1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
<chapter id=' overview-manual-concepts'>
<title>Yocto Project Concepts</title>
<para>
This chapter provides explanations for Yocto Project concepts that
go beyond the surface of "how-to" information and reference (or
look-up) material.
Concepts such as components, the
<ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>
workflow, cross-development toolchains, shared state cache, and so
forth are explained.
</para>
<section id='yocto-project-components'>
<title>Yocto Project Components</title>
<para>
The
<ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
task executor together with various types of configuration files
form the
<ulink url='&YOCTO_DOCS_REF_URL;#oe-core'>OpenEmbedded-Core</ulink>.
This section overviews these components by describing their use and
how they interact.
</para>
<para>
BitBake handles the parsing and execution of the data files.
The data itself is of various types:
<itemizedlist>
<listitem><para>
<emphasis>Recipes:</emphasis>
Provides details about particular pieces of software.
</para></listitem>
<listitem><para>
<emphasis>Class Data:</emphasis>
Abstracts common build information (e.g. how to build a
Linux kernel).
</para></listitem>
<listitem><para>
<emphasis>Configuration Data:</emphasis>
Defines machine-specific settings, policy decisions, and
so forth.
Configuration data acts as the glue to bind everything
together.
</para></listitem>
</itemizedlist>
</para>
<para>
BitBake knows how to combine multiple data sources together and
refers to each data source as a layer.
For information on layers, see the
"<ulink url='&YOCTO_DOCS_DEV_URL;#understanding-and-creating-layers'>Understanding and Creating Layers</ulink>"
section of the Yocto Project Development Tasks Manual.
</para>
<para>
Following are some brief details on these core components.
For additional information on how these components interact during
a build, see the
"<link linkend='openembedded-build-system-build-concepts'>OpenEmbedded Build System Concepts</link>"
section.
</para>
<section id='usingpoky-components-bitbake'>
<title>BitBake</title>
<para>
BitBake is the tool at the heart of the
<ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>
and is responsible for parsing the
<ulink url='&YOCTO_DOCS_REF_URL;#metadata'>Metadata</ulink>,
generating a list of tasks from it, and then executing those
tasks.
</para>
<para>
This section briefly introduces BitBake.
If you want more information on BitBake, see the
<ulink url='&YOCTO_DOCS_BB_URL;#bitbake-user-manual'>BitBake User Manual</ulink>.
</para>
<para>
To see a list of the options BitBake supports, use either of
the following commands:
<literallayout class='monospaced'>
$ bitbake -h
$ bitbake --help
</literallayout>
</para>
<para>
The most common usage for BitBake is
<filename>bitbake <replaceable>packagename</replaceable></filename>,
where <filename>packagename</filename> is the name of the
package you want to build (referred to as the "target").
The target often equates to the first part of a recipe's
filename (e.g. "foo" for a recipe named
<filename>foo_1.3.0-r0.bb</filename>).
So, to process the
<filename>matchbox-desktop_1.2.3.bb</filename> recipe file, you
might type the following:
<literallayout class='monospaced'>
$ bitbake matchbox-desktop
</literallayout>
Several different versions of
<filename>matchbox-desktop</filename> might exist.
BitBake chooses the one selected by the distribution
configuration.
You can get more details about how BitBake chooses between
different target versions and providers in the
"<ulink url='&YOCTO_DOCS_BB_URL;#bb-bitbake-preferences'>Preferences</ulink>"
section of the BitBake User Manual.
</para>
<para>
BitBake also tries to execute any dependent tasks first.
So for example, before building
<filename>matchbox-desktop</filename>, BitBake would build a
cross compiler and <filename>glibc</filename> if they had not
already been built.
</para>
<para>
A useful BitBake option to consider is the
<filename>-k</filename> or <filename>--continue</filename>
option.
This option instructs BitBake to try and continue processing
the job as long as possible even after encountering an error.
When an error occurs, the target that failed and those that
depend on it cannot be remade.
However, when you use this option other dependencies can
still be processed.
</para>
</section>
<section id='overview-components-recipes'>
<title>Recipes</title>
<para>
Files that have the <filename>.bb</filename> suffix are
"recipes" files.
In general, a recipe contains information about a single piece
of software.
This information includes the location from which to download
the unaltered source, any source patches to be applied to that
source (if needed), which special configuration options to
apply, how to compile the source files, and how to package the
compiled output.
</para>
<para>
The term "package" is sometimes used to refer to recipes.
However, since the word "package" is used for the packaged
output from the OpenEmbedded build system (i.e.
<filename>.ipk</filename> or <filename>.deb</filename> files),
this document avoids using the term "package" when referring
to recipes.
</para>
</section>
<section id='overview-components-classes'>
<title>Classes</title>
<para>
Class files (<filename>.bbclass</filename>) contain information
that is useful to share between recipes files.
An example is the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-autotools'><filename>autotools</filename></ulink>
class, which contains common settings for any application that
Autotools uses.
The
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes'>Classes</ulink>"
chapter in the Yocto Project Reference Manual provides
details about classes and how to use them.
</para>
</section>
<section id='overview-components-configurations'>
<title>Configurations</title>
<para>
The configuration files (<filename>.conf</filename>) define
various configuration variables that govern the OpenEmbedded
build process.
These files fall into several areas that define machine
configuration options, distribution configuration options,
compiler tuning options, general common configuration options,
and user configuration options in
<filename>conf/local.conf</filename>, which is found in the
<ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>.
</para>
</section>
</section>
<section id='overview-layers'>
<title>Layers</title>
<para>
Layers are repositories that contain related metadata (i.e.
sets of instructions) that tell the OpenEmbedded build system how
to build a target.
Yocto Project's
<link linkend='the-yocto-project-layer-model'>layer model</link>
facilitates collaboration, sharing, customization, and reuse
within the Yocto Project development environment.
Layers logically separate information for your project.
For example, you can use a layer to hold all the configurations
for a particular piece of hardware.
Isolating hardware-specific configurations allows you to share
other metadata by using a different layer where that metadata
might be common across several pieces of hardware.
</para>
<para>
Many layers exist that work in the Yocto Project development
environment.
The
<ulink url='https://caffelli-staging.yoctoproject.org/software-overview/layers/'>Yocto Project Curated Layer Index</ulink>
and
<ulink url='http://layers.openembedded.org/layerindex/branch/master/layers/'>OpenEmbedded Layer Index</ulink>
both contain layers from which you can use or leverage.
