answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
2488+ answer.power2++; // undo previous addition
2489+ }
2490+
2491+ answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
2492+ if (answer.power2 >= binary::infinite_power()) { // infinity
2493+ answer.power2 = binary::infinite_power();
2494+ answer.mantissa = 0;
2495+ }
2496+ return answer;
2497+}
2498+
2499+} // namespace fast_float
2500+
2501+#endif
2502+
2503+#ifndef FASTFLOAT_BIGINT_H
2504+#define FASTFLOAT_BIGINT_H
2505+
2506+#include <algorithm>
2507+#include <cstdint>
2508+#include <climits>
2509+#include <cstring>
2510+
2511+
2512+namespace fast_float {
2513+
2514+// the limb width: we want efficient multiplication of double the bits in
2515+// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
2516+// extract the high and low parts efficiently. this is every 64-bit
2517+// architecture except for sparc, which emulates 128-bit multiplication.
2518+// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
2519+// doing `8 * sizeof(limb)`.
2520+#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
2521+#define FASTFLOAT_64BIT_LIMB 1
2522+typedef uint64_t limb;
2523+constexpr size_t limb_bits = 64;
2524+#else
2525+#define FASTFLOAT_32BIT_LIMB
2526+typedef uint32_t limb;
2527+constexpr size_t limb_bits = 32;
2528+#endif
2529+
2530+typedef span<limb> limb_span;
2531+
2532+// number of bits in a bigint. this needs to be at least the number
2533+// of bits required to store the largest bigint, which is
2534+// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
2535+// ~3600 bits, so we round to 4000.
2536+constexpr size_t bigint_bits = 4000;
2537+constexpr size_t bigint_limbs = bigint_bits / limb_bits;
2538+
2539+// vector-like type that is allocated on the stack. the entire
2540+// buffer is pre-allocated, and only the length changes.
2541+template <uint16_t size> struct stackvec {
2542+ limb data[size];
2543+ // we never need more than 150 limbs
2544+ uint16_t length{0};
2545+
2546+ stackvec() = default;
2547+ stackvec(const stackvec &) = delete;
2548+ stackvec &operator=(const stackvec &) = delete;
2549+ stackvec(stackvec &&) = delete;
2550+ stackvec &operator=(stackvec &&other) = delete;
2551+
2552+ // create stack vector from existing limb span.
2553+ FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) {
2554+ FASTFLOAT_ASSERT(try_extend(s));
2555+ }
2556+
2557+ FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept {
2558+ FASTFLOAT_DEBUG_ASSERT(index < length);
2559+ return data[index];
2560+ }
2561+ FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept {
2562+ FASTFLOAT_DEBUG_ASSERT(index < length);
2563+ return data[index];
2564+ }
2565+ // index from the end of the container
2566+ FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept {
2567+ FASTFLOAT_DEBUG_ASSERT(index < length);
2568+ size_t rindex = length - index - 1;
2569+ return data[rindex];
2570+ }
2571+
2572+ // set the length, without bounds checking.
2573+ FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
2574+ length = uint16_t(len);
2575+ }
2576+ constexpr size_t len() const noexcept { return length; }
2577+ constexpr bool is_empty() const noexcept { return length == 0; }
2578+ constexpr size_t capacity() const noexcept { return size; }
2579+ // append item to vector, without bounds checking
2580+ FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
2581+ data[length] = value;
2582+ length++;
2583+ }
2584+ // append item to vector, returning if item was added
2585+ FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
2586+ if (len() < capacity()) {
2587+ push_unchecked(value);
2588+ return true;
2589+ } else {
2590+ return false;
2591+ }
2592+ }
2593+ // add items to the vector, from a span, without bounds checking
2594+ FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
2595+ limb *ptr = data + length;
2596+ std::copy_n(s.ptr, s.len(), ptr);
2597+ set_len(len() + s.len());
2598+ }
2599+ // try to add items to the vector, returning if items were added
2600+ FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
2601+ if (len() + s.len() <= capacity()) {
2602+ extend_unchecked(s);
2603+ return true;
2604+ } else {
2605+ return false;
2606+ }
2607+ }
2608+ // resize the vector, without bounds checking
2609+ // if the new size is longer than the vector, assign value to each
2610+ // appended item.
2611+ FASTFLOAT_CONSTEXPR20
2612+ void resize_unchecked(size_t new_len, limb value) noexcept {
2613+ if (new_len > len()) {
2614+ size_t count = new_len - len();
2615+ limb *first = data + len();
2616+ limb *last = first + count;
2617+ ::std::fill(first, last, value);
2618+ set_len(new_len);
2619+ } else {
2620+ set_len(new_len);
2621+ }
2622+ }
2623+ // try to resize the vector, returning if the vector was resized.
2624+ FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
2625+ if (new_len > capacity()) {
2626+ return false;
2627+ } else {
2628+ resize_unchecked(new_len, value);
2629+ return true;
2630+ }
2631+ }
2632+ // check if any limbs are non-zero after the given index.
2633+ // this needs to be done in reverse order, since the index
2634+ // is relative to the most significant limbs.
2635+ FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept {
2636+ while (index < len()) {
2637+ if (rindex(index) != 0) {
2638+ return true;
2639+ }
2640+ index++;
2641+ }
2642+ return false;
2643+ }
2644+ // normalize the big integer, so most-significant zero limbs are removed.
2645+ FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
2646+ while (len() > 0 && rindex(0) == 0) {
2647+ length--;
2648+ }
2649+ }
2650+};
2651+
2652+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
2653+empty_hi64(bool &truncated) noexcept {
2654+ truncated = false;
2655+ return 0;
2656+}
2657+
2658+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2659+uint64_hi64(uint64_t r0, bool &truncated) noexcept {
2660+ truncated = false;
2661+ int shl = leading_zeroes(r0);
2662+ return r0 << shl;
2663+}
2664+
2665+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2666+uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept {
2667+ int shl = leading_zeroes(r0);
2668+ if (shl == 0) {
2669+ truncated = r1 != 0;
2670+ return r0;
2671+ } else {
2672+ int shr = 64 - shl;
2673+ truncated = (r1 << shl) != 0;
2674+ return (r0 << shl) | (r1 >> shr);
2675+ }
2676+}
2677+
2678+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2679+uint32_hi64(uint32_t r0, bool &truncated) noexcept {
2680+ return uint64_hi64(r0, truncated);
2681+}
2682+
2683+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2684+uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept {
2685+ uint64_t x0 = r0;
2686+ uint64_t x1 = r1;
2687+ return uint64_hi64((x0 << 32) | x1, truncated);
2688+}
2689+
2690+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2691+uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept {
2692+ uint64_t x0 = r0;
2693+ uint64_t x1 = r1;
2694+ uint64_t x2 = r2;
2695+ return uint64_hi64(x0, (x1 << 32) | x2, truncated);
2696+}
2697+
2698+// add two small integers, checking for overflow.
2699+// we want an efficient operation. for msvc, where
2700+// we don't have built-in intrinsics, this is still
2701+// pretty fast.
