1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
<chapter id='sdk-working-projects'>
<title>Using the SDK Toolchain Directly</title>
<para>
You can use the SDK toolchain directly with Makefile,
Autotools, and <trademark class='trade'>Eclipse</trademark>-based
projects.
This chapter covers the first two, while the
"<link linkend='sdk-eclipse-project'>Developing Applications Using <trademark class='trade'>Eclipse</trademark></link>"
Chapter covers the latter.
</para>
<section id='autotools-based-projects'>
<title>Autotools-Based Projects</title>
<para>
Once you have a suitable
<ulink url='&YOCTO_DOCS_REF_URL;#cross-development-toolchain'>cross-development toolchain</ulink>
installed, it is very easy to develop a project using the
<ulink url='https://en.wikipedia.org/wiki/GNU_Build_System'>GNU Autotools-based</ulink>
workflow, which is outside of the
<ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>.
</para>
<para>
The following figure presents a simple Autotools workflow.
<imagedata fileref="figures/sdk-autotools-flow.png" width="7in" height="8in" align="center" />
</para>
<para>
Follow these steps to create a simple Autotools-based
"Hello World" project:
<note>
For more information on the GNU Autotools workflow,
see the same example on the
<ulink url='https://developer.gnome.org/anjuta-build-tutorial/stable/create-autotools.html.en'>GNOME Developer</ulink>
site.
</note>
<orderedlist>
<listitem><para>
<emphasis>Create a Working Directory and Populate It:</emphasis>
Create a clean directory for your project and then make
that directory your working location.
<literallayout class='monospaced'>
$ mkdir $HOME/helloworld
$ cd $HOME/helloworld
</literallayout>
After setting up the directory, populate it with three
simple files needed for the flow.
You need a project source file, a file to help with
configuration, and a file to help create the Makefile:
<filename>hello.c</filename>,
<filename>configure.ac</filename>, and
<filename>Makefile.am</filename>, respectively:
<itemizedlist>
<listitem><para>
<emphasis><filename>hello.c</filename>:</emphasis>
<literallayout class='monospaced'>
#include <stdio.h>
main()
{
printf("Hello World!\n");
}
</literallayout>
</para></listitem>
<listitem><para>
<emphasis><filename>configure.ac</filename>:</emphasis>
<literallayout class='monospaced'>
AC_INIT(hello,0.1)
AM_INIT_AUTOMAKE([foreign])
AC_PROG_CC
AC_CONFIG_FILES(Makefile)
AC_OUTPUT
</literallayout>
</para></listitem>
<listitem><para>
<emphasis><filename>Makefile.am</filename>:</emphasis>
<literallayout class='monospaced'>
bin_PROGRAMS = hello
hello_SOURCES = hello.c
</literallayout>
</para></listitem>
</itemizedlist>
</para></listitem>
<listitem><para>
<emphasis>Source the Cross-Toolchain
Environment Setup File:</emphasis>
As described earlier in the manual, installing the
cross-toolchain creates a cross-toolchain
environment setup script in the directory that the SDK
was installed.
Before you can use the tools to develop your project,
you must source this setup script.
The script begins with the string "environment-setup"
and contains the machine architecture, which is
followed by the string "poky-linux".
For this example, the command sources a script from the
default SDK installation directory that uses the
32-bit Intel x86 Architecture and the
&DISTRO_NAME; Yocto Project release:
<literallayout class='monospaced'>
$ source /opt/poky/&DISTRO;/environment-setup-i586-poky-linux
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Generate the Local <filename>aclocal.m4</filename> Files:</emphasis>
The following command generates the local
<filename>aclocal.m4</filename> files, which are used
later with the <filename>autoconf</filename> command:
<literallayout class='monospaced'>
$ aclocal
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Create the <filename>configure</filename> Script:</emphasis>
The following command creates the
<filename>configure</filename> script:
<literallayout class='monospaced'>
$ autoconf
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Generate Files Needed by GNU Coding
Standards:</emphasis>
GNU coding standards require certain files in order
for the project to be compliant.