</para>
<para>
By convention, layers in the Yocto Project follow a specific form.
Conforming to a known structure allows BitBake to make assumptions
during builds on where to find types of metadata.
You can find procedures and learn about tools (i.e.
<filename>bitbake-layers</filename>) for creating layers suitable
for the Yocto Project in the
"<ulink url='&YOCTO_DOCS_DEV_URL;#understanding-and-creating-layers'>Understanding and Creating Layers</ulink>"
section of the Yocto Project Development Tasks Manual.
</para>
</section>
<section id="openembedded-build-system-build-concepts">
<title>OpenEmbedded Build System Concepts</title>
<para>
This section takes a more detailed look inside the build
process used by the
<ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>,
which is the build system specific to the Yocto Project.
At the heart of the build system is BitBake, the task executor.
</para>
<para>
The following diagram represents the high-level workflow of a
build.
The remainder of this section expands on the fundamental input,
output, process, and metadata logical blocks that make up the
workflow.
</para>
<para id='general-workflow-figure'>
<imagedata fileref="figures/YP-flow-diagram.png" format="PNG" align='center' width="8in"/>
</para>
<para>
In general, the build's workflow consists of several functional
areas:
<itemizedlist>
<listitem><para>
<emphasis>User Configuration:</emphasis>
metadata you can use to control the build process.
</para></listitem>
<listitem><para>
<emphasis>Metadata Layers:</emphasis>
Various layers that provide software, machine, and
distro metadata.
</para></listitem>
<listitem><para>
<emphasis>Source Files:</emphasis>
Upstream releases, local projects, and SCMs.
</para></listitem>
<listitem><para>
<emphasis>Build System:</emphasis>
Processes under the control of
<ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>.
This block expands on how BitBake fetches source, applies
patches, completes compilation, analyzes output for package
generation, creates and tests packages, generates images,
and generates cross-development tools.
</para></listitem>
<listitem><para>
<emphasis>Package Feeds:</emphasis>
Directories containing output packages (RPM, DEB or IPK),
which are subsequently used in the construction of an
image or Software Development Kit (SDK), produced by the
build system.
These feeds can also be copied and shared using a web
server or other means to facilitate extending or updating
existing images on devices at runtime if runtime package
management is enabled.
</para></listitem>
<listitem><para>
<emphasis>Images:</emphasis>
Images produced by the workflow.
</para></listitem>
<listitem><para>
<emphasis>Application Development SDK:</emphasis>
Cross-development tools that are produced along with
an image or separately with BitBake.
</para></listitem>
</itemizedlist>
</para>
<section id="user-configuration">
<title>User Configuration</title>
<para>
User configuration helps define the build.
Through user configuration, you can tell BitBake the
target architecture for which you are building the image,
where to store downloaded source, and other build properties.
</para>
<para>
The following figure shows an expanded representation of the
"User Configuration" box of the
<link linkend='general-workflow-figure'>general workflow figure</link>:
</para>
<para>
<imagedata fileref="figures/user-configuration.png" align="center" width="8in" depth="4.5in" />
</para>
<para>
BitBake needs some basic configuration files in order to
complete a build.
These files are <filename>*.conf</filename> files.
The minimally necessary ones reside as example files in the
<filename>build/conf</filename> directory of the
<ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>.
For simplicity, this section refers to the Source Directory as
the "Poky Directory."
</para>
<para>
When you clone the
<ulink url='&YOCTO_DOCS_REF_URL;#poky'>Poky</ulink>
Git repository or you download and unpack a Yocto Project
release, you can set up the Source Directory to be named
anything you want.
For this discussion, the cloned repository uses the default
name <filename>poky</filename>.
<note>
The Poky repository is primarily an aggregation of existing
repositories.
It is not a canonical upstream source.
</note>
</para>
<para>
The <filename>meta-poky</filename> layer inside Poky contains
a <filename>conf</filename> directory that has example
configuration files.
These example files are used as a basis for creating actual
configuration files when you source
<ulink url='&YOCTO_DOCS_REF_URL;#structure-core-script'><filename>&OE_INIT_FILE;</filename></ulink>,
which is the build environment script.
</para>
<para>
Sourcing the build environment script creates a
<ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>
if one does not already exist.
BitBake uses the Build Directory for all its work during
builds.
The Build Directory has a <filename>conf</filename> directory
that contains default versions of your
<filename>local.conf</filename> and
<filename>bblayers.conf</filename> configuration files.
These default configuration files are created only if versions
do not already exist in the Build Directory at the time you
source the build environment setup script.
</para>
<para>
Because the Poky repository is fundamentally an aggregation of
existing repositories, some users might be familiar with
running the <filename>&OE_INIT_FILE;</filename> script
in the context of separate
<ulink url='&YOCTO_DOCS_REF_URL;#oe-core'>OpenEmbedded-Core</ulink>
and BitBake repositories rather than a single Poky repository.
This discussion assumes the script is executed from
within a cloned or unpacked version of Poky.
</para>
<para>
Depending on where the script is sourced, different
sub-scripts are called to set up the Build Directory
(Yocto or OpenEmbedded).
Specifically, the script
<filename>scripts/oe-setup-builddir</filename> inside the
poky directory sets up the Build Directory and seeds the
directory (if necessary) with configuration files appropriate
for the Yocto Project development environment.
<note>
The <filename>scripts/oe-setup-builddir</filename> script
uses the <filename>$TEMPLATECONF</filename> variable to
determine which sample configuration files to locate.
</note>
</para>
<para>
The <filename>local.conf</filename> file provides many
basic variables that define a build environment.
Here is a list of a few.
To see the default configurations in a
<filename>local.conf</filename> file created by the build
environment script, see the
<ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi/poky/tree/meta-poky/conf/local.conf.sample'><filename>local.conf.sample</filename></ulink>
in the <filename>meta-poky</filename> layer:
<itemizedlist>
<listitem><para>
<emphasis>Target Machine Selection:</emphasis>
Controlled by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'><filename>MACHINE</filename></ulink>
variable.
</para></listitem>
<listitem><para>
<emphasis>Download Directory:</emphasis>
Controlled by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
variable.
</para></listitem>
<listitem><para>
<emphasis>Shared State Directory:</emphasis>
Controlled by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_DIR'><filename>SSTATE_DIR</filename></ulink>
variable.