2702+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
2703+scalar_add(limb x, limb y, bool &overflow) noexcept {
2704+ limb z;
2705+// gcc and clang
2706+#if defined(__has_builtin)
2707+#if __has_builtin(__builtin_add_overflow)
2708+ if (!cpp20_and_in_constexpr()) {
2709+ overflow = __builtin_add_overflow(x, y, &z);
2710+ return z;
2711+ }
2712+#endif
2713+#endif
2714+
2715+ // generic, this still optimizes correctly on MSVC.
2716+ z = x + y;
2717+ overflow = z < x;
2718+ return z;
2719+}
2720+
2721+// multiply two small integers, getting both the high and low bits.
2722+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
2723+scalar_mul(limb x, limb y, limb &carry) noexcept {
2724+#ifdef FASTFLOAT_64BIT_LIMB
2725+#if defined(__SIZEOF_INT128__)
2726+ // GCC and clang both define it as an extension.
2727+ __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
2728+ carry = limb(z >> limb_bits);
2729+ return limb(z);
2730+#else
2731+ // fallback, no native 128-bit integer multiplication with carry.
2732+ // on msvc, this optimizes identically, somehow.
2733+ value128 z = full_multiplication(x, y);
2734+ bool overflow;
2735+ z.low = scalar_add(z.low, carry, overflow);
2736+ z.high += uint64_t(overflow); // cannot overflow
2737+ carry = z.high;
2738+ return z.low;
2739+#endif
2740+#else
2741+ uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
2742+ carry = limb(z >> limb_bits);
2743+ return limb(z);
2744+#endif
2745+}
2746+
2747+// add scalar value to bigint starting from offset.
2748+// used in grade school multiplication
2749+template <uint16_t size>
2750+inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y,
2751+ size_t start) noexcept {
2752+ size_t index = start;
2753+ limb carry = y;
2754+ bool overflow;
2755+ while (carry != 0 && index < vec.len()) {
2756+ vec[index] = scalar_add(vec[index], carry, overflow);
2757+ carry = limb(overflow);
2758+ index += 1;
2759+ }
2760+ if (carry != 0) {
2761+ FASTFLOAT_TRY(vec.try_push(carry));
2762+ }
2763+ return true;
2764+}
2765+
2766+// add scalar value to bigint.
2767+template <uint16_t size>
2768+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
2769+small_add(stackvec<size> &vec, limb y) noexcept {
2770+ return small_add_from(vec, y, 0);
2771+}
2772+
2773+// multiply bigint by scalar value.
2774+template <uint16_t size>
2775+inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec,
2776+ limb y) noexcept {
2777+ limb carry = 0;
2778+ for (size_t index = 0; index < vec.len(); index++) {
2779+ vec[index] = scalar_mul(vec[index], y, carry);
2780+ }
2781+ if (carry != 0) {
2782+ FASTFLOAT_TRY(vec.try_push(carry));
2783+ }
2784+ return true;
2785+}
2786+
2787+// add bigint to bigint starting from index.
2788+// used in grade school multiplication
2789+template <uint16_t size>
2790+FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y,
2791+ size_t start) noexcept {
2792+ // the effective x buffer is from `xstart..x.len()`, so exit early
2793+ // if we can't get that current range.
2794+ if (x.len() < start || y.len() > x.len() - start) {
2795+ FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
2796+ }
2797+
2798+ bool carry = false;
2799+ for (size_t index = 0; index < y.len(); index++) {
2800+ limb xi = x[index + start];
2801+ limb yi = y[index];
2802+ bool c1 = false;
2803+ bool c2 = false;
2804+ xi = scalar_add(xi, yi, c1);
2805+ if (carry) {
2806+ xi = scalar_add(xi, 1, c2);
2807+ }
2808+ x[index + start] = xi;
2809+ carry = c1 | c2;
2810+ }
2811+
2812+ // handle overflow
2813+ if (carry) {
2814+ FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
2815+ }
2816+ return true;
2817+}
2818+
2819+// add bigint to bigint.
2820+template <uint16_t size>
2821+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
2822+large_add_from(stackvec<size> &x, limb_span y) noexcept {
2823+ return large_add_from(x, y, 0);
2824+}
2825+
2826+// grade-school multiplication algorithm
2827+template <uint16_t size>
2828+FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept {
2829+ limb_span xs = limb_span(x.data, x.len());
2830+ stackvec<size> z(xs);
2831+ limb_span zs = limb_span(z.data, z.len());
2832+
2833+ if (y.len() != 0) {
2834+ limb y0 = y[0];
2835+ FASTFLOAT_TRY(small_mul(x, y0));
2836+ for (size_t index = 1; index < y.len(); index++) {
2837+ limb yi = y[index];
2838+ stackvec<size> zi;
2839+ if (yi != 0) {
2840+ // re-use the same buffer throughout
2841+ zi.set_len(0);
2842+ FASTFLOAT_TRY(zi.try_extend(zs));
2843+ FASTFLOAT_TRY(small_mul(zi, yi));
2844+ limb_span zis = limb_span(zi.data, zi.len());
2845+ FASTFLOAT_TRY(large_add_from(x, zis, index));
2846+ }
2847+ }
2848+ }
2849+
2850+ x.normalize();
2851+ return true;
2852+}
2853+
2854+// grade-school multiplication algorithm
2855+template <uint16_t size>
2856+FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept {
2857+ if (y.len() == 1) {
2858+ FASTFLOAT_TRY(small_mul(x, y[0]));
2859+ } else {
2860+ FASTFLOAT_TRY(long_mul(x, y));
2861+ }
2862+ return true;
2863+}
2864+
2865+template <typename = void> struct pow5_tables {
2866+ static constexpr uint32_t large_step = 135;
2867+ static constexpr uint64_t small_power_of_5[] = {
2868+ 1UL,
2869+ 5UL,
2870+ 25UL,
2871+ 125UL,
2872+ 625UL,
2873+ 3125UL,
2874+ 15625UL,
2875+ 78125UL,
2876+ 390625UL,
2877+ 1953125UL,
2878+ 9765625UL,
2879+ 48828125UL,
2880+ 244140625UL,
2881+ 1220703125UL,
2882+ 6103515625UL,
2883+ 30517578125UL,
2884+ 152587890625UL,
2885+ 762939453125UL,
2886+ 3814697265625UL,
2887+ 19073486328125UL,
2888+ 95367431640625UL,
2889+ 476837158203125UL,
2890+ 2384185791015625UL,
2891+ 11920928955078125UL,
2892+ 59604644775390625UL,
2893+ 298023223876953125UL,
2894+ 1490116119384765625UL,
2895+ 7450580596923828125UL,
2896+ };
2897+#ifdef FASTFLOAT_64BIT_LIMB
2898+ constexpr static limb large_power_of_5[] = {
2899+ 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
2900+ 10482974169319127550UL, 198276706040285095UL};
2901+#else
2902+ constexpr static limb large_power_of_5[] = {
2903+ 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
2904+ 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
2905+#endif
2906+};
2907+
2908+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
2909+
2910+template <typename T> constexpr uint32_t pow5_tables<T>::large_step;
2911+
2912+template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[];
2913+
2914+template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[];
2915+
2916+#endif
2917+
2918+// big integer type. implements a small subset of big integer
2919+// arithmetic, using simple algorithms since asymptotically
2920+// faster algorithms are slower for a small number of limbs.
2921+// all operations assume the big-integer is normalized.
