1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
<chapter id='closer-look'>
<title>A Closer Look at the Yocto Project Development Environment</title>
<para>
This chapter takes a more detailed look at the Yocto Project
development environment.
The following diagram represents the development environment at a
high level.
The remainder of this chapter expands on the fundamental input, output,
process, and
<ulink url='&YOCTO_DOCS_DEV_URL;#metadata'>Metadata</ulink>) blocks
in the Yocto Project development environment.
</para>
<para id='general-yocto-environment-figure'>
<imagedata fileref="figures/yocto-environment-ref.png" align="center" width="8in" depth="4.25in" />
</para>
<para>
The generalized Yocto Project Development Environment consists of
several functional areas:
<itemizedlist>
<listitem><para><emphasis>User Configuration:</emphasis>
Metadata you can use to control the build process.
</para></listitem>
<listitem><para><emphasis>Metadata Layers:</emphasis>
Various layers that provide software, machine, and
distro Metadata.</para></listitem>
<listitem><para><emphasis>Source Files:</emphasis>
Upstream releases, local projects, and SCMs.</para></listitem>
<listitem><para><emphasis>Build System:</emphasis>
Processes under the control of BitBake.
This block expands on how BitBake fetches source, applies
patches, completes compilation, analyzes output for package
generation, creates and tests packages, generates images, and
generates cross-development tools.</para></listitem>
<listitem><para><emphasis>Package Feeds:</emphasis>
Directories containing output packages (rpm, deb or ipk),
which are subsequently used in the construction of an image or
SDK, produced by the build system.
These feeds can also be copied and shared using a web server or
other means to facilitate extending or updating existing
images on devices at runtime if runtime package management is
enabled.</para></listitem>
<listitem><para><emphasis>Images:</emphasis>
Images produced by the development process.
Where do they go?
Can you mess with them (i.e. freely delete them or move them?).
</para></listitem>
<listitem><para><emphasis>Application Development SDK:</emphasis>
Cross-development tools that are produced along with an image
or separately with BitBake.</para></listitem>
</itemizedlist>
</para>
<section id="user-configuration">
<title>User Configuration</title>
<para>
User configuration helps define the build.
Through user configuration, you can tell BitBake the
target architecture for which you are building the image,
where to store downloaded source, and other build properties.
</para>
<para>
The following figure shows an expanded representation of the
"User Configuration" box of the
<link linkend='general-yocto-environment-figure'>general Yocto Project Development Environment figure</link>:
</para>
<para>
<imagedata fileref="figures/user-configuration.png" align="center" width="5.5in" depth="3.5in" />
</para>
<para>
BitBake needs some basic configuration files in order to complete
a build.
These files are <filename>*.conf</filename> files.
The minimally necessary ones reside as example files in the
<ulink url='&YOCTO_DOCS_DEV_URL;#source-directory'>Source Directory</ulink>.
For simplicity, this section refers to the Source Directory as
the "Poky Directory."
</para>
<para>
When you clone the <filename>poky</filename> Git repository or you
download and unpack a Yocto Project release, you can set up the
Source Directory to be named anything you want.
For this discussion, the cloned repository uses the default
name <filename>poky</filename>.
<note>
The Poky repository is primarily an aggregation of existing
repositories.
It is not a canonical upstream source.
</note>
</para>
<para>
The <filename>meta-yocto</filename> layer inside Poky contains
a <filename>conf</filename> directory that has example
configuration files.
These example files are used as a basis for creating actual
configuration files when you source the build environment
script
(i.e.
<link linkend='structure-core-script'><filename>&OE_INIT_FILE;</filename></link>
or
<link linkend='structure-memres-core-script'><filename>oe-init-build-env-memres</filename></link>).
</para>
<para>
Sourcing the build environment script creates a
<ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>
if one does not already exist.
BitBake uses the Build Directory for all its work during builds.
The Build Directory has a <filename>conf</filename> directory that
contains default versions of your <filename>local.conf</filename>
and <filename>bblayers.conf</filename> configuration files.
These default configuration files are created only if versions
do not already exist in the Build Directory at the time you
source the build environment setup script.
</para>
<para>
Because the Poky repository is fundamentally an aggregation of
existing repositories, some users might be familiar with running
the <filename>&OE_INIT_FILE;</filename> or
<filename>oe-init-build-env-memres</filename> script in the context
of separate OpenEmbedded-Core and BitBake repositories rather than a
single Poky repository.
This discussion assumes the script is executed from within a cloned
or unpacked version of Poky.
</para>
<para>
Depending on where the script is sourced, different sub-scripts
are called to set up the Build Directory (Yocto or OpenEmbedded).
Specifically, the script
<filename>scripts/oe-setup-builddir</filename> inside the
poky directory sets up the Build Directory and seeds the directory
(if necessary) with configuration files appropriate for the
Yocto Project development environment.
<note>
The <filename>scripts/oe-setup-builddir</filename> script
uses the <filename>$TEMPLATECONF</filename> variable to
determine which sample configuration files to locate.