</para></listitem>
<listitem><para>
<emphasis>Build Output:</emphasis>
Controlled by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>
variable.
</para></listitem>
<listitem><para>
<emphasis>Distribution Policy:</emphasis>
Controlled by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO'><filename>DISTRO</filename></ulink>
variable.
</para></listitem>
<listitem><para>
<emphasis>Packaging Format:</emphasis>
Controlled by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>
variable.
</para></listitem>
<listitem><para>
<emphasis>SDK Target Architecture:</emphasis>
Controlled by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>
variable.
</para></listitem>
<listitem><para>
<emphasis>Extra Image Packages:</emphasis>
Controlled by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-EXTRA_IMAGE_FEATURES'><filename>EXTRA_IMAGE_FEATURES</filename></ulink>
variable.
</para></listitem>
</itemizedlist>
<note>
Configurations set in the
<filename>conf/local.conf</filename> file can also be set
in the <filename>conf/site.conf</filename> and
<filename>conf/auto.conf</filename> configuration files.
</note>
</para>
<para>
The <filename>bblayers.conf</filename> file tells BitBake what
layers you want considered during the build.
By default, the layers listed in this file include layers
minimally needed by the build system.
However, you must manually add any custom layers you have
created.
You can find more information on working with the
<filename>bblayers.conf</filename> file in the
"<ulink url='&YOCTO_DOCS_DEV_URL;#enabling-your-layer'>Enabling Your Layer</ulink>"
section in the Yocto Project Development Tasks Manual.
</para>
<para>
The files <filename>site.conf</filename> and
<filename>auto.conf</filename> are not created by the
environment initialization script.
If you want the <filename>site.conf</filename> file, you
need to create that yourself.
The <filename>auto.conf</filename> file is typically created by
an autobuilder:
<itemizedlist>
<listitem><para>
<emphasis><filename>site.conf</filename>:</emphasis>
You can use the <filename>conf/site.conf</filename>
configuration file to configure multiple
build directories.
For example, suppose you had several build environments
and they shared some common features.
You can set these default build properties here.
A good example is perhaps the packaging format to use
through the
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>
variable.</para>
<para>One useful scenario for using the
<filename>conf/site.conf</filename> file is to extend
your
<ulink url='&YOCTO_DOCS_REF_URL;#var-BBPATH'><filename>BBPATH</filename></ulink>
variable to include the path to a
<filename>conf/site.conf</filename>.
Then, when BitBake looks for Metadata using
<filename>BBPATH</filename>, it finds the
<filename>conf/site.conf</filename> file and applies
your common configurations found in the file.
To override configurations in a particular build
directory, alter the similar configurations within
that build directory's
<filename>conf/local.conf</filename> file.
</para></listitem>
<listitem><para>
<emphasis><filename>auto.conf</filename>:</emphasis>
The file is usually created and written to by
an autobuilder.
The settings put into the file are typically the
same as you would find in the
<filename>conf/local.conf</filename> or the
<filename>conf/site.conf</filename> files.
</para></listitem>
</itemizedlist>
</para>
<para>
You can edit all configuration files to further define
any particular build environment.
This process is represented by the "User Configuration Edits"
box in the figure.
</para>
<para>
When you launch your build with the
<filename>bitbake <replaceable>target</replaceable></filename>
command, BitBake sorts out the configurations to ultimately
define your build environment.
It is important to understand that the
<ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>
reads the configuration files in a specific order:
<filename>site.conf</filename>, <filename>auto.conf</filename>,
and <filename>local.conf</filename>.
And, the build system applies the normal assignment statement
rules as described in the
"<ulink url='&YOCTO_DOCS_BB_URL;#bitbake-user-manual-metadata'>Syntax and Operators</ulink>"
chapter of the BitBake User Manual.
Because the files are parsed in a specific order, variable
assignments for the same variable could be affected.
For example, if the <filename>auto.conf</filename> file and
the <filename>local.conf</filename> set
<replaceable>variable1</replaceable> to different values,
because the build system parses <filename>local.conf</filename>
after <filename>auto.conf</filename>,
<replaceable>variable1</replaceable> is assigned the value from
the <filename>local.conf</filename> file.
</para>
</section>
<section id="metadata-machine-configuration-and-policy-configuration">
<title>Metadata, Machine Configuration, and Policy Configuration</title>
<para>
The previous section described the user configurations that
define BitBake's global behavior.
This section takes a closer look at the layers the build system
uses to further control the build.
These layers provide Metadata for the software, machine, and
policy.
</para>
<para>
In general, three types of layer input exist:
<itemizedlist>
<listitem><para>
<emphasis>Policy Configuration:</emphasis>
Distribution Layers provide top-level or general
policies for the image or SDK being built.
For example, this layer would dictate whether BitBake
produces RPM or IPK packages.
</para></listitem>
<listitem><para>
<emphasis>Machine Configuration:</emphasis>
Board Support Package (BSP) layers provide machine
configurations.
This type of information is specific to a particular
target architecture.
</para></listitem>
<listitem><para>
<emphasis>Metadata:</emphasis>
Software layers contain user-supplied recipe files,
patches, and append files.
</para></listitem>
</itemizedlist>
</para>
<para>
The following figure shows an expanded representation of the
Metadata, Machine Configuration, and Policy Configuration input
(layers) boxes of the
<link linkend='general-workflow-figure'>general workflow figure</link>:
</para>
<para>
<imagedata fileref="figures/layer-input.png" align="center" width="8in" depth="7.5in" />
</para>
<para>
In general, all layers have a similar structure.
They all contain a licensing file
(e.g. <filename>COPYING</filename>) if the layer is to be
distributed, a <filename>README</filename> file as good
practice and especially if the layer is to be distributed, a
configuration directory, and recipe directories.
</para>
<para>
The Yocto Project has many layers that can be used.
You can see a web-interface listing of them on the
<ulink url="http://git.yoctoproject.org/">Source Repositories</ulink>
page.
The layers appear at the bottom categorized under
"Yocto Metadata Layers."
These layers are fundamentally a subset of the
<ulink url="http://layers.openembedded.org/layerindex/layers/">OpenEmbedded Layer Index</ulink>,
which lists all layers provided by the OpenEmbedded community.
<note>
Layers exist in the Yocto Project Source Repositories that
cannot be found in the OpenEmbedded Layer Index.
These layers are either deprecated or experimental
in nature.