2922+struct bigint : pow5_tables<> {
2923+ // storage of the limbs, in little-endian order.
2924+ stackvec<bigint_limbs> vec;
2925+
2926+ FASTFLOAT_CONSTEXPR20 bigint() : vec() {}
2927+ bigint(const bigint &) = delete;
2928+ bigint &operator=(const bigint &) = delete;
2929+ bigint(bigint &&) = delete;
2930+ bigint &operator=(bigint &&other) = delete;
2931+
2932+ FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() {
2933+#ifdef FASTFLOAT_64BIT_LIMB
2934+ vec.push_unchecked(value);
2935+#else
2936+ vec.push_unchecked(uint32_t(value));
2937+ vec.push_unchecked(uint32_t(value >> 32));
2938+#endif
2939+ vec.normalize();
2940+ }
2941+
2942+ // get the high 64 bits from the vector, and if bits were truncated.
2943+ // this is to get the significant digits for the float.
2944+ FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept {
2945+#ifdef FASTFLOAT_64BIT_LIMB
2946+ if (vec.len() == 0) {
2947+ return empty_hi64(truncated);
2948+ } else if (vec.len() == 1) {
2949+ return uint64_hi64(vec.rindex(0), truncated);
2950+ } else {
2951+ uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
2952+ truncated |= vec.nonzero(2);
2953+ return result;
2954+ }
2955+#else
2956+ if (vec.len() == 0) {
2957+ return empty_hi64(truncated);
2958+ } else if (vec.len() == 1) {
2959+ return uint32_hi64(vec.rindex(0), truncated);
2960+ } else if (vec.len() == 2) {
2961+ return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
2962+ } else {
2963+ uint64_t result =
2964+ uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
2965+ truncated |= vec.nonzero(3);
2966+ return result;
2967+ }
2968+#endif
2969+ }
2970+
2971+ // compare two big integers, returning the large value.
2972+ // assumes both are normalized. if the return value is
2973+ // negative, other is larger, if the return value is
2974+ // positive, this is larger, otherwise they are equal.
2975+ // the limbs are stored in little-endian order, so we
2976+ // must compare the limbs in ever order.
2977+ FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept {
2978+ if (vec.len() > other.vec.len()) {
2979+ return 1;
2980+ } else if (vec.len() < other.vec.len()) {
2981+ return -1;
2982+ } else {
2983+ for (size_t index = vec.len(); index > 0; index--) {
2984+ limb xi = vec[index - 1];
2985+ limb yi = other.vec[index - 1];
2986+ if (xi > yi) {
2987+ return 1;
2988+ } else if (xi < yi) {
2989+ return -1;
2990+ }
2991+ }
2992+ return 0;
2993+ }
2994+ }
2995+
2996+ // shift left each limb n bits, carrying over to the new limb
2997+ // returns true if we were able to shift all the digits.
2998+ FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept {
2999+ // Internally, for each item, we shift left by n, and add the previous
3000+ // right shifted limb-bits.
3001+ // For example, we transform (for u8) shifted left 2, to:
3002+ // b10100100 b01000010
3003+ // b10 b10010001 b00001000
3004+ FASTFLOAT_DEBUG_ASSERT(n != 0);
3005+ FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
3006+
3007+ size_t shl = n;
3008+ size_t shr = limb_bits - shl;
3009+ limb prev = 0;
3010+ for (size_t index = 0; index < vec.len(); index++) {
3011+ limb xi = vec[index];
3012+ vec[index] = (xi << shl) | (prev >> shr);
3013+ prev = xi;
3014+ }
3015+
3016+ limb carry = prev >> shr;
3017+ if (carry != 0) {
3018+ return vec.try_push(carry);
3019+ }
3020+ return true;
3021+ }
3022+
3023+ // move the limbs left by `n` limbs.
3024+ FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept {
3025+ FASTFLOAT_DEBUG_ASSERT(n != 0);
3026+ if (n + vec.len() > vec.capacity()) {
3027+ return false;
3028+ } else if (!vec.is_empty()) {
3029+ // move limbs
3030+ limb *dst = vec.data + n;
3031+ const limb *src = vec.data;
3032+ std::copy_backward(src, src + vec.len(), dst + vec.len());
3033+ // fill in empty limbs
3034+ limb *first = vec.data;
3035+ limb *last = first + n;
3036+ ::std::fill(first, last, 0);
3037+ vec.set_len(n + vec.len());
3038+ return true;
3039+ } else {
3040+ return true;
3041+ }
3042+ }
3043+
3044+ // move the limbs left by `n` bits.
3045+ FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept {
3046+ size_t rem = n % limb_bits;
3047+ size_t div = n / limb_bits;
3048+ if (rem != 0) {
3049+ FASTFLOAT_TRY(shl_bits(rem));
3050+ }
3051+ if (div != 0) {
3052+ FASTFLOAT_TRY(shl_limbs(div));
3053+ }
3054+ return true;
3055+ }
3056+
3057+ // get the number of leading zeros in the bigint.
3058+ FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept {
3059+ if (vec.is_empty()) {
3060+ return 0;
3061+ } else {
3062+#ifdef FASTFLOAT_64BIT_LIMB
3063+ return leading_zeroes(vec.rindex(0));
3064+#else
3065+ // no use defining a specialized leading_zeroes for a 32-bit type.
3066+ uint64_t r0 = vec.rindex(0);
3067+ return leading_zeroes(r0 << 32);
3068+#endif
3069+ }
3070+ }
3071+
3072+ // get the number of bits in the bigint.
3073+ FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept {
3074+ int lz = ctlz();
3075+ return int(limb_bits * vec.len()) - lz;
3076+ }
3077+
3078+ FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); }
3079+
3080+ FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); }
3081+
3082+ // multiply as if by 2 raised to a power.
3083+ FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); }
3084+
3085+ // multiply as if by 5 raised to a power.
3086+ FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
3087+ // multiply by a power of 5
3088+ size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
3089+ limb_span large = limb_span(large_power_of_5, large_length);
3090+ while (exp >= large_step) {
3091+ FASTFLOAT_TRY(large_mul(vec, large));
3092+ exp -= large_step;
3093+ }
3094+#ifdef FASTFLOAT_64BIT_LIMB
3095+ uint32_t small_step = 27;
3096+ limb max_native = 7450580596923828125UL;
3097+#else
3098+ uint32_t small_step = 13;
3099+ limb max_native = 1220703125U;
3100+#endif
3101+ while (exp >= small_step) {
3102+ FASTFLOAT_TRY(small_mul(vec, max_native));
3103+ exp -= small_step;
3104+ }
3105+ if (exp != 0) {
3106+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
3107+ // This is similar to https://github.com/llvm/llvm-project/issues/47746,
3108+ // except the workaround described there don't work here
3109+ FASTFLOAT_TRY(small_mul(
3110+ vec, limb(((void)small_power_of_5[0], small_power_of_5[exp]))));
3111+ }
3112+
3113+ return true;
3114+ }
3115+
3116+ // multiply as if by 10 raised to a power.