</note>
</para>
<para>
The <filename>local.conf</filename> file provides many
basic variables that define a build environment.
Here is a list of a few.
To see the default configurations in a <filename>local.conf</filename>
file created by the build environment script, see the
<filename>local.conf.sample</filename> in the
<filename>meta-yocto</filename> layer:
<itemizedlist>
<listitem><para><emphasis>Parallelism Options:</emphasis>
Controlled by the
<link linkend='var-BB_NUMBER_THREADS'><filename>BB_NUMBER_THREADS</filename></link>
and
<link linkend='var-PARALLEL_MAKE'><filename>PARALLEL_MAKE</filename></link>
variables.</para></listitem>
<listitem><para><emphasis>Target Machine Selection:</emphasis>
Controlled by the
<link linkend='var-MACHINE'><filename>MACHINE</filename></link>
variable.</para></listitem>
<listitem><para><emphasis>Download Directory:</emphasis>
Controlled by the
<link linkend='var-DL_DIR'><filename>DL_DIR</filename></link>
variable.</para></listitem>
<listitem><para><emphasis>Shared State Directory:</emphasis>
Controlled by the
<link linkend='var-SSTATE_DIR'><filename>SSTATE_DIR</filename></link>
variable.</para></listitem>
<listitem><para><emphasis>Build Output:</emphasis>
Controlled by the
<link linkend='var-TMPDIR'><filename>TMPDIR</filename></link>
variable.</para></listitem>
</itemizedlist>
<note>
Configurations set in the <filename>conf/local.conf</filename>
file can also be set in the
<filename>conf/site.conf</filename> and
<filename>conf/auto.conf</filename> configuration files.
</note>
</para>
<para>
The <filename>bblayers.conf</filename> file tells BitBake what
layers you want considered during the build.
By default, the layers listed in this file include layers
minimally needed by the build system.
However, you must manually add any custom layers you have created.
You can find more information on working with the
<filename>bblayers.conf</filename> file in the
"<ulink url='&YOCTO_DOCS_DEV_URL;#enabling-your-layer'>Enabling Your Layer</ulink>"
section in the Yocto Project Development Manual.
</para>
<para>
The files <filename>site.conf</filename> and
<filename>auto.conf</filename> are not created by the environment
initialization script.
If you want these configuration files, you must create them
yourself:
<itemizedlist>
<listitem><para><emphasis><filename>site.conf</filename>:</emphasis>
You can use the <filename>conf/site.conf</filename>
configuration file to configure multiple build directories.
For example, suppose you had several build environments and
they shared some common features.
You can set these default build properties here.
A good example is perhaps the level of parallelism you want
to use through the
<link linkend='var-BB_NUMBER_THREADS'><filename>BB_NUMBER_THREADS</filename></link>
and
<link linkend='var-PARALLEL_MAKE'><filename>PARALLEL_MAKE</filename></link>
variables.</para>
<para>One useful scenario for using the
<filename>conf/site.conf</filename> file is to extend your
<link linkend='var-BBPATH'><filename>BBPATH</filename></link>
variable to include the path to a
<filename>conf/site.conf</filename>.
Then, when BitBake looks for Metadata using
<filename>BBPATH</filename>, it finds the
<filename>conf/site.conf</filename> file and applies your
common configurations found in the file.
To override configurations in a particular build directory,
alter the similar configurations within that build
directory's <filename>conf/local.conf</filename> file.
</para></listitem>
<listitem><para><emphasis><filename>auto.conf</filename>:</emphasis>
This file is not hand-created.
Rather, the file is usually created and written to by
an autobuilder.
The settings put into the file are typically the same as
you would find in the <filename>conf/local.conf</filename>
or the <filename>conf/site.conf</filename> files.
</para></listitem>
</itemizedlist>
</para>
<para>
You can edit all configuration files to further define
any particular build environment.
This process is represented by the "User Configuration Edits"
box in the figure.
</para>
<para>
When you launch your build with the
<filename>bitbake <target></filename> command, BitBake
sorts out the configurations to ultimately define your build
environment.
</para>
</section>
<section id="metadata-machine-configuration-and-policy-configuration">
<title>Metadata, Machine Configuration, and Policy Configuration</title>
<para>
The previous section described the user configurations that
define BitBake's global behavior.
This section takes a closer look at the layers the build system
uses to further control the build.
These layers provide Metadata for the software, machine, and
policy.
</para>
<para>
In general, three types of layer input exist:
<itemizedlist>
<listitem><para><emphasis>Policy Configuration:</emphasis>
Distribution Layers provide top-level or general
policies for the image or SDK being built.
For example, this layer would dictate whether BitBake
produces RPM or IPK packages.</para></listitem>
<listitem><para><emphasis>Machine Configuration:</emphasis>
Board Support Package (BSP) layers provide machine
configurations.
This type of information is specific to a particular
target architecture.</para></listitem>
<listitem><para><emphasis>Metadata:</emphasis>
Software layers contain user-supplied recipe files,
patches, and append files.