</note>
</para>
<para>
BitBake uses the <filename>conf/bblayers.conf</filename> file,
which is part of the user configuration, to find what layers it
should be using as part of the build.
</para>
<para>
For more information on layers, see the
"<ulink url='&YOCTO_DOCS_DEV_URL;#understanding-and-creating-layers'>Understanding and Creating Layers</ulink>"
section in the Yocto Project Development Tasks Manual.
</para>
<section id="distro-layer">
<title>Distro Layer</title>
<para>
The distribution layer provides policy configurations for
your distribution.
Best practices dictate that you isolate these types of
configurations into their own layer.
Settings you provide in
<filename>conf/distro/<replaceable>distro</replaceable>.conf</filename> override
similar settings that BitBake finds in your
<filename>conf/local.conf</filename> file in the Build
Directory.
</para>
<para>
The following list provides some explanation and references
for what you typically find in the distribution layer:
<itemizedlist>
<listitem><para>
<emphasis>classes:</emphasis>
Class files (<filename>.bbclass</filename>) hold
common functionality that can be shared among
recipes in the distribution.
When your recipes inherit a class, they take on the
settings and functions for that class.
You can read more about class files in the
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes'>Classes</ulink>"
chapter of the Yocto Reference Manual.
</para></listitem>
<listitem><para>
<emphasis>conf:</emphasis>
This area holds configuration files for the
layer (<filename>conf/layer.conf</filename>),
the distribution
(<filename>conf/distro/<replaceable>distro</replaceable>.conf</filename>),
and any distribution-wide include files.
</para></listitem>
<listitem><para>
<emphasis>recipes-*:</emphasis>
Recipes and append files that affect common
functionality across the distribution.
This area could include recipes and append files
to add distribution-specific configuration,
initialization scripts, custom image recipes,
and so forth.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id="bsp-layer">
<title>BSP Layer</title>
<para>
The BSP Layer provides machine configurations.
Everything in this layer is specific to the machine for
which you are building the image or the SDK.
A common structure or form is defined for BSP layers.
You can learn more about this structure in the
<ulink url='&YOCTO_DOCS_BSP_URL;'>Yocto Project Board Support Package (BSP) Developer's Guide</ulink>.
<note>
In order for a BSP layer to be considered compliant
with the Yocto Project, it must meet some structural
requirements.
</note>
</para>
<para>
The BSP Layer's configuration directory contains
configuration files for the machine
(<filename>conf/machine/<replaceable>machine</replaceable>.conf</filename>)
and, of course, the layer
(<filename>conf/layer.conf</filename>).
</para>
<para>
The remainder of the layer is dedicated to specific recipes
by function: <filename>recipes-bsp</filename>,
<filename>recipes-core</filename>,
<filename>recipes-graphics</filename>, and
<filename>recipes-kernel</filename>.
Metadata can exist for multiple formfactors, graphics
support systems, and so forth.
<note>
While the figure shows several
<filename>recipes-*</filename> directories, not all
these directories appear in all BSP layers.
</note>
</para>
</section>
<section id="software-layer">
<title>Software Layer</title>
<para>
The software layer provides the Metadata for additional
software packages used during the build.
This layer does not include Metadata that is specific to
the distribution or the machine, which are found in their
respective layers.
</para>
<para>
This layer contains any new recipes that your project
needs in the form of recipe files.
</para>
</section>
</section>
<section id="sources-dev-environment">
<title>Sources</title>
<para>
In order for the OpenEmbedded build system to create an
image or any target, it must be able to access source files.
The
<link linkend='general-workflow-figure'>general workflow figure</link>
represents source files using the "Upstream Project Releases",
"Local Projects", and "SCMs (optional)" boxes.
The figure represents mirrors, which also play a role in
locating source files, with the "Source Mirror(s)" box.
</para>
<para>
The method by which source files are ultimately organized is
a function of the project.
For example, for released software, projects tend to use
tarballs or other archived files that can capture the
state of a release guaranteeing that it is statically
represented.
On the other hand, for a project that is more dynamic or
experimental in nature, a project might keep source files in a
repository controlled by a Source Control Manager (SCM) such as
Git.
Pulling source from a repository allows you to control
the point in the repository (the revision) from which you
want to build software.
Finally, a combination of the two might exist, which would
give the consumer a choice when deciding where to get
source files.
</para>
<para>
BitBake uses the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
variable to point to source files regardless of their location.
Each recipe must have a <filename>SRC_URI</filename> variable
that points to the source.
</para>
<para>
Another area that plays a significant role in where source
files come from is pointed to by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
variable.
This area is a cache that can hold previously downloaded
source.
You can also instruct the OpenEmbedded build system to create
tarballs from Git repositories, which is not the default
behavior, and store them in the <filename>DL_DIR</filename>
by using the
<ulink url='&YOCTO_DOCS_REF_URL;#var-BB_GENERATE_MIRROR_TARBALLS'><filename>BB_GENERATE_MIRROR_TARBALLS</filename></ulink>
variable.
</para>
<para>
Judicious use of a <filename>DL_DIR</filename> directory can
save the build system a trip across the Internet when looking
for files.
A good method for using a download directory is to have
<filename>DL_DIR</filename> point to an area outside of your
Build Directory.
Doing so allows you to safely delete the Build Directory
if needed without fear of removing any downloaded source file.
</para>
<para>
The remainder of this section provides a deeper look into the
source files and the mirrors.
Here is a more detailed look at the source file area of the
<link linkend='general-workflow-figure'>general workflow figure</link>:
<imagedata fileref="figures/source-input.png" align="center" width="7in" depth="7.5in" />
</para>
<section id='upstream-project-releases'>
<title>Upstream Project Releases</title>
<para>
Upstream project releases exist anywhere in the form of an
archived file (e.g. tarball or zip file).
These files correspond to individual recipes.
For example, the figure uses specific releases each for
BusyBox, Qt, and Dbus.
An archive file can be for any released product that can be
built using a recipe.
</para>
</section>
<section id='local-projects'>
<title>Local Projects</title>
<para>
Local projects are custom bits of software the user
provides.
These bits reside somewhere local to a project - perhaps
a directory into which the user checks in items (e.g.
a local directory containing a development source tree
used by the group).
</para>
<para>
The canonical method through which to include a local
project is to use the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-externalsrc'><filename>externalsrc</filename></ulink>
class to include that local project.