3117+ FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept {
3118+ FASTFLOAT_TRY(pow5(exp));
3119+ return pow2(exp);
3120+ }
3121+};
3122+
3123+} // namespace fast_float
3124+
3125+#endif
3126+
3127+#ifndef FASTFLOAT_DIGIT_COMPARISON_H
3128+#define FASTFLOAT_DIGIT_COMPARISON_H
3129+
3130+#include <algorithm>
3131+#include <cstdint>
3132+#include <cstring>
3133+#include <iterator>
3134+
3135+
3136+namespace fast_float {
3137+
3138+// 1e0 to 1e19
3139+constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
3140+ 10UL,
3141+ 100UL,
3142+ 1000UL,
3143+ 10000UL,
3144+ 100000UL,
3145+ 1000000UL,
3146+ 10000000UL,
3147+ 100000000UL,
3148+ 1000000000UL,
3149+ 10000000000UL,
3150+ 100000000000UL,
3151+ 1000000000000UL,
3152+ 10000000000000UL,
3153+ 100000000000000UL,
3154+ 1000000000000000UL,
3155+ 10000000000000000UL,
3156+ 100000000000000000UL,
3157+ 1000000000000000000UL,
3158+ 10000000000000000000UL};
3159+
3160+// calculate the exponent, in scientific notation, of the number.
3161+// this algorithm is not even close to optimized, but it has no practical
3162+// effect on performance: in order to have a faster algorithm, we'd need
3163+// to slow down performance for faster algorithms, and this is still fast.
3164+template <typename UC>
3165+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
3166+scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
3167+ uint64_t mantissa = num.mantissa;
3168+ int32_t exponent = int32_t(num.exponent);
3169+ while (mantissa >= 10000) {
3170+ mantissa /= 10000;
3171+ exponent += 4;
3172+ }
3173+ while (mantissa >= 100) {
3174+ mantissa /= 100;
3175+ exponent += 2;
3176+ }
3177+ while (mantissa >= 10) {
3178+ mantissa /= 10;
3179+ exponent += 1;
3180+ }
3181+ return exponent;
3182+}
3183+
3184+// this converts a native floating-point number to an extended-precision float.
3185+template <typename T>
3186+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
3187+to_extended(T value) noexcept {
3188+ using equiv_uint = typename binary_format<T>::equiv_uint;
3189+ constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
3190+ constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
3191+ constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
3192+
3193+ adjusted_mantissa am;
3194+ int32_t bias = binary_format<T>::mantissa_explicit_bits() -
3195+ binary_format<T>::minimum_exponent();
3196+ equiv_uint bits;
3197+#if FASTFLOAT_HAS_BIT_CAST
3198+ bits = std::bit_cast<equiv_uint>(value);
3199+#else
3200+ ::memcpy(&bits, &value, sizeof(T));
3201+#endif
3202+ if ((bits & exponent_mask) == 0) {
3203+ // denormal
3204+ am.power2 = 1 - bias;
3205+ am.mantissa = bits & mantissa_mask;
3206+ } else {
3207+ // normal
3208+ am.power2 = int32_t((bits & exponent_mask) >>
3209+ binary_format<T>::mantissa_explicit_bits());
3210+ am.power2 -= bias;
3211+ am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
3212+ }
3213+
3214+ return am;
3215+}
3216+
3217+// get the extended precision value of the halfway point between b and b+u.
3218+// we are given a native float that represents b, so we need to adjust it
3219+// halfway between b and b+u.
3220+template <typename T>
3221+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
3222+to_extended_halfway(T value) noexcept {
3223+ adjusted_mantissa am = to_extended(value);
3224+ am.mantissa <<= 1;
3225+ am.mantissa += 1;
3226+ am.power2 -= 1;
3227+ return am;
3228+}
3229+
3230+// round an extended-precision float to the nearest machine float.
3231+template <typename T, typename callback>
3232+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
3233+ callback cb) noexcept {
3234+ int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
3235+ if (-am.power2 >= mantissa_shift) {
3236+ // have a denormal float
3237+ int32_t shift = -am.power2 + 1;
3238+ cb(am, std::min<int32_t>(shift, 64));
3239+ // check for round-up: if rounding-nearest carried us to the hidden bit.
3240+ am.power2 = (am.mantissa <
3241+ (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()))
3242+ ? 0
3243+ : 1;
3244+ return;
3245+ }
3246+
3247+ // have a normal float, use the default shift.
3248+ cb(am, mantissa_shift);
3249+
3250+ // check for carry
3251+ if (am.mantissa >=
3252+ (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
3253+ am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
3254+ am.power2++;
3255+ }
3256+
3257+ // check for infinite: we could have carried to an infinite power
3258+ am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
3259+ if (am.power2 >= binary_format<T>::infinite_power()) {
3260+ am.power2 = binary_format<T>::infinite_power();
3261+ am.mantissa = 0;
3262+ }
3263+}
3264+
3265+template <typename callback>
3266+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
3267+round_nearest_tie_even(adjusted_mantissa &am, int32_t shift,
3268+ callback cb) noexcept {
3269+ const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1;
3270+ const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1);
3271+ uint64_t truncated_bits = am.mantissa & mask;
3272+ bool is_above = truncated_bits > halfway;
3273+ bool is_halfway = truncated_bits == halfway;
3274+
3275+ // shift digits into position
3276+ if (shift == 64) {
3277+ am.mantissa = 0;
3278+ } else {
3279+ am.mantissa >>= shift;
3280+ }
3281+ am.power2 += shift;
3282+
3283+ bool is_odd = (am.mantissa & 1) == 1;
3284+ am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
3285+}
3286+
3287+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
3288+round_down(adjusted_mantissa &am, int32_t shift) noexcept {
3289+ if (shift == 64) {
3290+ am.mantissa = 0;
3291+ } else {
3292+ am.mantissa >>= shift;
3293+ }
3294+ am.power2 += shift;
3295+}
3296+template <typename UC>
3297+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
3298+skip_zeros(UC const *&first, UC const *last) noexcept {
3299+ uint64_t val;
3300+ while (!cpp20_and_in_constexpr() &&
3301+ std::distance(first, last) >= int_cmp_len<UC>()) {
3302+ ::memcpy(&val, first, sizeof(uint64_t));
3303+ if (val != int_cmp_zeros<UC>()) {
3304+ break;
3305+ }
3306+ first += int_cmp_len<UC>();
3307+ }
3308+ while (first != last) {
3309+ if (*first != UC('0')) {
3310+ break;
3311+ }
3312+ first++;
3313+ }
3314+}
3315+
3316+// determine if any non-zero digits were truncated.
3317+// all characters must be valid digits.
3318+template <typename UC>
3319+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
3320+is_truncated(UC const *first, UC const *last) noexcept {
3321+ // do 8-bit optimizations, can just compare to 8 literal 0s.