</para></listitem>
</itemizedlist>
</para>
<para>
The following figure shows an expanded representation of the
Metadata, Machine Configuration, and Policy Configuration input
(layers) boxes of the
<link linkend='general-yocto-environment-figure'>general Yocto Project Development Environment figure</link>:
</para>
<para>
<imagedata fileref="figures/layer-input.png" align="center" width="8in" depth="7.5in" />
</para>
<para>
In general, all layers have a similar structure.
They all contain a licensing file
(e.g. <filename>COPYING</filename>) if the layer is to be
distributed, a <filename>README</filename> file as good practice
and especially if the layer is to be distributed, a
configuration directory, and recipe directories.
</para>
<para>
The Yocto Project has many layers that can be used.
You can see a web-interface listing of them on the
<ulink url="http://git.yoctoproject.org/">Source Repositories</ulink>
page.
The layers are shown at the bottom categorized under
"Yocto Metadata Layers."
These layers are fundamentally a subset of the
<ulink url="http://layers.openembedded.org/layerindex/layers/">OpenEmbedded Metadata Index</ulink>,
which lists all layers provided by the OpenEmbedded community.
<note>
Layers exist in the Yocto Project Source Repositories that
cannot be found in the OpenEmbedded Metadata Index.
These layers are either deprecated or experimental in nature.
</note>
</para>
<para>
BitBake uses the <filename>conf/bblayers.conf</filename> file,
which is part of the user configuration, to find what layers it
should be using as part of the build.
</para>
<para>
For more information on layers, see the
"<ulink url='&YOCTO_DOCS_DEV_URL;#understanding-and-creating-layers'>Understanding and Creating Layers</ulink>"
section in the Yocto Project Development Manual.
</para>
<section id="distro-layer">
<title>Distro Layer</title>
<para>
The distribution layer provides policy configurations for your
distribution.
Best practices dictate that you isolate these types of
configurations into their own layer.
Settings you provide in
<filename>conf/<distro>.conf</filename> override similar
settings that BitBake finds in your
<filename>conf/local.conf</filename> file in the Build
Directory.
</para>
<para>
The following list provides some explanation and references
for what you typically find in the distribution layer:
<itemizedlist>
<listitem><para><emphasis>classes:</emphasis>
Class files (<filename>.bbclass</filename>) hold
common functionality that can be shared among
recipes in the distribution.
When your recipes inherit a class, they take on the
settings and functions for that class.
You can read more about class files in the
"<link linkend='ref-classes'>Classes</link>" section.
</para></listitem>
<listitem><para><emphasis>conf:</emphasis>
This area holds configuration files for the
layer (<filename>conf/layer.conf</filename>),
the distribution
(<filename>conf/distro/<distro>.conf</filename>),
and any distribution-wide include files.
</para></listitem>
<listitem><para><emphasis>recipes-*:</emphasis>
Recipes and append files that affect common
functionality across the distribution.
This area could include recipes and append files
to add distribution-specific configuration,
initialization scripts, custom image recipes,
and so forth.</para></listitem>
</itemizedlist>
</para>
</section>
<section id="bsp-layer">
<title>BSP Layer</title>
<para>
The BSP Layer provides machine configurations.
Everything in this layer is specific to the machine for which
you are building the image or the SDK.
A common structure or form is defined for BSP layers.
You can learn more about this structure in the
<ulink url='&YOCTO_DOCS_BSP_URL;'>Yocto Project Board Support Package (BSP) Developer's Guide</ulink>.
<note>
In order for a BSP layer to be considered compliant with the
Yocto Project, it must meet some structural requirements.
</note>
</para>
<para>
The BSP Layer's configuration directory contains
configuration files for the machine
(<filename>conf/machine/<machine>.conf</filename>) and,
of course, the layer (<filename>conf/layer.conf</filename>).
</para>
<para>
The remainder of the layer is dedicated to specific recipes
by function: <filename>recipes-bsp</filename>,
<filename>recipes-core</filename>,
<filename>recipes-graphics</filename>, and
<filename>recipes-kernel</filename>.
Metadata can exist for multiple formfactors, graphics
support systems, and so forth.
<note>
While the figure shows several <filename>recipes-*</filename>
directories, not all these directories appear in all
BSP layers.
</note>
</para>
</section>
<section id="software-layer">
<title>Software Layer</title>
<para>
The software layer provides the Metadata for additional
software packages used during the build.
This layer does not include Metadata that is specific to the
distribution or the machine, which are found in their
respective layers.
</para>
<para>
This layer contains any new recipes that your project needs
in the form of recipe files.
</para>
</section>
</section>
<section id="sources-dev-environment">
<title>Sources</title>
<para>
In order for the OpenEmbedded build system to create an image or
any target, it must be able to access source files.
The
<link linkend='general-yocto-environment-figure'>general Yocto Project Development Environment figure</link>
represents source files using the "Upstream Project Releases",
"Local Projects", and "SCMs (optional)" boxes.
