summaryrefslogtreecommitdiffstats
path: root/meta/recipes-rt/rt-tests/files/rt_bmark.py
blob: e2280e43e26be55442a1f9161d67d6c81ea6c4df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#!/usr/bin/python
# -*- coding: utf-8 -*-

# SPDX-License-Identifier:     BSD-3-Clause
# Copyright (C) 2015 Enea Software AB
# Author: Thomas Lundström <thomas.lundstrom@enea.com>

# The script measures interrupt latency together with different types of
# system load. This is done using the programs cyclictest and stress.
#
# The main output is:
#
#   Best case (min) latency
#     This has very limited value, but is presented since it can be done
#     easily
#
#   Average latency
#     This value is of interrest for throughput oriented systems. Limited
#     value for a real-time system. Also presented because it is easy to do.
#
#   Worst case (max) latency
#     This is the interesting number for a real-time system. The number
#     presented is (of cource) the largest number observed. The challenge
#     is to know how the observed worst case relates to the actual worst case.
#
#     To get an indication of the confidence, the following method is used:
#     1) Instead of one long run, the measurement is made as a set of shorter
#        runs. The number of runs must be a power of 2 for reasons that will
#        shorlty be obvious
#
#     2) First, a list of the max values are created.
#
#     3) The smallest value in that list is recorded.
#
#     4) Then a new list is create by taking the max value of each pair of
#        values in the original list. In this list the smallest value is
#        recorded.
#
#     5) Step 3 is repeated until there is only one value in the list. See
#        example below:
#
#        Samples:
#          |  44 |     |     |     |     |
#          |  77 |  77 |     |     |     |
#          | 118 |     |     |     |     |
#          | 119 | 119 | 119 |     |     |
#          | 138 |     |     |     |     |
#          |  57 | 138 |     |     |     |
#          | 175 |     |     |     |     |
#          | 130 | 175 | 175 | 175 |     |
#          |  54 |     |     |     |     |
#          | 150 | 150 |     |     |     |
#          |  47 |     |     |     |     |
#          |  59 |  59 | 150 |     |     |
#          | 199 |     |     |     |     |
#          | 115 | 199 |     |     |     |
#          | 177 |     |     |     |     |
#          | 129 | 177 | 199 | 199 | 199 |
#
#        Smallest value:
#          |  44 |  59 | 119 | 175 | 199 |
#
#     6) The generated list of smallest values is analyzed. In this case, it
#        can be observed that the values are increasing significantly through
#        the entire list, which leads to the conclusion that the number of
#        samples is too small.
#        If instead the list had been (167, 191, 196, 199, 199), there had
#        been a very small, or no, increase at the end of the list. We might
#        then suspect that the number of samples is probably large enough.
#        There is however no guarantee for that.
#
#     Steps 1-2 are done in run_cyclictest_suite
#     Steps 3-5 are done in gen_minmax_list.
#     Step 6 needs to be done manually since there is (yet) no well defined
#     FAIL criterion and a theoretically solid PASS criterion may never be
#     available.

import multiprocessing
import os
import re
import signal
import subprocess
import time
import traceback

# See comment on the function set_hung_tmo
has_hung_task_detection = True

#-------------------------------------------------------------------------------

class TestFail(Exception):
        def __init__(self, msg):
                self.msg = msg

        def __str__(self):
                return "Test failure: (" + self.msg + ")"

#-------------------------------------------------------------------------------

def tc_name(sub_name):
        return "rt_bmark.intlat." + sub_name

#-------------------------------------------------------------------------------
# log() does the same job as print except that a '#' is added at the beginning
# of each line. This causes TEFEL to ignore it

def log(*msg):
        tmp = "".join(map(str, msg)) # 'map(str, ...' allows numbers
        for line in tmp.split("\n"):
                print "#", line

#-------------------------------------------------------------------------------
# Like log(), but with a timestamp added

def log_ts(*msg):
        ts = time.localtime()
        stamp = "%2d:%02d:%02d: " % (ts.tm_hour, ts.tm_min, ts.tm_sec)
        log(stamp, *msg)

#-------------------------------------------------------------------------------

def log_test_header(seq_no, nr_of_tests, name):
        log("=" * 78)
        log()
        log("  Test case (%d/%d): %s" % (seq_no, nr_of_tests, tc_name(name)))
        log()
        log("." * 78)
        log()