3322+ uint64_t val;
3323+ while (!cpp20_and_in_constexpr() &&
3324+ std::distance(first, last) >= int_cmp_len<UC>()) {
3325+ ::memcpy(&val, first, sizeof(uint64_t));
3326+ if (val != int_cmp_zeros<UC>()) {
3327+ return true;
3328+ }
3329+ first += int_cmp_len<UC>();
3330+ }
3331+ while (first != last) {
3332+ if (*first != UC('0')) {
3333+ return true;
3334+ }
3335+ ++first;
3336+ }
3337+ return false;
3338+}
3339+template <typename UC>
3340+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
3341+is_truncated(span<const UC> s) noexcept {
3342+ return is_truncated(s.ptr, s.ptr + s.len());
3343+}
3344+
3345+template <typename UC>
3346+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
3347+parse_eight_digits(const UC *&p, limb &value, size_t &counter,
3348+ size_t &count) noexcept {
3349+ value = value * 100000000 + parse_eight_digits_unrolled(p);
3350+ p += 8;
3351+ counter += 8;
3352+ count += 8;
3353+}
3354+
3355+template <typename UC>
3356+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
3357+parse_one_digit(UC const *&p, limb &value, size_t &counter,
3358+ size_t &count) noexcept {
3359+ value = value * 10 + limb(*p - UC('0'));
3360+ p++;
3361+ counter++;
3362+ count++;
3363+}
3364+
3365+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
3366+add_native(bigint &big, limb power, limb value) noexcept {
3367+ big.mul(power);
3368+ big.add(value);
3369+}
3370+
3371+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
3372+round_up_bigint(bigint &big, size_t &count) noexcept {
3373+ // need to round-up the digits, but need to avoid rounding
3374+ // ....9999 to ...10000, which could cause a false halfway point.
3375+ add_native(big, 10, 1);
3376+ count++;
3377+}
3378+
3379+// parse the significant digits into a big integer
3380+template <typename UC>
3381+inline FASTFLOAT_CONSTEXPR20 void
3382+parse_mantissa(bigint &result, parsed_number_string_t<UC> &num,
3383+ size_t max_digits, size_t &digits) noexcept {
3384+ // try to minimize the number of big integer and scalar multiplication.
3385+ // therefore, try to parse 8 digits at a time, and multiply by the largest
3386+ // scalar value (9 or 19 digits) for each step.
3387+ size_t counter = 0;
3388+ digits = 0;
3389+ limb value = 0;
3390+#ifdef FASTFLOAT_64BIT_LIMB
3391+ size_t step = 19;
3392+#else
3393+ size_t step = 9;
3394+#endif
3395+
3396+ // process all integer digits.
3397+ UC const *p = num.integer.ptr;
3398+ UC const *pend = p + num.integer.len();
3399+ skip_zeros(p, pend);
3400+ // process all digits, in increments of step per loop
3401+ while (p != pend) {
3402+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
3403+ (max_digits - digits >= 8)) {
3404+ parse_eight_digits(p, value, counter, digits);
3405+ }
3406+ while (counter < step && p != pend && digits < max_digits) {
3407+ parse_one_digit(p, value, counter, digits);
3408+ }
3409+ if (digits == max_digits) {
3410+ // add the temporary value, then check if we've truncated any digits
3411+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
3412+ bool truncated = is_truncated(p, pend);
3413+ if (num.fraction.ptr != nullptr) {
3414+ truncated |= is_truncated(num.fraction);
3415+ }
3416+ if (truncated) {
3417+ round_up_bigint(result, digits);
3418+ }
3419+ return;
3420+ } else {
3421+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
3422+ counter = 0;
3423+ value = 0;
3424+ }
3425+ }
3426+
3427+ // add our fraction digits, if they're available.
3428+ if (num.fraction.ptr != nullptr) {
3429+ p = num.fraction.ptr;
3430+ pend = p + num.fraction.len();
3431+ if (digits == 0) {
3432+ skip_zeros(p, pend);
3433+ }
3434+ // process all digits, in increments of step per loop
3435+ while (p != pend) {
3436+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
3437+ (max_digits - digits >= 8)) {
3438+ parse_eight_digits(p, value, counter, digits);
3439+ }
3440+ while (counter < step && p != pend && digits < max_digits) {
3441+ parse_one_digit(p, value, counter, digits);
3442+ }
3443+ if (digits == max_digits) {
3444+ // add the temporary value, then check if we've truncated any digits
3445+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
3446+ bool truncated = is_truncated(p, pend);
3447+ if (truncated) {
3448+ round_up_bigint(result, digits);
3449+ }
3450+ return;
3451+ } else {
3452+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
3453+ counter = 0;
3454+ value = 0;
3455+ }
3456+ }
3457+ }
3458+
3459+ if (counter != 0) {
3460+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
3461+ }
3462+}
3463+
3464+template <typename T>
3465+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
3466+positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept {
3467+ FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
3468+ adjusted_mantissa answer;
3469+ bool truncated;
3470+ answer.mantissa = bigmant.hi64(truncated);
3471+ int bias = binary_format<T>::mantissa_explicit_bits() -
3472+ binary_format<T>::minimum_exponent();
3473+ answer.power2 = bigmant.bit_length() - 64 + bias;
3474+
3475+ round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) {
3476+ round_nearest_tie_even(
3477+ a, shift,
3478+ [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
3479+ return is_above || (is_halfway && truncated) ||
3480+ (is_odd && is_halfway);
3481+ });
3482+ });
3483+
3484+ return answer;
3485+}
3486+
3487+// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
3488+// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
3489+// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
3490+// we then need to scale by `2^(f- e)`, and then the two significant digits
3491+// are of the same magnitude.
3492+template <typename T>
3493+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
3494+ bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
3495+ bigint &real_digits = bigmant;
3496+ int32_t real_exp = exponent;
3497+
3498+ // get the value of `b`, rounded down, and get a bigint representation of b+h
3499+ adjusted_mantissa am_b = am;
3500+ // gcc7 buf: use a lambda to remove the noexcept qualifier bug with
3501+ // -Wnoexcept-type.
3502+ round<T>(am_b,
3503+ [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); });
3504+ T b;
3505+ to_float(false, am_b, b);
3506+ adjusted_mantissa theor = to_extended_halfway(b);
3507+ bigint theor_digits(theor.mantissa);
3508+ int32_t theor_exp = theor.power2;
3509+
3510+ // scale real digits and theor digits to be same power.
3511+ int32_t pow2_exp = theor_exp - real_exp;
3512+ uint32_t pow5_exp = uint32_t(-real_exp);
3513+ if (pow5_exp != 0) {
3514+ FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
3515+ }
3516+ if (pow2_exp > 0) {
3517+ FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
3518+ } else if (pow2_exp < 0) {
3519+ FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
3520+ }
3521+
3522+ // compare digits, and use it to director rounding
3523+ int ord = real_digits.compare(theor_digits);
3524+ adjusted_mantissa answer = am;
3525+ round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
3526+ round_nearest_tie_even(
3527+ a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
3528+ (void)_; // not needed, since we've done our comparison
3529+ (void)__; // not needed, since we've done our comparison
3530+ if (ord > 0) {
3531+ return true;
3532+ } else if (ord < 0) {
3533+ return false;
3534+ } else {
3535+ return is_odd;
3536+ }
3537+ });
3538+ });
3539+
3540+ return answer;
3541+}
3542+
3543+// parse the significant digits as a big integer to unambiguously round the
3544+// the significant digits. here, we are trying to determine how to round
3545+// an extended float representation close to `b+h`, halfway between `b`
3546+// (the float rounded-down) and `b+u`, the next positive float. this
3547+// algorithm is always correct, and uses one of two approaches. when
3548+// the exponent is positive relative to the significant digits (such as
3549+// 1234), we create a big-integer representation, get the high 64-bits,
3550+// determine if any lower bits are truncated, and use that to direct
3551+// rounding. in case of a negative exponent relative to the significant
3552+// digits (such as 1.2345), we create a theoretical representation of
3553+// `b` as a big-integer type, scaled to the same binary exponent as
3554+// the actual digits. we then compare the big integer representations
3555+// of both, and use that to direct rounding.