The figure represents mirrors, which also play a role in locating
source files, with the "Source Mirror(s)" box.
</para>
<para>
The method by which source files are ultimately organized is
a function of the project.
For example, for released software, projects tend to use tarballs
or other archived files that can capture the state of a release
guaranteeing that it is statically represented.
On the other hand, for a project that is more dynamic or
experimental in nature, a project might keep source files in a
repository controlled by a Source Control Manager (SCM) such as
Git.
Pulling source from a repository allows you to control
the point in the repository (the revision) from which you want to
build software.
Finally, a combination of the two might exist, which would give the
consumer a choice when deciding where to get source files.
</para>
<para>
BitBake uses the
<link linkend='var-SRC_URI'><filename>SRC_URI</filename></link>
variable to point to source files regardless of their location.
Each recipe must have a <filename>SRC_URI</filename> variable
that points to the source.
</para>
<para>
Another area that plays a significant role in where source files
come from is pointed to by the
<link linkend='var-DL_DIR'><filename>DL_DIR</filename></link>
variable.
This area is a cache that can hold previously downloaded source.
You can also instruct the OpenEmbedded build system to create
tarballs from Git repositories, which is not the default behavior,
and store them in the <filename>DL_DIR</filename> by using the
<link linkend='var-BB_GENERATE_MIRROR_TARBALLS'><filename>BB_GENERATE_MIRROR_TARBALLS</filename></link>
variable.
</para>
<para>
Judicious use of a <filename>DL_DIR</filename> directory can
save the build system a trip across the Internet when looking
for files.
A good method for using a download directory is to have
<filename>DL_DIR</filename> point to an area outside of your
Build Directory.
Doing so allows you to safely delete the Build Directory
if needed without fear of removing any downloaded source file.
</para>
<para>
The remainder of this section provides a deeper look into the
source files and the mirrors.
Here is a more detailed look at the source file area of the
base figure:
<imagedata fileref="figures/source-input.png" align="center" width="7in" depth="7.5in" />
</para>
<section id='upstream-project-releases'>
<title>Upstream Project Releases</title>
<para>
Upstream project releases exist anywhere in the form of an
archived file (e.g. tarball or zip file).
These files correspond to individual recipes.
For example, the figure uses specific releases each for
BusyBox, Qt, and Dbus.
An archive file can be for any released product that can be
built using a recipe.
</para>
</section>
<section id='local-projects'>
<title>Local Projects</title>
<para>
Local projects are custom bits of software the user provides.
These bits reside somewhere local to a project - perhaps
a directory into which the user checks in items (e.g.
a local directory containing a development source tree
used by the group).
</para>
<para>
The canonical method through which to include a local project
is to use the
<link linkend='ref-classes-externalsrc'><filename>externalsrc.bbclass</filename></link>
class to include that local project.
You use either the <filename>local.conf</filename> or a
recipe's append file to override or set the
recipe to point to the local directory on your disk to pull
in the whole source tree.
</para>
<para>
For information on how to use the
<filename>externalsrc.bbclass</filename>, see the
"<link linkend='ref-classes-externalsrc'><filename>externalsrc.bbclass</filename></link>"
section.
</para>
</section>
<section id='scms'>
<title>Source Control Managers (Optional)</title>
<para>
Another place the build system can get source files from is
through an SCM such as Git or Subversion.
In this case, a repository is cloned or checked out.
The <filename>do_fetch</filename> task inside BitBake uses
the <link linkend='var-SRC_URI'><filename>SRC_URI</filename></link>
variable and the argument's prefix to determine the correct
fetcher module.
</para>
<note>
For information on how to have the OpenEmbedded build system
generate tarballs for Git repositories and place them in the
<link linkend='var-DL_DIR'><filename>DL_DIR</filename></link>
directory, see the
<link linkend='var-BB_GENERATE_MIRROR_TARBALLS'><filename>BB_GENERATE_MIRROR_TARBALLS</filename></link>
variable.
</note>
<para>
When fetching a repository, BitBake uses the
<link linkend='var-SRCREV'><filename>SRCREV</filename></link>
variable to determine the specific revision from which to
build.
</para>
</section>
<section id='source-mirrors'>
<title>Source Mirror(s)</title>
<para>
Two kinds of mirrors exist: pre-mirrors and regular mirrors.
The <link linkend='var-PREMIRRORS'><filename>PREMIRRORS</filename></link>
and
<link linkend='var-MIRRORS'><filename>MIRRORS</filename></link>
variables point to these, respectively.
BitBake checks pre-mirrors before looking upstream for any
source files.
Pre-mirrors are appropriate when you have a shared directory
that is not a directory defined by the
<link linkend='var-DL_DIR'><filename>DL_DIR</filename></link>
variable.
A Pre-mirror typically points to a shared directory that is
local to your organization.
</para>
<para>
Regular mirrors can be any site across the Internet that is
used as an alternative location for source code should the
primary site not be functioning for some reason or another.