You use either the <filename>local.conf</filename> or a
recipe's append file to override or set the
recipe to point to the local directory on your disk to pull
in the whole source tree.
</para>
</section>
<section id='scms'>
<title>Source Control Managers (Optional)</title>
<para>
Another place the build system can get source files from is
through an SCM such as Git or Subversion.
In this case, a repository is cloned or checked out.
The
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-fetch'><filename>do_fetch</filename></ulink>
task inside BitBake uses
the <ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
variable and the argument's prefix to determine the correct
fetcher module.
<note>
For information on how to have the OpenEmbedded build
system generate tarballs for Git repositories and place
them in the
<ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
directory, see the
<ulink url='&YOCTO_DOCS_REF_URL;#var-BB_GENERATE_MIRROR_TARBALLS'><filename>BB_GENERATE_MIRROR_TARBALLS</filename></ulink>
variable.
</note>
</para>
<para>
When fetching a repository, BitBake uses the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SRCREV'><filename>SRCREV</filename></ulink>
variable to determine the specific revision from which to
build.
</para>
</section>
<section id='source-mirrors'>
<title>Source Mirror(s)</title>
<para>
Two kinds of mirrors exist: pre-mirrors and regular
mirrors.
The
<ulink url='&YOCTO_DOCS_REF_URL;#var-PREMIRRORS'><filename>PREMIRRORS</filename></ulink>
and
<ulink url='&YOCTO_DOCS_REF_URL;#var-MIRRORS'><filename>MIRRORS</filename></ulink>
variables point to these, respectively.
BitBake checks pre-mirrors before looking upstream for any
source files.
Pre-mirrors are appropriate when you have a shared
directory that is not a directory defined by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
variable.
A Pre-mirror typically points to a shared directory that is
local to your organization.
</para>
<para>
Regular mirrors can be any site across the Internet
that is used as an alternative location for source
code should the primary site not be functioning for
some reason or another.
</para>
</section>
</section>
<section id="package-feeds-dev-environment">
<title>Package Feeds</title>
<para>
When the OpenEmbedded build system generates an image or an
SDK, it gets the packages from a package feed area located
in the
<ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>.
The
<link linkend='general-workflow-figure'>general workflow figure</link>
shows this package feeds area in the upper-right corner.
</para>
<para>
This section looks a little closer into the package feeds
area used by the build system.
Here is a more detailed look at the area:
<imagedata fileref="figures/package-feeds.png" align="center" width="7in" depth="6in" />
</para>
<para>
Package feeds are an intermediary step in the build process.
The OpenEmbedded build system provides classes to generate
different package types, and you specify which classes to
enable through the
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>
variable.
Before placing the packages into package feeds,
the build process validates them with generated output quality
assurance checks through the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-insane'><filename>insane</filename></ulink>
class.
</para>
<para>
The package feed area resides in the Build Directory.
The directory the build system uses to temporarily store
packages is determined by a combination of variables and the
particular package manager in use.
See the "Package Feeds" box in the illustration and note the
information to the right of that area.
In particular, the following defines where package files are
kept:
<itemizedlist>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></ulink>:
Defined as <filename>tmp/deploy</filename> in the Build
Directory.
</para></listitem>
<listitem><para>
<filename>DEPLOY_DIR_*</filename>:
Depending on the package manager used, the package type
sub-folder.
Given RPM, IPK, or DEB packaging and tarball creation,
the
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_RPM'><filename>DEPLOY_DIR_RPM</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_IPK'><filename>DEPLOY_DIR_IPK</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_DEB'><filename>DEPLOY_DIR_DEB</filename></ulink>,
or
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_TAR'><filename>DEPLOY_DIR_TAR</filename></ulink>,
variables are used, respectively.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_ARCH'><filename>PACKAGE_ARCH</filename></ulink>:
Defines architecture-specific sub-folders.
For example, packages could exist for the i586 or
qemux86 architectures.
</para></listitem>
</itemizedlist>
</para>
<para>
BitBake uses the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write_*</filename></ulink>
tasks to generate packages and place them into the package
holding area (e.g. <filename>do_package_write_ipk</filename>
for IPK packages).
See the
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write_deb</filename></ulink>",
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_ipk'><filename>do_package_write_ipk</filename></ulink>",
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_rpm'><filename>do_package_write_rpm</filename></ulink>",
and
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_tar'><filename>do_package_write_tar</filename></ulink>"
sections in the Yocto Project Reference Manual
for additional information.
As an example, consider a scenario where an IPK packaging
manager is being used and package architecture support for
both i586 and qemux86 exist.
Packages for the i586 architecture are placed in
<filename>build/tmp/deploy/ipk/i586</filename>, while packages
for the qemux86 architecture are placed in
<filename>build/tmp/deploy/ipk/qemux86</filename>.
</para>
</section>
<section id='bitbake-dev-environment'>
<title>BitBake</title>
<para>
The OpenEmbedded build system uses
<ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
to produce images.
You can see from the
<link linkend='general-workflow-figure'>general workflow figure</link>,
the BitBake area consists of several functional areas.
This section takes a closer look at each of those areas.
</para>
<para>
Separate documentation exists for the BitBake tool.
See the
<ulink url='&YOCTO_DOCS_BB_URL;#bitbake-user-manual'>BitBake User Manual</ulink>
for reference material on BitBake.
</para>
<section id='source-fetching-dev-environment'>
<title>Source Fetching</title>
<para>
The first stages of building a recipe are to fetch and
unpack the source code:
<imagedata fileref="figures/source-fetching.png" align="center" width="6.5in" depth="5in" />
</para>
<para>
The
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-fetch'><filename>do_fetch</filename></ulink>
and
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-unpack'><filename>do_unpack</filename></ulink>
tasks fetch the source files and unpack them into the work
directory.
<note>
For every local file (e.g. <filename>file://</filename>)
that is part of a recipe's
<ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
statement, the OpenEmbedded build system takes a
checksum of the file for the recipe and inserts the
checksum into the signature for the
<filename>do_fetch</filename>.
If any local file has been modified, the
<filename>do_fetch</filename> task and all tasks that
depend on it are re-executed.
</note>
By default, everything is accomplished in the
<ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>,
which has a defined structure.
For additional general information on the Build Directory,
see the
"<ulink url='&YOCTO_DOCS_REF_URL;#structure-core-build'><filename>build/</filename></ulink>"
section in the Yocto Project Reference Manual.