3556+template <typename T, typename UC>
3557+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
3558+digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
3559+ // remove the invalid exponent bias
3560+ am.power2 -= invalid_am_bias;
3561+
3562+ int32_t sci_exp = scientific_exponent(num);
3563+ size_t max_digits = binary_format<T>::max_digits();
3564+ size_t digits = 0;
3565+ bigint bigmant;
3566+ parse_mantissa(bigmant, num, max_digits, digits);
3567+ // can't underflow, since digits is at most max_digits.
3568+ int32_t exponent = sci_exp + 1 - int32_t(digits);
3569+ if (exponent >= 0) {
3570+ return positive_digit_comp<T>(bigmant, exponent);
3571+ } else {
3572+ return negative_digit_comp<T>(bigmant, am, exponent);
3573+ }
3574+}
3575+
3576+} // namespace fast_float
3577+
3578+#endif
3579+
3580+#ifndef FASTFLOAT_PARSE_NUMBER_H
3581+#define FASTFLOAT_PARSE_NUMBER_H
3582+
3583+
3584+#include <cmath>
3585+#include <cstring>
3586+#include <limits>
3587+#include <system_error>
3588+namespace fast_float {
3589+
3590+namespace detail {
3591+/**
3592+ * Special case +inf, -inf, nan, infinity, -infinity.
3593+ * The case comparisons could be made much faster given that we know that the
3594+ * strings a null-free and fixed.
3595+ **/
3596+template <typename T, typename UC>
3597+from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first,
3598+ UC const *last,
3599+ T &value) noexcept {
3600+ from_chars_result_t<UC> answer{};
3601+ answer.ptr = first;
3602+ answer.ec = std::errc(); // be optimistic
3603+ bool minusSign = false;
3604+ if (*first ==
3605+ UC('-')) { // assume first < last, so dereference without checks;
3606+ // C++17 20.19.3.(7.1) explicitly forbids '+' here
3607+ minusSign = true;
3608+ ++first;
3609+ }
3610+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
3611+ if (*first == UC('+')) {
3612+ ++first;
3613+ }
3614+#endif
3615+ if (last - first >= 3) {
3616+ if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
3617+ answer.ptr = (first += 3);
3618+ value = minusSign ? -std::numeric_limits<T>::quiet_NaN()
3619+ : std::numeric_limits<T>::quiet_NaN();
3620+ // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7,
3621+ // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
3622+ if (first != last && *first == UC('(')) {
3623+ for (UC const *ptr = first + 1; ptr != last; ++ptr) {
3624+ if (*ptr == UC(')')) {
3625+ answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
3626+ break;
3627+ } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) ||
3628+ (UC('A') <= *ptr && *ptr <= UC('Z')) ||
3629+ (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
3630+ break; // forbidden char, not nan(n-char-seq-opt)
3631+ }
3632+ }
3633+ return answer;
3634+ }
3635+ if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
3636+ if ((last - first >= 8) &&
3637+ fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
3638+ answer.ptr = first + 8;
3639+ } else {
3640+ answer.ptr = first + 3;
3641+ }
3642+ value = minusSign ? -std::numeric_limits<T>::infinity()
3643+ : std::numeric_limits<T>::infinity();
3644+ return answer;
3645+ }
3646+ }
3647+ answer.ec = std::errc::invalid_argument;
3648+ return answer;
3649+}
3650+
3651+/**
3652+ * Returns true if the floating-pointing rounding mode is to 'nearest'.
3653+ * It is the default on most system. This function is meant to be inexpensive.
3654+ * Credit : @mwalcott3
3655+ */
3656+fastfloat_really_inline bool rounds_to_nearest() noexcept {
3657+ // https://lemire.me/blog/2020/06/26/gcc-not-nearest/
3658+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
3659+ return false;
3660+#endif
3661+ // See
3662+ // A fast function to check your floating-point rounding mode
3663+ // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
3664+ //
3665+ // This function is meant to be equivalent to :
3666+ // prior: #include <cfenv>
3667+ // return fegetround() == FE_TONEAREST;
3668+ // However, it is expected to be much faster than the fegetround()
3669+ // function call.
3670+ //
3671+ // The volatile keywoard prevents the compiler from computing the function
3672+ // at compile-time.
3673+ // There might be other ways to prevent compile-time optimizations (e.g.,
3674+ // asm). The value does not need to be std::numeric_limits<float>::min(), any
3675+ // small value so that 1 + x should round to 1 would do (after accounting for
3676+ // excess precision, as in 387 instructions).
3677+ static volatile float fmin = std::numeric_limits<float>::min();
3678+ float fmini = fmin; // we copy it so that it gets loaded at most once.
3679+//
3680+// Explanation:
3681+// Only when fegetround() == FE_TONEAREST do we have that
3682+// fmin + 1.0f == 1.0f - fmin.
3683+//
3684+// FE_UPWARD:
3685+// fmin + 1.0f > 1
3686+// 1.0f - fmin == 1
3687+//
3688+// FE_DOWNWARD or FE_TOWARDZERO:
3689+// fmin + 1.0f == 1
3690+// 1.0f - fmin < 1
3691+//
3692+// Note: This may fail to be accurate if fast-math has been
3693+// enabled, as rounding conventions may not apply.
3694+#ifdef FASTFLOAT_VISUAL_STUDIO
3695+#pragma warning(push)
3696+// todo: is there a VS warning?
3697+// see
3698+// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
3699+#elif defined(__clang__)
3700+#pragma clang diagnostic push
3701+#pragma clang diagnostic ignored "-Wfloat-equal"
3702+#elif defined(__GNUC__)
3703+#pragma GCC diagnostic push
3704+#pragma GCC diagnostic ignored "-Wfloat-equal"
3705+#endif
3706+ return (fmini + 1.0f == 1.0f - fmini);
3707+#ifdef FASTFLOAT_VISUAL_STUDIO
3708+#pragma warning(pop)
3709+#elif defined(__clang__)
3710+#pragma clang diagnostic pop
3711+#elif defined(__GNUC__)
3712+#pragma GCC diagnostic pop
3713+#endif
3714+}
3715+
3716+} // namespace detail
3717+
3718+template <typename T> struct from_chars_caller {
3719+ template <typename UC>
3720+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
3721+ call(UC const *first, UC const *last, T &value,
3722+ parse_options_t<UC> options) noexcept {
3723+ return from_chars_advanced(first, last, value, options);
3724+ }
3725+};
3726+
3727+#if __STDCPP_FLOAT32_T__ == 1
3728+template <> struct from_chars_caller<std::float32_t> {
3729+ template <typename UC>
3730+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
3731+ call(UC const *first, UC const *last, std::float32_t &value,
3732+ parse_options_t<UC> options) noexcept {
3733+ // if std::float32_t is defined, and we are in C++23 mode; macro set for
3734+ // float32; set value to float due to equivalence between float and
3735+ // float32_t
3736+ float val;
3737+ auto ret = from_chars_advanced(first, last, val, options);
3738+ value = val;
3739+ return ret;
3740+ }
3741+};
3742+#endif
3743+
3744+#if __STDCPP_FLOAT64_T__ == 1
3745+template <> struct from_chars_caller<std::float64_t> {
3746+ template <typename UC>
3747+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
3748+ call(UC const *first, UC const *last, std::float64_t &value,
3749+ parse_options_t<UC> options) noexcept {
3750+ // if std::float64_t is defined, and we are in C++23 mode; macro set for
3751+ // float64; set value as double due to equivalence between double and
3752+ // float64_t
3753+ double val;
3754+ auto ret = from_chars_advanced(first, last, val, options);
3755+ value = val;
3756+ return ret;
3757+ }
3758+};
3759+#endif
3760+
3761+template <typename T, typename UC, typename>
3762+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
3763+from_chars(UC const *first, UC const *last, T &value,
3764+ chars_format fmt /*= chars_format::general*/) noexcept {
3765+ return from_chars_caller<T>::call(first, last, value,
3766+ parse_options_t<UC>(fmt));
3767+}
3768+
3769+/**
3770+ * This function overload takes parsed_number_string_t structure that is created
3771+ * and populated either by from_chars_advanced function taking chars range and
3772+ * parsing options or other parsing custom function implemented by user.