</para>
</section>
</section>
<section id="package-feeds-dev-environment">
<title>Package Feeds</title>
<para>
When the OpenEmbedded build system generates an image or an SDK,
it gets the packages from a package feed area located in the
<ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>.
The
<link linkend='general-yocto-environment-figure'>general Yocto Project Development Environment figure</link>
shows this package feeds area in the upper-right corner.
</para>
<para>
This section looks a little closer into the package feeds area used
by the build system.
Here is a more detailed look at the area:
<imagedata fileref="figures/package-feeds.png" align="center" width="7in" depth="6in" />
</para>
<para>
Package feeds are an intermediary step in the build process.
BitBake generates packages whose type is defined by the
<link linkend='var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></link>
variable.
Before placing the packages into package feeds,
the build process validates them with generated output quality
assurance checks through the
<link linkend='ref-classes-insane'><filename>insane.bbclass</filename></link>
class.
</para>
<para>
The package feed area resides in
<filename>tmp/deploy</filename> of the Build Directory.
Folders are created that correspond to the package type
(IPK, DEB, or RPM) created.
Further organization is derived through the value of the
<link linkend='var-PACKAGE_ARCH'><filename>PACKAGE_ARCH</filename></link>
variable for each package.
For example, packages can exist for the i586 or qemux86
architectures.
The package files themselves reside within the appropriate
architecture folder.
</para>
<para>
BitBake uses the <filename>do_package_write_*</filename> task to
place generated packages into the package holding area (e.g.
<filename>do_package_write_ipk</filename> for IPK packages).
</para>
</section>
<section id='bitbake-dev-environment'>
<title>BitBake</title>
<para>
The OpenEmbedded build system uses BitBake to produce images.
You can see from the
<link linkend='general-yocto-environment-figure'>general Yocto Project Development Environment figure</link>,
the BitBake area consists of several functional areas.
This section takes a closer look at each of those areas.
</para>
<section id='source-fetching-dev-environment'>
<title>Source Fetching</title>
<para>
The first stages of building a recipe are to fetch and unpack
the source code:
<imagedata fileref="figures/source-fetching.png" align="center" width="6.5in" depth="5in" />
</para>
<para>
The <filename>do_fetch</filename> and
<filename>do_unpack</filename> tasks fetch the source files
and unpack them into a working directory.
By default, everything is accomplished in the
<ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>,
which has a defined structure.
For additional general information on the Build Directory,
see the
"<link linkend='structure-core-build'><filename>build/</filename></link>"
section.
</para>
<para>
Unpacked source files are pointed to by the
<link linkend='var-S'><filename>S</filename></link> variable.
Each recipe has an area in the Build Directory where the
unpacked source code resides.
The name of that directory for any given recipe is defined from
several different variables.
You can see the variables that define these directories
by looking at the figure:
<itemizedlist>
<listitem><para><link linkend='var-TMPDIR'><filename>TMPDIR</filename></link>
</para></listitem>
<listitem><para><link linkend='var-PACKAGE_ARCH'><filename>PACKAGE_ARCH</filename></link>
</para></listitem>
<listitem><para><link linkend='var-TARGET_OS'><filename>TARGET_OS</filename></link>
</para></listitem>
<listitem><para><link linkend='var-PN'><filename>PN</filename></link>
</para></listitem>
<listitem><para><link linkend='var-PV'><filename>PV</filename></link>
</para></listitem>
<listitem><para><link linkend='var-PR'><filename>PR</filename></link>
</para></listitem>
<listitem><para><link linkend='var-WORKDIR'><filename>WORKDIR</filename></link>
</para></listitem>
<listitem><para><link linkend='var-S'><filename>S</filename></link>
</para></listitem>
</itemizedlist>
</para>
<para>
Briefly, the <filename>S</filename> directory contains the
unpacked source files for a recipe.
The <filename>WORKDIR</filename> directory is where all the
building goes on for a given recipe.
</para>
</section>
<section id='patching-dev-environment'>
<title>Patching</title>
<para>
Once source code is fetched and unpacked, BitBake locates
patch files and applies them to the source files:
<imagedata fileref="figures/patching.png" align="center" width="6in" depth="5in" />
</para>
<para>
The <filename>do_patch</filename> task processes recipes by
using the
<link linkend='var-SRC_URI'><filename>SRC_URI</filename></link>
variable to locate applicable patch files, which by default
are <filename>*.patch</filename> or
<filename>*.diff</filename> files, or any file if
"apply=yes" is specified for the file in
<filename>SRC_URI</filename>.
</para>
<para>
BitBake finds and applies multiple patches for a single recipe
in the order in which it finds the patches.
Patches are applied to the recipe's source files located in the
<link linkend='var-S'><filename>S</filename></link> directory.
</para>
<para>
For more information on how the source directories are
created, see the
"<link linkend='source-fetching-dev-environment'>Source Fetching</link>"
section.