#-------------------------------------------------------------------------------

def start_stress(*args):
        stress_cmd         = [ "stress" ]
        added_stress_types = []
        req_stress_types   = set(args)
        cpu_cnt            = str(multiprocessing.cpu_count())

        # The function cond_add_stress appends the options to the stress
        # command if the stress type is in the set of requested stress types

        def cond_add_stress(stress_type, options):
                if stress_type in req_stress_types:
                        req_stress_types.remove(stress_type)
                        added_stress_types.append(stress_type)
                        stress_cmd.extend(options)

        #----------

        cond_add_stress("io",  ["-i", cpu_cnt])
        cond_add_stress("cpu", ["-c", cpu_cnt])
        cond_add_stress("hdd", ["-d", cpu_cnt, "--hdd-bytes", "20M"])
        cond_add_stress("vm",  ["-m", cpu_cnt, "--vm-bytes", "10M"])

        unknown = ", ".join(req_stress_types)
        if unknown != "":
            raise TestFail("Unknown stress type(s): %s" % unknown)

        if not added_stress_types:
                log("No stress requested")
                return None

        added          = "+".join(added_stress_types)
        stress_cmd_str = " ".join(stress_cmd)

        log("Starting stress(", added, ")")
        log("  Command: '", stress_cmd_str, "'")
        log()

        # preexec_fn=os.setsid causes stress to be executed in a separate
        # session, => it gets a new process group (incl. children). It
        # can then be terminated using os.killpg in end_stress without
        # terminating this script.

        p = subprocess.Popen(stress_cmd, preexec_fn=os.setsid)

        return p

#-------------------------------------------------------------------------------

def end_stress(p):
        if p is None:
                # The value None indicates that no stress scenario was started
                return

        if p.poll() is not None:
                raise TestFail("stress prematurely terminated.")

        os.killpg(os.getpgid(p.pid), signal.SIGTERM)
        log("Terminated stress")

#-------------------------------------------------------------------------------

def us2hms_str(us):
        s = (us+500000) // 1000000 # Round microseconds to s
        m = s//60
        s -= 60*m;
        h = m//60
        m -= 60*h

        return "%d:%02d:%02d" % (h, m, s)

#-------------------------------------------------------------------------------
# Sometime the hung task supervision is triggered during execution of
# cyclictest (cyclictest starves stress). To avoid that, the supervision
# is temporarily disabled

def set_hung_tmo(new_tmo):
        global has_hung_task_detection

        tmo_file = "/proc/sys/kernel/hung_task_timeout_secs"

        if not has_hung_task_detection:
                return

        if not os.access(tmo_file, os.W_OK):
                log("Hung task detection not supported")
                log("  (File ", tmo_file, " not found)")
                has_hung_task_detection = False
                return

        orig_tmo = int(subprocess.check_output(["cat", tmo_file]).strip())
        if new_tmo != orig_tmo:
                cmd = ( "echo " + str(new_tmo) + " > " + tmo_file )
                subprocess.check_output(cmd, shell=True)
                log("Changed timeout for detection of hung tasks: ",
                    orig_tmo, " -> ", new_tmo)

        return orig_tmo

#-------------------------------------------------------------------------------

def gen_minmax_list(max_list):
        res = [min(max_list)]

        while True:
                tmp = max_list
                max_list = []
                while tmp:
                        max_list.append(max(tmp.pop(0), tmp.pop(0)))

                res.append(min(max_list))

                if len(max_list) < 2:
                        return res

#-------------------------------------------------------------------------------
# Parameters for cyclictest:
#
# On the -S option (from cyclictest.c):
#  -S implies options -a -t -n and same priority of all threads
#    -a: One thread per core
#    -n: use clock_nanosleep instead of posix interval timers
#    -t: (without argument) Set number of threads to the number
#         of cpus

interval_core_0 = 100     # Timer interval on core 0 [us]
interval_delta  = 20      # Interval increment for each core [us]
loop_count      = 30000   # Number of loops (on core 0).

cmd = ("cyclictest",
       "-S",             # Standard SMP testing. See below
       "-p", "99",       # RT priority 99
       "-q",             # Quiet mode, i.e. print only a summary
       "-i", str(interval_core_0),
       "-d", str(interval_delta),
       "-l", str(loop_count)
       )
rex = re.compile("C:\s*(\d+).*Min:\s*(\d+).*Avg:\s*(\d+).*Max:\s*(\d+)")

def run_cyclictest_once():
        res = subprocess.check_output(cmd)