3773+ */
3774+template <typename T, typename UC>
3775+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
3776+from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
3777+
3778+ static_assert(is_supported_float_type<T>(),
3779+ "only some floating-point types are supported");
3780+ static_assert(is_supported_char_type<UC>(),
3781+ "only char, wchar_t, char16_t and char32_t are supported");
3782+
3783+ from_chars_result_t<UC> answer;
3784+
3785+ answer.ec = std::errc(); // be optimistic
3786+ answer.ptr = pns.lastmatch;
3787+ // The implementation of the Clinger's fast path is convoluted because
3788+ // we want round-to-nearest in all cases, irrespective of the rounding mode
3789+ // selected on the thread.
3790+ // We proceed optimistically, assuming that detail::rounds_to_nearest()
3791+ // returns true.
3792+ if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
3793+ pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
3794+ !pns.too_many_digits) {
3795+ // Unfortunately, the conventional Clinger's fast path is only possible
3796+ // when the system rounds to the nearest float.
3797+ //
3798+ // We expect the next branch to almost always be selected.
3799+ // We could check it first (before the previous branch), but
3800+ // there might be performance advantages at having the check
3801+ // be last.
3802+ if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
3803+ // We have that fegetround() == FE_TONEAREST.
3804+ // Next is Clinger's fast path.
3805+ if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
3806+ value = T(pns.mantissa);
3807+ if (pns.exponent < 0) {
3808+ value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
3809+ } else {
3810+ value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
3811+ }
3812+ if (pns.negative) {
3813+ value = -value;
3814+ }
3815+ return answer;
3816+ }
3817+ } else {
3818+ // We do not have that fegetround() == FE_TONEAREST.
3819+ // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's
3820+ // proposal
3821+ if (pns.exponent >= 0 &&
3822+ pns.mantissa <=
3823+ binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
3824+#if defined(__clang__) || defined(FASTFLOAT_32BIT)
3825+ // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
3826+ if (pns.mantissa == 0) {
3827+ value = pns.negative ? T(-0.) : T(0.);
3828+ return answer;
3829+ }
3830+#endif
3831+ value = T(pns.mantissa) *
3832+ binary_format<T>::exact_power_of_ten(pns.exponent);
3833+ if (pns.negative) {
3834+ value = -value;
3835+ }
3836+ return answer;
3837+ }
3838+ }
3839+ }
3840+ adjusted_mantissa am =
3841+ compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
3842+ if (pns.too_many_digits && am.power2 >= 0) {
3843+ if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
3844+ am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
3845+ }
3846+ }
3847+ // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa)
3848+ // and we have an invalid power (am.power2 < 0), then we need to go the long
3849+ // way around again. This is very uncommon.
3850+ if (am.power2 < 0) {
3851+ am = digit_comp<T>(pns, am);
3852+ }
3853+ to_float(pns.negative, am, value);
3854+ // Test for over/underflow.
3855+ if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) ||
3856+ am.power2 == binary_format<T>::infinite_power()) {
3857+ answer.ec = std::errc::result_out_of_range;
3858+ }
3859+ return answer;
3860+}
3861+
3862+template <typename T, typename UC>
3863+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
3864+from_chars_advanced(UC const *first, UC const *last, T &value,
3865+ parse_options_t<UC> options) noexcept {
3866+
3867+ static_assert(is_supported_float_type<T>(),
3868+ "only some floating-point types are supported");
3869+ static_assert(is_supported_char_type<UC>(),
3870+ "only char, wchar_t, char16_t and char32_t are supported");
3871+
3872+ from_chars_result_t<UC> answer;
3873+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
3874+ while ((first != last) && fast_float::is_space(uint8_t(*first))) {
3875+ first++;
3876+ }
3877+#endif
3878+ if (first == last) {
3879+ answer.ec = std::errc::invalid_argument;
3880+ answer.ptr = first;
3881+ return answer;
3882+ }
3883+ parsed_number_string_t<UC> pns =
3884+ parse_number_string<UC>(first, last, options);
3885+ if (!pns.valid) {
3886+ if (options.format & chars_format::no_infnan) {
3887+ answer.ec = std::errc::invalid_argument;
3888+ answer.ptr = first;
3889+ return answer;
3890+ } else {
3891+ return detail::parse_infnan(first, last, value);
3892+ }
3893+ }
3894+
3895+ // call overload that takes parsed_number_string_t directly.
3896+ return from_chars_advanced(pns, value);
3897+}
3898+
3899+template <typename T, typename UC, typename>
3900+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
3901+from_chars(UC const *first, UC const *last, T &value, int base) noexcept {
3902+ static_assert(is_supported_char_type<UC>(),
3903+ "only char, wchar_t, char16_t and char32_t are supported");
3904+
3905+ from_chars_result_t<UC> answer;
3906+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
3907+ while ((first != last) && fast_float::is_space(uint8_t(*first))) {
3908+ first++;
3909+ }
3910+#endif
3911+ if (first == last || base < 2 || base > 36) {
3912+ answer.ec = std::errc::invalid_argument;
3913+ answer.ptr = first;
3914+ return answer;
3915+ }
3916+ return parse_int_string(first, last, value, base);
3917+}
3918+
3919+} // namespace fast_float
3920+
3921+#endif
3922+
diff --git a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch b/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch
deleted file mode 100644
index b951bbac18..0000000000
--- a/meta/recipes-support/vte/vte/0005-color-parser-Use-fast_float-implementation-for-from_.patch
+++ /dev/null
@@ -1,102 +0,0 @@
1From 08b90d0a5bf8ceb68dd1b4e9ded0f8a2b5287a6e Mon Sep 17 00:00:00 2001
2From: Khem Raj <raj.khem@gmail.com>
3Date: Fri, 4 Oct 2024 21:22:52 -0700
4Subject: [PATCH 5/5] color-parser: Use fast_float implementation for
5 from_chars
6
7Removed dependency on c++ runtime to provide it.