</para>
</section>
<section id='configuration-and-compilation-dev-environment'>
<title>Configuration and Compilation</title>
<para>
After source code is patched, BitBake executes tasks that
configure and compile the source code:
<imagedata fileref="figures/configuration-compile-autoreconf.png" align="center" width="7in" depth="5in" />
</para>
<para>
This step in the build process consists of three tasks:
<itemizedlist>
<listitem><para><emphasis><filename>do_configure</filename>:</emphasis>
This task configures the source by enabling and
disabling any build-time and configuration options for
the software being built.
Configurations can come from the recipe itself as well
as from an inherited class.
Additionally, the software itself might configure itself
depending on the target for which it is being built.
</para>
<para>The configurations handled by the
<filename>do_configure</filename> task are specific
to source code configuration for the source code
being built by the recipe.</para>
<para>If you are using
<link linkend='ref-classes-autotools'><filename>autotools.bbclass</filename></link>,
you can add additional configuration options by using
the <link linkend='var-EXTRA_OECONF'><filename>EXTRA_OECONF</filename></link>
variable.
For information on how this variable works within
that class, see the
<filename>meta/classes/autotools.bbclass</filename> file.
</para></listitem>
<listitem><para><emphasis><filename>do_compile</filename>:</emphasis>
Once a configuration task has been satisfied, BitBake
compiles the source using the
<filename>do_compile</filename> task.
Compilation occurs in the directory pointed to by the
<link linkend='var-B'><filename>B</filename></link>
variable.
Realize that the <filename>B</filename> directory is, by
default, the same as the
<link linkend='var-S'><filename>S</filename></link>
directory.</para></listitem>
<listitem><para><emphasis><filename>do_install</filename>:</emphasis>
Once compilation is done, BitBake executes the
<filename>do_install</filename> task.
This task copies files from the <filename>B</filename>
directory and places them in a holding area pointed to
by the
<link linkend='var-D'><filename>D</filename></link>
variable.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='package-splitting-dev-environment'>
<title>Package Splitting</title>
<para>
After source code is configured and compiled, the
OpenEmbedded build system analyzes
the results and splits the output into packages:
<imagedata fileref="figures/analysis-for-package-splitting.png" align="center" width="7in" depth="7in" />
</para>
<para>
The <filename>do_package</filename> and
<filename>do_packagedata</filename> tasks combine to analyze
the files found in the
<link linkend='var-D'><filename>D</filename></link> directory
and split them into subsets based on available packages and
files.
The analyzing process involves the following as well as other
items: splitting out debugging symbols,
looking at shared library dependencies between packages,
and looking at package relationships.
The <filename>do_packagedata</filename> task creates package
metadata based on the analysis such that the
OpenEmbedded build system can generate the final packages.
Working, staged, and intermediate results of the analysis
and package splitting process use these areas:
<itemizedlist>
<listitem><para><link linkend='var-PKGD'><filename>PKGD</filename></link>
</para></listitem>
<listitem><para><link linkend='var-PKGDATA_DIR'><filename>PKGDATA_DIR</filename></link>
</para></listitem>
<listitem><para><link linkend='var-PKGDESTWORK'><filename>PKGDESTWORK</filename></link>
</para></listitem>
<listitem><para><link linkend='var-PKGDEST'><filename>PKGDEST</filename></link>
</para></listitem>
</itemizedlist>
The <link linkend='var-FILES'><filename>FILES</filename></link>
variable defines the files that go into each package in
<link linkend='var-PACKAGES'><filename>PACKAGES</filename></link>.
If you want details on how this is accomplished, you can
look at
<link linkend='ref-classes-package'><filename>package.bbclass</filename></link>.
</para>
<para>
Depending on the type of packages being created (RPM, DEB, or
IPK), the <filename>do_package_write_*</filename> task
creates the actual packages and places them in the
Package Feed area, which is
<filename>${TMPDIR}/deploy</filename>.
You can see the
"<link linkend='package-feeds-dev-environment'>Package Feeds</link>"
section for more detail on that part of the build process.
<note>
Support for creating feeds directly from the
<filename>deploy/*</filename> directories does not exist.
Creating such feeds usually requires some kind of feed
maintenance mechanism that would upload the new packages
into an official package feed (e.g. the
Ångström distribution).
This functionality is highly distribution-specific
and thus is not provided out of the box.
</note>
</para>
</section>
<section id='image-generation-dev-environment'>
<title>Image Generation</title>
<para>
Once packages are split and stored in the Package Feeds area,
the OpenEmbedded build system uses BitBake to generate the
root filesystem image:
<imagedata fileref="figures/image-generation.png" align="center" width="6in" depth="7in" />
</para>
<para>
The image generation process consists of several stages and
depends on many variables.
The <filename>do_rootfs</filename> task uses these key variables
to help create the list of packages to actually install:
<itemizedlist>
<listitem><para><link linkend='var-IMAGE_INSTALL'><filename>IMAGE_INSTALL</filename></link>:
Lists out the base set of packages to install from
the Package Feeds area.</para></listitem>
<listitem><para><link linkend='var-PACKAGE_EXCLUDE'><filename>PACKAGE_EXCLUDE</filename></link>:
Specifies packages that should not be installed.