</para>
<para>
Unpacked source files are pointed to by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>
variable.
Each recipe has an area in the Build Directory where the
unpacked source code resides.
The name of that directory for any given recipe is defined
from several different variables.
You can see the variables that define these directories
by looking at the figure:
<itemizedlist>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>:
The base directory where the OpenEmbedded build
system performs all its work during the build.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_ARCH'><filename>PACKAGE_ARCH</filename></ulink>:
The architecture of the built package or packages.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-TARGET_OS'><filename>TARGET_OS</filename></ulink>:
The operating system of the target device.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PN'><filename>PN</filename></ulink>:
The name of the built package.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PV'><filename>PV</filename></ulink>:
The version of the recipe used to build the
package.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>:
The revision of the recipe used to build the
package.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>:
The location within <filename>TMPDIR</filename>
where a specific package is built.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>:
Contains the unpacked source files for a given
recipe.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='patching-dev-environment'>
<title>Patching</title>
<para>
Once source code is fetched and unpacked, BitBake locates
patch files and applies them to the source files:
<imagedata fileref="figures/patching.png" align="center" width="6in" depth="5in" />
</para>
<para>
The
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-patch'><filename>do_patch</filename></ulink>
task processes recipes by using the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
variable to locate applicable patch files, which by default
are <filename>*.patch</filename> or
<filename>*.diff</filename> files, or any file if
"apply=yes" is specified for the file in
<filename>SRC_URI</filename>.
</para>
<para>
BitBake finds and applies multiple patches for a single
recipe in the order in which it finds the patches.
Patches are applied to the recipe's source files located
in the
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>
directory.
</para>
<para>
For more information on how the source directories are
created, see the
"<link linkend='source-fetching-dev-environment'>Source Fetching</link>"
section.
</para>
</section>
<section id='configuration-and-compilation-dev-environment'>
<title>Configuration and Compilation</title>
<para>
After source code is patched, BitBake executes tasks that
configure and compile the source code:
<imagedata fileref="figures/configuration-compile-autoreconf.png" align="center" width="7in" depth="5in" />
</para>
<para>
This step in the build process consists of three tasks:
<itemizedlist>
<listitem><para>
<emphasis><ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-prepare_recipe_sysroot'><filename>do_prepare_recipe_sysroot</filename></ulink></emphasis>:
This task sets up the two sysroots in
<filename>${</filename><ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink><filename>}</filename>
(i.e. <filename>recipe-sysroot</filename> and
<filename>recipe-sysroot-native</filename>) so that
the sysroots contain the contents of the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sysroot'><filename>do_populate_sysroot</filename></ulink>
tasks of the recipes on which the recipe
containing the tasks depends.
A sysroot exists for both the target and for the
native binaries, which run on the host system.
</para></listitem>
<listitem><para>
<emphasis><filename>do_configure</filename></emphasis>:
This task configures the source by enabling and
disabling any build-time and configuration options
for the software being built.
Configurations can come from the recipe itself as
well as from an inherited class.
Additionally, the software itself might configure
itself depending on the target for which it is
being built.</para>
<para>The configurations handled by the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-configure'><filename>do_configure</filename></ulink>
task are specific to source code configuration for
the source code being built by the recipe.</para>
<para>If you are using the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-autotools'><filename>autotools</filename></ulink>
class, you can add additional configuration options
by using the
<ulink url='&YOCTO_DOCS_REF_URL;#var-EXTRA_OECONF'><filename>EXTRA_OECONF</filename></ulink>
or
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGECONFIG_CONFARGS'><filename>PACKAGECONFIG_CONFARGS</filename></ulink>
variables.
For information on how this variable works within
that class, see the
<filename>meta/classes/autotools.bbclass</filename>
file.
</para></listitem>
<listitem><para>
<emphasis><filename>do_compile</filename></emphasis>:
Once a configuration task has been satisfied, BitBake
compiles the source using the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-compile'><filename>do_compile</filename></ulink>
task.
Compilation occurs in the directory pointed to by
the
<ulink url='&YOCTO_DOCS_REF_URL;#var-B'><filename>B</filename></ulink>
variable.
Realize that the <filename>B</filename> directory
is, by default, the same as the
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>
directory.
</para></listitem>
<listitem><para>
<emphasis><filename>do_install</filename></emphasis>:
Once compilation is done, BitBake executes the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>
task.
This task copies files from the
<filename>B</filename> directory and places them
in a holding area pointed to by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-D'><filename>D</filename></ulink>
variable.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='package-splitting-dev-environment'>
<title>Package Splitting</title>
<para>
After source code is configured and compiled, the
OpenEmbedded build system analyzes
the results and splits the output into packages:
<imagedata fileref="figures/analysis-for-package-splitting.png" align="center" width="7in" depth="7in" />
</para>
<para>
The
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
and
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-packagedata'><filename>do_packagedata</filename></ulink>
tasks combine to analyze the files found in the
<ulink url='&YOCTO_DOCS_REF_URL;#var-D'><filename>D</filename></ulink>
directory and split them into subsets based on available
packages and files.
The analyzing process involves the following as well as
other items: splitting out debugging symbols, looking at
shared library dependencies between packages, and looking
at package relationships.
The <filename>do_packagedata</filename> task creates
package metadata based on the analysis such that the
OpenEmbedded build system can generate the final packages.
Working, staged, and intermediate results of the analysis
and package splitting process use these areas:
<itemizedlist>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PKGD'><filename>PKGD</filename></ulink>:
The destination directory for packages before they
are split.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PKGDATA_DIR'><filename>PKGDATA_DIR</filename></ulink>:
A shared, global-state directory that holds data
generated during the packaging process.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PKGDESTWORK'><filename>PKGDESTWORK</filename></ulink>:
A temporary work area used by the
<filename>do_package</filename> task.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PKGDEST'><filename>PKGDEST</filename></ulink>:
The parent directory for packages after they have
been split.
</para></listitem>
</itemizedlist>
The
<ulink url='&YOCTO_DOCS_REF_URL;#var-FILES'><filename>FILES</filename></ulink>
variable defines the files that go into each package in
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGES'><filename>PACKAGES</filename></ulink>.
If you want details on how this is accomplished, you can
look at the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-package'><filename>package</filename></ulink>
class.
</para>
<para>
Depending on the type of packages being created (RPM, DEB,
or IPK), the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write_*</filename></ulink>
task creates the actual packages and places them in the
Package Feed area, which is
<filename>${TMPDIR}/deploy</filename>.