This command creates those files:
<literallayout class='monospaced'>
$ touch NEWS README AUTHORS ChangeLog
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Generate the <filename>Makefile.in</filename> File:</emphasis>
This command generates the
<filename>Makefile.in</filename>, which is used later
during cross-compilation:
<literallayout class='monospaced'>
$ automake -a
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Cross-Compile the Project:</emphasis>
This command compiles the project using the
cross-compiler.
The
<ulink url='&YOCTO_DOCS_REF_URL;#var-CONFIGURE_FLAGS'><filename>CONFIGURE_FLAGS</filename></ulink>
environment variable provides the minimal arguments for
GNU configure:
<literallayout class='monospaced'>
$ ./configure ${CONFIGURE_FLAGS}
</literallayout>
For an Autotools-based project, you can use the
cross-toolchain by just passing the appropriate host
option to <filename>configure.sh</filename>.
The host option you use is derived from the name of the
environment setup script found in the directory in which you
installed the cross-toolchain.
For example, the host option for an ARM-based target that uses
the GNU EABI is
<filename>armv5te-poky-linux-gnueabi</filename>.
You will notice that the name of the script is
<filename>environment-setup-armv5te-poky-linux-gnueabi</filename>.
Thus, the following command works to update your project
and rebuild it using the appropriate cross-toolchain tools:
<literallayout class='monospaced'>
$ ./configure --host=armv5te-poky-linux-gnueabi \
--with-libtool-sysroot=<replaceable>sysroot_dir</replaceable>
</literallayout>
<note>
If the <filename>configure</filename> script results in
problems recognizing the
<filename>--with-libtool-sysroot=</filename><replaceable>sysroot-dir</replaceable>
option, regenerate the script to enable the support by
doing the following and then run the script again:
<literallayout class='monospaced'>
$ libtoolize --automake
$ aclocal -I ${OECORE_TARGET_SYSROOT}/usr/share/aclocal [-I <replaceable>dir_containing_your_project-specific_m4_macros</replaceable>]
$ autoconf
$ autoheader
$ automake -a
</literallayout>
</note>
</para></listitem>
<listitem><para>
<emphasis>Make and Install the Project:</emphasis>
These two commands generate and install the project
into the destination directory:
<literallayout class='monospaced'>
$ make
$ make install DESTDIR=./tmp
</literallayout>
<note>
To learn about environment variables established
when you run the cross-toolchain environment setup
script and how they are used or overridden when
the Makefile, see the
"<link linkend='makefile-based-projects'>Makefile-Based Projects</link>"
section.
</note>
This next command is a simple way to verify the
installation of your project.
Running the command prints the architecture on which
the binary file can run.
This architecture should be the same architecture that
the installed cross-toolchain supports.
<literallayout class='monospaced'>
$ file ./tmp/usr/local/bin/hello
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Execute Your Project:</emphasis>
To execute the project in the shell, simply enter
the name.
You could also copy the binary to the actual target
hardware and run the project there as well:
<literallayout class='monospaced'>
$ ./hello
</literallayout>
As expected, the project displays the "Hello World!"
message.
</para></listitem>
</orderedlist>
</para>
</section>
<section id='makefile-based-projects'>
<title>Makefile-Based Projects</title>
<para>
Simple Makefile-based projects use and interact with the
cross-toolchain environment variables established when you run
the cross-toolchain environment setup script.
The environment variables are subject to general
<filename>make</filename> rules.
</para>
<para>
This section presents a simple Makefile development flow and
provides an example that lets you see how you can use
cross-toolchain environment variables to replace or override
variables used in your Makefile.