</para></listitem>
<listitem><para><link linkend='var-IMAGE_FEATURES'><filename>IMAGE_FEATURES</filename></link>:
Specifies features to include in the image.
Most of these features map to additional packages for
installation.</para></listitem>
<listitem><para><link linkend='var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></link>:
Specifies the package backend to use and consequently
helps determine where to locate packages within the
Package Feeds area.</para></listitem>
<listitem><para><link linkend='var-IMAGE_LINGUAS'><filename>IMAGE_LINGUAS</filename></link>:
Determines the language(s) for which additional
language support packages are installed.
</para></listitem>
</itemizedlist>
</para>
<para>
Package installation is under control of the package manager
(e.g. smart/rpm, opkg, or apt/dpkg) regardless of whether or
not package management is enabled for the target.
At the end of the process, if package management is not
enabled for the target, the package manager's data files
are deleted from the root filesystem.
</para>
<para>
During image generation, the build system attempts to run
all post-installation scripts.
Any that fail to run on the build host are run on the
target when the target system is first booted.
If you are using a
<ulink url='&YOCTO_DOCS_DEV_URL;#creating-a-read-only-root-filesystem'>read-only root filesystem</ulink>,
all the post installation scripts must succeed during the
package installation phase since the root filesystem cannot be
written into.
</para>
<para>
During Optimization, optimizing processes are run across
the image.
These processes include <filename>mklibs</filename> and
<filename>prelink</filename>.
The <filename>mklibs</filename> process optimizes the size
of the libraries.
A <filename>prelink</filename> process optimizes the dynamic
linking of shared libraries to reduce start up time of
executables.
</para>
<para>
Part of the image generation process includes compressing the
root filesystem image.
Compression is accomplished through several optimization
routines designed to reduce the overall size of the image.
</para>
<para>
After the root filesystem has been constructed, the image
generation process turns everything into an image file or
a set of image files.
The formats used for the root filesystem depend on the
<link linkend='var-IMAGE_FSTYPES'><filename>IMAGE_FSTYPES</filename></link>
variable.
</para>
<note>
The entire image generation process is run under Pseudo.
Running under Pseudo ensures that the files in the root
filesystem have correct ownership.
</note>
</section>
<section id='sdk-generation-dev-environment'>
<title>SDK Generation</title>
<para>
The OpenEmbedded build system uses BitBake to generate the
Software Development Kit (SDK) installer script:
<imagedata fileref="figures/sdk-generation.png" align="center" width="6in" depth="7in" />
</para>
<note>
For more information on the cross-development toolchain
generation, see the
"<link linkend='cross-development-toolchain-generation'>Cross-Development Toolchain Generation</link>"
section.
</note>
<para>
Like image generation, the SDK script process consists of
several stages and depends on many variables.
The <filename>do_populate_sdk</filename> task uses these
key variables to help create the list of packages to actually
install.
For information on the variables listed in the figure, see the
"<link linkend='sdk-dev-environment'>Application Development SDK</link>"
section.
</para>
<para>
The <filename>do_populate_sdk</filename> task handles two
parts: a target part and a host part.
The target part is the part built for the target hardware and
includes libraries and headers.
The host part is the part of the SDK that runs on the
<link linkend='var-SDKMACHINE'><filename>SDKMACHINE</filename></link>.
</para>
<para>
Once both parts are constructed, the
<filename>do_populate_sdk</filename> task performs some cleanup
on both parts.
After the cleanup, the task creates a cross-development
environment setup script and any configuration files that
might be needed.
</para>
<para>
The final output of the task is the Cross-development
toolchain installation script (<filename>.sh</filename> file),
which includes the environment setup script.
</para>
</section>
</section>
<section id='images-dev-environment'>
<title>Images</title>
<para>
The images produced by the OpenEmbedded build system
are compressed forms of the
root filesystem that are ready to boot on a target device.
You can see from the
<link linkend='general-yocto-environment-figure'>general Yocto Project Development Environment figure</link>
that BitBake output in part consists of images.
This section is going to look more closely at this output:
<imagedata fileref="figures/images.png" align="center" width="5.5in" depth="5.5in" />
</para>
<para>
For a list of example images that the Yocto Project provides,
see the
"<link linkend='ref-images'>Images</link>" chapter.
</para>
<para>
Images are written out to the
<ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>
inside the <filename>tmp/deploy/images/<machine>/</filename>
folder as shown in the figure.
This folder contains any files expected to be loaded on the
target device.
The
<link linkend='var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></link>
variable points to the <filename>deploy</filename> directory,
while the
<link linkend='var-DEPLOY_DIR_IMAGE'><filename>DEPLOY_DIR_IMAGE</filename></link>
variable points to the appropriate directory containing images for
the current configuration.