8
9Fixes: https://gitlab.gnome.org/GNOME/vte/-/issues/2823
10
11Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888]
12Signed-off-by: Khem Raj <raj.khem@gmail.com>
13---
14 src/color-parser.cc | 12 ++++++------
15 src/termprops.hh | 12 ++++++------
16 2 files changed, 12 insertions(+), 12 deletions(-)
17
18diff --git a/src/color-parser.cc b/src/color-parser.cc
19index 02ec5d3a..42c51966 100644
20--- a/src/color-parser.cc
21+++ b/src/color-parser.cc
22@@ -17,7 +17,7 @@
23
24 #include "color-parser.hh"
25 #include "color.hh"
26-
27+#include "fast_float.hh"
28 #include <algorithm>
29 #include <cctype>
30 #include <charconv>
31@@ -298,7 +298,7 @@ parse_csslike(std::string const& spec) noexcept
32 auto value = uint64_t{};
33 auto const start = spec.c_str() + 1;
34 auto const end = spec.c_str() + spec.size();
35- auto const rv = std::from_chars(start, end, value, 16);
36+ auto const rv = fast_float::from_chars(start, end, value, 16);
37 if (rv.ec != std::errc{} || rv.ptr != end)
38 return std::nullopt;
39
40@@ -424,7 +424,7 @@ parse_x11like(std::string const& spec) noexcept
41 auto value = uint64_t{};
42 auto const start = spec.c_str() + 1;
43 auto const end = spec.c_str() + spec.size();
44- auto const rv = std::from_chars(start, end, value, 16);
45+ auto const rv = fast_float::from_chars(start, end, value, 16);
46 if (rv.ec != std::errc{} || rv.ptr != end)
47 return std::nullopt;
48
49@@ -447,13 +447,13 @@ parse_x11like(std::string const& spec) noexcept
50 // Note that the length check above makes sure that @r, @g, @b,
51 // don't exceed @bits.
52 auto r = UINT64_C(0), b = UINT64_C(0), g = UINT64_C(0);
53- auto rv = std::from_chars(start, end, r, 16);
54+ auto rv = fast_float::from_chars(start, end, r, 16);
55 if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != '/')
56 return std::nullopt;
57- rv = std::from_chars(rv.ptr + 1, end, g, 16);
58+ rv = fast_float::from_chars(rv.ptr + 1, end, g, 16);
59 if (rv.ec != std::errc{} || rv.ptr == end || *rv.ptr != '/')
60 return std::nullopt;
61- rv = std::from_chars(rv.ptr + 1, end, b, 16);
62+ rv = fast_float::from_chars(rv.ptr + 1, end, b, 16);
63 if (rv.ec != std::errc{} || rv.ptr != end)
64 return std::nullopt;
65
66diff --git a/src/termprops.hh b/src/termprops.hh
67index 0d3f0f4c..a10fc7d1 100644
68--- a/src/termprops.hh
69+++ b/src/termprops.hh
70@@ -17,6 +17,7 @@
71
72 #include <glib.h>
73
74+#include "fast_float.hh"
75 #include "fwd.hh"
76 #include "uuid.hh"
77 #include "color.hh"
78@@ -355,8 +356,8 @@ inline std::optional<TermpropValue>
79 parse_termprop_integral(std::string_view const& str) noexcept
80 {
81 auto v = T{};
82- if (auto [ptr, err] = std::from_chars(std::begin(str),
83- std::end(str),
84+ if (auto [ptr, err] = fast_float::from_chars(str.data(),
85+ str.data()+str.size(),
86 v);
87 err == std::errc() && ptr == std::end(str)) {
88 if constexpr (std::is_unsigned_v<T>) {
89@@ -389,10 +390,9 @@ inline std::optional<TermpropValue>
90 parse_termprop_floating(std::string_view const& str) noexcept
91 {
92 auto v = T{};
93- if (auto [ptr, err] = std::from_chars(std::begin(str),
94- std::end(str),
95- v,
96- std::chars_format::general);
97+ if (auto [ptr, err] = fast_float::from_chars(str.data(),
98+ str.data() + str.size(),
99+ v);
100 err == std::errc() &&
101 ptr == std::end(str) &&
102 std::isfinite(v)) {
diff --git a/meta/recipes-support/vte/vte_0.78.2.bb b/meta/recipes-support/vte/vte_0.80.3.bb
index 0593d16cd8..1eb95dd827 100644
--- a/meta/recipes-support/vte/vte_0.78.2.bb
+++ b/meta/recipes-support/vte/vte_0.80.3.bb
@@ -11,18 +11,15 @@ LIC_FILES_CHKSUM = " \
11 file://COPYING.XTERM;md5=d7fc3a23c16c039afafe2e042030f057 \ 11 file://COPYING.XTERM;md5=d7fc3a23c16c039afafe2e042030f057 \
12" 12"
13 13
14DEPENDS = "glib-2.0 glib-2.0-native gtk+3 libpcre2 libxml2-native gperf-native icu lz4" 14DEPENDS = "fastfloat glib-2.0 glib-2.0-native gtk+3 libpcre2 libxml2-native gperf-native icu lz4"
15 15
16GIR_MESON_OPTION = 'gir' 16GIR_MESON_OPTION = 'gir'
17GIDOCGEN_MESON_OPTION = "docs" 17GIDOCGEN_MESON_OPTION = "docs"
18inherit gnomebase gi-docgen features_check upstream-version-is-even gobject-introspection systemd vala 18inherit gnomebase gi-docgen features_check upstream-version-is-even gobject-introspection systemd vala
19 19
20SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch \ 20SRC_URI += "file://0001-Add-W_EXITCODE-macro-for-non-glibc-systems.patch"
21 file://0002-lib-Typo-fix.patch \ 21
22 file://0004-fast_float-Add-single-header-library-for-from_char-i.patch \ 22SRC_URI[archive.sha256sum] = "2e596fd3fbeabb71531662224e71f6a2c37f684426136d62854627276ef4f699"
23 file://0005-color-parser-Use-fast_float-implementation-for-from_.patch \
24 "
25SRC_URI[archive.sha256sum] = "35d7bcde07356846b4a12881c8e016705b70a9004a9082285eee5834ccc49890"
26 23
27ANY_OF_DISTRO_FEATURES = "${GTK3DISTROFEATURES}" 24ANY_OF_DISTRO_FEATURES = "${GTK3DISTROFEATURES}"
28 25
@@ -49,7 +46,8 @@ FILES:${PN}-gtk4-dev = "${libdir}/lib*gtk4.so \
49 ${datadir}/vala/vapi/vte-2.91-gtk4.vapi \ 46 ${datadir}/vala/vapi/vte-2.91-gtk4.vapi \
50 ${includedir}/vte-2.91-gtk4 \ 47 ${includedir}/vte-2.91-gtk4 \
51 " 48 "
52FILES:${PN} += "${systemd_user_unitdir}" 49FILES:${PN} += "${systemd_user_unitdir} \
50 ${datadir}/xdg-terminals"
53FILES:libvte = "${libdir}/*.so.* ${libdir}/girepository-1.0/*" 51FILES:libvte = "${libdir}/*.so.* ${libdir}/girepository-1.0/*"
54FILES:${PN}-prompt = " \ 52FILES:${PN}-prompt = " \
55 ${sysconfdir}/profile.d \ 53 ${sysconfdir}/profile.d \