        # minlist and maxlist are lists with the extremes for each core
        # avg_cnt is the sum of cycles for all cores
        # avg_sum is the sum of (cycle count*average) for each core
        #     Since cyclictest runs different number of cycles on
        #     different cores, avg_sum/avg_cnt gives a more accurate
        #     value of the overall average than just taking the average
        #     of each core's averages

        minlist = []
        maxlist = []
        avg_sum = 0
        avg_cnt = 0

        for line in res.split("\n"):
                m = rex.search(line)
                if m is not None:
                        minlist.append(int(m.group(2)))
                        maxlist.append(int(m.group(4)))
                        n = int(m.group(1))
                        avg_sum += n * int(m.group(3))
                        avg_cnt += n

        return min(minlist), [avg_sum, avg_cnt], max(maxlist)

#-------------------------------------------------------------------------------
# A precondition for the tracking of min-max values is that
# the suite size os a power of 2.

N          = 5
suite_size = 2**N

est_exec_time_once  = interval_core_0 * loop_count
est_exec_time_suite = suite_size * est_exec_time_once

def run_cyclictest_suite():
        log("Starting cyclictest")
        log("  Command          : ", " ".join(cmd))
        log("  Number of cycles : ", loop_count*suite_size,
            " (", suite_size, " sets of ", loop_count, " cycles)")
        log("  Exec. time (est) : ", us2hms_str(est_exec_time_suite))
        log()

        orig_tmo = set_hung_tmo(0) # 0 => Disable

        # float('inf') emulates infinity. At least in the sense that it is
        # guaranteed to be larger than any actual number.
        ack_min = float('inf')
        ack_avg = [0, 0]

        log()
        log_ts("Start of execution")
        t = time.time()
        max_list = []

        for i in xrange(0, suite_size):
                tmp_min, tmp_avg, tmp_max = run_cyclictest_once()

                msg = "%2d/%2d:" % (i+1, suite_size)
                msg += " min: %4d" % tmp_min
                msg += " avg: %5.1f" % (float(tmp_avg[0])/tmp_avg[1])
                msg += " max: %4d" % tmp_max
                log_ts(msg)

                # Track minimum value
                if tmp_min < ack_min:
                        ack_min = tmp_min

                # Track smallest max value
                max_list.append(tmp_max)

                ack_avg[0] += tmp_avg[0]
                ack_avg[1] += tmp_avg[1]

        t = time.time()-t
        log_ts("Cyclictest completed. Actual execution time:",
               us2hms_str(t*1000000))
        log()
        set_hung_tmo(orig_tmo)

        return ack_min, float(ack_avg[0])/ack_avg[1], gen_minmax_list(max_list)

#-------------------------------------------------------------------------------

class cyclictest_runner:
        def run_test(self, seq_no, nr_of_tests, name, stressparams):

                try:
                        log_test_header(seq_no, nr_of_tests, name)

                        p = start_stress(*stressparams)

                        bm_min, bm_avg, bm_max_list = run_cyclictest_suite()

                        end_stress(p)

                        bm_max = bm_max_list[-1]

                        log()
                        log("Min: %d us" % bm_min)
                        log("Avg: %.1f us" % bm_avg)
                        log("Max: %d us" % bm_max)
                        log()
                        log("Max list: ", bm_max_list)
                        log()
                        log("PASS")

                        print
                        print tc_name(name), "[Min/us,Avg/us,Max/us]:",
                        print "%d,%.1f,%d" % (bm_min,bm_avg, bm_max)
                        print "PASS:", tc_name(name)
                        print

                except Exception:
                        log()
                        log("Exception!")
                        log()
                        log("Traceback:", traceback.format_exc())
                        log()
                        log("WD: ", os.getcwd())
                        log()
                        log("FAIL")
                        print
                        print "FAIL:", tc_name(name)
                        print

#-------------------------------------------------------------------------------

runner = cyclictest_runner()

tests = (("no_stress", []),
         ("cpu",  ["cpu"]),
         ("hdd",  ["hdd"]),
         ("io",   ["io"]),
         ("vm",   ["vm"]),
         ("full", ["io", "cpu", "hdd", "vm"]),
         )

nr_of_tests = len(tests)
for seq_no, params in enumerate(tests, start=1):
        runner.run_test(seq_no, nr_of_tests, *params)