<itemizedlist>
<listitem><para><filename><kernel-image></filename>:
A kernel binary file.
The <link linkend='var-KERNEL_IMAGETYPE'><filename>KERNEL_IMAGETYPE</filename></link>
variable setting determines the naming scheme for the
kernel image file.
Depending on that variable, the file could begin with
a variety of naming strings.
The <filename>deploy/images/<machine></filename>
directory can contain multiple image files for the
machine.</para></listitem>
<listitem><para><filename><root-filesystem-image></filename>:
Root filesystems for the target device (e.g.
<filename>*.ext3</filename> or <filename>*.bz2</filename>
files).
The <link linkend='var-IMAGE_FSTYPES'><filename>IMAGE_FSTYPES</filename></link>
variable setting determines the root filesystem image
type.
The <filename>deploy/images/<machine></filename>
directory can contain multiple root filesystems for the
machine.</para></listitem>
<listitem><para><filename><kernel-modules></filename>:
Tarballs that contain all the modules built for the kernel.
Kernel module tarballs exist for legacy purposes and
can be suppressed by setting the
<link linkend='var-MODULE_TARBALL_DEPLOY'><filename>MODULE_TARBALL_DEPLOY</filename></link>
variable to "0".
The <filename>deploy/images/<machine></filename>
directory can contain multiple kernel module tarballs
for the machine.</para></listitem>
<listitem><para><filename><bootloaders></filename>:
Bootloaders supporting the image, if applicable to the
target machine.
The <filename>deploy/images/<machine></filename>
directory can contain multiple bootloaders for the
machine.</para></listitem>
<listitem><para><filename><symlinks></filename>:
The <filename>deploy/images/<machine></filename>
folder contains
a symbolic link that points to the most recently built file
for each machine.
These links might be useful for external scripts that
need to obtain the latest version of each file.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='sdk-dev-environment'>
<title>Application Development SDK</title>
<para>
In the
<link linkend='general-yocto-environment-figure'>general Yocto Project Development Environment figure</link>,
the output labeled "Application Development SDK" represents an
SDK.
This section is going to take a closer look at this output:
<imagedata fileref="figures/sdk.png" align="center" width="5in" depth="4in" />
</para>
<para>
The specific form of this output is a self-extracting
SDK installer (<filename>*.sh</filename>) that, when run,
installs the SDK, which consists of a cross-development
toolchain, a set of libraries and headers, and an SDK
environment setup script.
Running this installer essentially sets up your
cross-development environment.
You can think of the cross-toolchain as the "host"
part because it runs on the SDK machine.
You can think of the libraries and headers as the "target"
part because they are built for the target hardware.
The setup script is added so that you can initialize the
environment before using the tools.
</para>
<note>
<para>
The Yocto Project supports several methods by which you can
set up this cross-development environment.
These methods include downloading pre-built SDK installers,
building and installing your own SDK installer, or running
an Application Development Toolkit (ADT) installer to
install not just cross-development toolchains
but also additional tools to help in this type of
development.
</para>
<para>
For background information on cross-development toolchains
in the Yocto Project development environment, see the
"<link linkend='cross-development-toolchain-generation'>Cross-Development Toolchain Generation</link>"
section.
For information on setting up a cross-development
environment, see the
"<ulink url='&YOCTO_DOCS_ADT_URL;#installing-the-adt'>Installing the ADT and Toolchains</ulink>"
section in the Yocto Project Application Developer's Guide.
</para>
</note>
<para>
Once built, the SDK installers are written out to the
<filename>deploy/sdk</filename> folder inside the
<ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>
as shown in the figure at the beginning of this section.
Several variables exist that help configure these files:
<itemizedlist>
<listitem><para><link linkend='var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></link>:
Points to the <filename>deploy</filename>
directory.</para></listitem>
<listitem><para><link linkend='var-SDKMACHINE'><filename>SDKMACHINE</filename></link>:
Specifies the architecture of the machine
on which the cross-development tools are run to
create packages for the target hardware.
</para></listitem>
<listitem><para><link linkend='var-SDKIMAGE_FEATURES'><filename>SDKIMAGE_FEATURES</filename></link>:
Lists the features to include in the "target" part
of the SDK.
</para></listitem>
<listitem><para><link linkend='var-TOOLCHAIN_HOST_TASK'><filename>TOOLCHAIN_HOST_TASK</filename></link>:
Lists packages that make up the host
part of the SDK (i.e. the part that runs on
the <filename>SDKMACHINE</filename>).
When you use
<filename>bitbake -c populate_sdk <imagename></filename>
to create the SDK, a set of default packages
apply.
This variable allows you to add more packages.
</para></listitem>
<listitem><para><link linkend='var-TOOLCHAIN_TARGET_TASK'><filename>TOOLCHAIN_TARGET_TASK</filename></link>:
Lists packages that make up the target part
of the SDK (i.e. the part built for the
target hardware).
</para></listitem>
</itemizedlist>
</para>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->
|