You can see the
"<link linkend='package-feeds-dev-environment'>Package Feeds</link>"
section for more detail on that part of the build process.
<note>
Support for creating feeds directly from the
<filename>deploy/*</filename> directories does not
exist.
Creating such feeds usually requires some kind of feed
maintenance mechanism that would upload the new
packages into an official package feed (e.g. the
Ångström distribution).
This functionality is highly distribution-specific
and thus is not provided out of the box.
</note>
</para>
</section>
<section id='image-generation-dev-environment'>
<title>Image Generation</title>
<para>
Once packages are split and stored in the Package Feeds
area, the OpenEmbedded build system uses BitBake to
generate the root filesystem image:
<imagedata fileref="figures/image-generation.png" align="center" width="6in" depth="7in" />
</para>
<para>
The image generation process consists of several stages and
depends on several tasks and variables.
The
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-rootfs'><filename>do_rootfs</filename></ulink>
task creates the root filesystem (file and directory
structure) for an image.
This task uses several key variables to help create the
list of packages to actually install:
<itemizedlist>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_INSTALL'><filename>IMAGE_INSTALL</filename></ulink>:
Lists out the base set of packages to install from
the Package Feeds area.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_EXCLUDE'><filename>PACKAGE_EXCLUDE</filename></ulink>:
Specifies packages that should not be installed.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FEATURES'><filename>IMAGE_FEATURES</filename></ulink>:
Specifies features to include in the image.
Most of these features map to additional packages
for installation.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>:
Specifies the package backend to use and
consequently helps determine where to locate
packages within the Package Feeds area.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_LINGUAS'><filename>IMAGE_LINGUAS</filename></ulink>:
Determines the language(s) for which additional
language support packages are installed.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_INSTALL'><filename>PACKAGE_INSTALL</filename></ulink>:
The final list of packages passed to the package manager
for installation into the image.
</para></listitem>
</itemizedlist>
</para>
<para>
With
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_ROOTFS'><filename>IMAGE_ROOTFS</filename></ulink>
pointing to the location of the filesystem under
construction and the <filename>PACKAGE_INSTALL</filename>
variable providing the final list of packages to install,
the root file system is created.
</para>
<para>
Package installation is under control of the package
manager (e.g. dnf/rpm, opkg, or apt/dpkg) regardless of
whether or not package management is enabled for the
target.
At the end of the process, if package management is not
enabled for the target, the package manager's data files
are deleted from the root filesystem.
As part of the final stage of package installation,
postinstall scripts that are part of the packages are run.
Any scripts that fail to run
on the build host are run on the target when the target
system is first booted.
If you are using a
<ulink url='&YOCTO_DOCS_DEV_URL;#creating-a-read-only-root-filesystem'>read-only root filesystem</ulink>,
all the post installation scripts must succeed during the
package installation phase since the root filesystem is
read-only.
</para>
<para>
The final stages of the <filename>do_rootfs</filename> task
handle post processing.
Post processing includes creation of a manifest file and
optimizations.
</para>
<para>
The manifest file (<filename>.manifest</filename>) resides
in the same directory as the root filesystem image.
This file lists out, line-by-line, the installed packages.
The manifest file is useful for the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-testimage*'><filename>testimage</filename></ulink>
class, for example, to determine whether or not to run
specific tests.
See the
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_MANIFEST'><filename>IMAGE_MANIFEST</filename></ulink>
variable for additional information.
</para>
<para>
Optimizing processes run across the image include
<filename>mklibs</filename>, <filename>prelink</filename>,
and any other post-processing commands as defined by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-ROOTFS_POSTPROCESS_COMMAND'><filename>ROOTFS_POSTPROCESS_COMMAND</filename></ulink>
variable.
The <filename>mklibs</filename> process optimizes the size
of the libraries, while the <filename>prelink</filename>
process optimizes the dynamic linking of shared libraries
to reduce start up time of executables.
</para>
<para>
After the root filesystem is built, processing begins on
the image through the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-image'><filename>do_image</filename></ulink>
task.
The build system runs any pre-processing commands as
defined by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_PREPROCESS_COMMAND'><filename>IMAGE_PREPROCESS_COMMAND</filename></ulink>
variable.
This variable specifies a list of functions to call before
the OpenEmbedded build system creates the final image
output files.
</para>
<para>
The OpenEmbedded build system dynamically creates
<filename>do_image_*</filename> tasks as needed, based
on the image types specified in the
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FSTYPES'><filename>IMAGE_FSTYPES</filename></ulink>
variable.
The process turns everything into an image file or a set of
image files and can compress the root filesystem image to
reduce the overall size of the image.
The formats used for the root filesystem depend on the
<filename>IMAGE_FSTYPES</filename> variable.
Compression depends on whether the formats support
compression.
</para>
<para>
As an example, a dynamically created task when creating a
particular image <replaceable>type</replaceable> would
take the following form:
<literallayout class='monospaced'>
do_image_<replaceable>type</replaceable>
</literallayout>
So, if the <replaceable>type</replaceable> as specified by
the <filename>IMAGE_FSTYPES</filename> were
<filename>ext4</filename>, the dynamically generated task
would be as follows:
<literallayout class='monospaced'>
do_image_ext4
</literallayout>
</para>
<para>
The final task involved in image creation is the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-image-complete'><filename>do_image_complete</filename></ulink>
task.
This task completes the image by applying any image
post processing as defined through the
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_POSTPROCESS_COMMAND'><filename>IMAGE_POSTPROCESS_COMMAND</filename></ulink>
variable.
The variable specifies a list of functions to call once the
OpenEmbedded build system has created the final image
output files.
<note>
The entire image generation process is run under
Pseudo.
Running under Pseudo ensures that the files in the
root filesystem have correct ownership.
</note>
</para>
</section>
<section id='sdk-generation-dev-environment'>
<title>SDK Generation</title>
<para>
The OpenEmbedded build system uses BitBake to generate the
Software Development Kit (SDK) installer script for both
the standard and extensible SDKs:
<imagedata fileref="figures/sdk-generation.png" align="center" />
<note>
For more information on the cross-development toolchain
generation, see the
"<link linkend='cross-development-toolchain-generation'>Cross-Development Toolchain Generation</link>"
section.