<imagedata fileref="figures/sdk-makefile-flow.png" width="6in" height="7in" align="center" />
</para>
<para>
The main point of this section is to explain the following three
cases regarding variable behavior:
<itemizedlist>
<listitem><para>
<emphasis>Case 1 - No Variables Set in the
<filename>Makefile</filename> that Map to Equivalent
Environment Variables Set in the SDK Setup Script:</emphasis>
Because matching variables are not specifically set in the
<filename>Makefile</filename>, the variables retain their
values based on the environment setup script.
</para></listitem>
<listitem><para>
<emphasis>Case 2 - Variables Are Set in the Makefile that
Map to Equivalent Environment Variables from the SDK
Setup Script:</emphasis>
Specifically setting matching variables in the
<filename>Makefile</filename> during the build results in
the environment settings of the variables being
overwritten.
In this case, the variables you set in the
<filename>Makefile</filename> are used.
</para></listitem>
<listitem><para>
<emphasis>Case 3 - Variables Are Set Using the Command Line
that Map to Equivalent Environment Variables from the
SDK Setup Script:</emphasis>
Executing the <filename>Makefile</filename> from the
command line results in the environment settings of the
variables being overwritten.
In this case, the command-line content is used.
<note>
The one exception to this is if you use the following
command-line option:
<literallayout class='monospaced'>
$ make -e <replaceable>target</replaceable>
</literallayout>
Using the "-e" option with <filename>make</filename>
causes the environment variables to be used during
the build.
</note>
</para></listitem>
</itemizedlist>
</para>
<para>
The remainder of this section presents a simple Makefile example
that demonstrates these variable behaviors.
</para>
<para>
In a new shell environment variables are not established for the
SDK until you run the setup script.
For example, the following commands show null values for four
variables that are set when you run the SDK environment setup
script for a 64-bit build host and an i586-tuned target
architecture for a <filename>core-image-sato</filename> image
using the current &DISTRO; Yocto Project release:
<literallayout class='monospaced'>
$ echo ${CC}
$ echo ${LD}
$ echo ${CFLAGS}
$ echo ${CXXFLAGS}
</literallayout>
Running the setup script and then echoing the variables shows the
values established for the SDK:
<literallayout class='monospaced'>
$ source /opt/poky/2.5/environment-setup-i586-poky-linux
$ echo ${CC}
i586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux
$ echo ${LD}
i586-poky-linux-ld --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux
$ echo ${CFLAGS}
-O2 -pipe -g -feliminate-unused-debug-types
$ echo ${CXXFLAGS}
-O2 -pipe -g -feliminate-unused-debug-types
</literallayout>
</para>
<para role='writernotes'>
NEED REST OF THE EXAMPLE.
WORKING ON GETTING IT TO WORK PROPERLY.
</para>
<!--
To illustrate this, consider the following four cross-toolchain
environment variables:
<literallayout class='monospaced'>
<ulink url='&YOCTO_DOCS_REF_URL;#var-CC'>CC</ulink>="i586-poky-linux-gcc -m32 -march=i586 &DASH;&DASH;sysroot=/opt/poky/&DISTRO;/sysroots/i586-poky-linux"
<ulink url='&YOCTO_DOCS_REF_URL;#var-LD'>LD</ulink>="i586-poky-linux-ld &DASH;&DASH;sysroot=/opt/poky/&DISTRO;/sysroots/i586-poky-linux"
<ulink url='&YOCTO_DOCS_REF_URL;#var-CFLAGS'>CFLAGS</ulink>="-O2 -pipe -g -feliminate-unused-debug-types"
<ulink url='&YOCTO_DOCS_REF_URL;#var-CXXFLAGS'>CXXFLAGS</ulink>="-O2 -pipe -g -feliminate-unused-debug-types"
</literallayout>
Now, consider the following three cases:
<note>
For information on the variables set up by the cross-toolchain
environment setup script, see the
"<link linkend='sdk-running-the-extensible-sdk-environment-setup-script'>Running the Extensible SDK Environment Setup Script</link>"
section.
</note>
</para>
-->
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->
|