For information on advantages gained when building a
cross-development toolchain using the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sdk'><filename>do_populate_sdk</filename></ulink>
task, see the
"<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-building-an-sdk-installer'>Building an SDK Installer</ulink>"
section in the Yocto Project Application Development
and the Extensible Software Development Kit (SDK)
manual.
</note>
</para>
<para>
Like image generation, the SDK script process consists of
several stages and depends on many variables.
The <filename>do_populate_sdk</filename> and
<filename>do_populate_sdk_ext</filename> tasks use these
key variables to help create the list of packages to
actually install.
For information on the variables listed in the figure,
see the
"<link linkend='sdk-dev-environment'>Application Development SDK</link>"
section.
</para>
<para>
The <filename>do_populate_sdk</filename> task helps create
the standard SDK and handles two parts: a target part and a
host part.
The target part is the part built for the target hardware
and includes libraries and headers.
The host part is the part of the SDK that runs on the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>.
</para>
<para>
The <filename>do_populate_sdk_ext</filename> task helps
create the extensible SDK and handles host and target parts
differently than its counter part does for the standard SDK.
For the extensible SDK, the task encapsulates the build
system, which includes everything needed (host and target)
for the SDK.
</para>
<para>
Regardless of the type of SDK being constructed, the
tasks perform some cleanup after which a cross-development
environment setup script and any needed configuration files
are created.
The final output is the Cross-development
toolchain installation script (<filename>.sh</filename>
file), which includes the environment setup script.
</para>
</section>
<section id='stamp-files-and-the-rerunning-of-tasks'>
<title>Stamp Files and the Rerunning of Tasks</title>
<para>
For each task that completes successfully, BitBake writes a
stamp file into the
<ulink url='&YOCTO_DOCS_REF_URL;#var-STAMPS_DIR'><filename>STAMPS_DIR</filename></ulink>
directory.
The beginning of the stamp file's filename is determined
by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-STAMP'><filename>STAMP</filename></ulink>
variable, and the end of the name consists of the task's
name and current
<link linkend='overview-checksums'>input checksum</link>.
<note>
This naming scheme assumes that
<ulink url='&YOCTO_DOCS_BB_URL;#var-BB_SIGNATURE_HANDLER'><filename>BB_SIGNATURE_HANDLER</filename></ulink>
is "OEBasicHash", which is almost always the case in
current OpenEmbedded.
</note>
To determine if a task needs to be rerun, BitBake checks
if a stamp file with a matching input checksum exists
for the task.
If such a stamp file exists, the task's output is
assumed to exist and still be valid.
If the file does not exist, the task is rerun.
<note>
<para>The stamp mechanism is more general than the
shared state (sstate) cache mechanism described in the
"<link linkend='setscene-tasks-and-shared-state'>Setscene Tasks and Shared State</link>"
section.
BitBake avoids rerunning any task that has a valid
stamp file, not just tasks that can be accelerated
through the sstate cache.</para>
<para>However, you should realize that stamp files only
serve as a marker that some work has been done and that
these files do not record task output.
The actual task output would usually be somewhere in
<ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>
(e.g. in some recipe's
<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>.)
What the sstate cache mechanism adds is a way to cache
task output that can then be shared between build
machines.</para>
</note>
Since <filename>STAMPS_DIR</filename> is usually a
subdirectory of <filename>TMPDIR</filename>, removing
<filename>TMPDIR</filename> will also remove
<filename>STAMPS_DIR</filename>, which means tasks will
properly be rerun to repopulate
<filename>TMPDIR</filename>.
</para>
<para>
If you want some task to always be considered "out of
date", you can mark it with the
<ulink url='&YOCTO_DOCS_BB_URL;#variable-flags'><filename>nostamp</filename></ulink>
varflag.
If some other task depends on such a task, then that
task will also always be considered out of date, which
might not be what you want.
</para>
<para>
For details on how to view information about a task's
signature, see the
"<ulink url='&YOCTO_DOCS_DEV_URL;#dev-viewing-task-variable-dependencies'>Viewing Task Variable Dependencies</ulink>"
section in the Yocto Project Development Tasks Manual.
</para>
</section>
<section id='setscene-tasks-and-shared-state'>
<title>Setscene Tasks and Shared State</title>
<para>
The description of tasks so far assumes that BitBake needs
to build everything and there are no prebuilt objects
available.
BitBake does support skipping tasks if prebuilt objects are
available.
These objects are usually made available in the form of a
shared state (sstate) cache.
<note>
For information on variables affecting sstate, see the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_DIR'><filename>SSTATE_DIR</filename></ulink>
and
<ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_MIRRORS'><filename>SSTATE_MIRRORS</filename></ulink>
variables.
</note>
</para>
<para>
The idea of a setscene task (i.e
<filename>do_</filename><replaceable>taskname</replaceable><filename>_setscene</filename>)
is a version of the task where
instead of building something, BitBake can skip to the end
result and simply place a set of files into specific
locations as needed.
In some cases, it makes sense to have a setscene task
variant (e.g. generating package files in the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write_*</filename></ulink>
task).
In other cases, it does not make sense, (e.g. a
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-patch'><filename>do_patch</filename></ulink>
task or
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-unpack'><filename>do_unpack</filename></ulink>
task) since the work involved would be equal to or greater
than the underlying task.
</para>
<para>
In the OpenEmbedded build system, the common tasks that
have setscene variants are
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>,
<filename>do_package_write_*</filename>,
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-deploy'><filename>do_deploy</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-packagedata'><filename>do_packagedata</filename></ulink>,
and
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sysroot'><filename>do_populate_sysroot</filename></ulink>.
Notice that these are most of the tasks whose output is an
end result.
</para>
<para>
The OpenEmbedded build system has knowledge of the
relationship between these tasks and other tasks that
precede them.
For example, if BitBake runs
<filename>do_populate_sysroot_setscene</filename> for
something, there is little point in running any of the
<filename>do_fetch</filename>,
<filename>do_unpack</filename>,
<filename>do_patch</filename>,
<filename>do_configure</filename>,
<filename>do_compile</filename>, and
<filename>do_install</filename> tasks.
However, if <filename>do_package</filename> needs to be
run, BitBake would need to run those other tasks.
</para>
<para>
It becomes more complicated if everything can come
from an sstate cache because some objects are simply
not required at all.
For example, you do not need a compiler or native tools,
such as quilt, if there is nothing to compile or patch.
If the <filename>do_package_write_*</filename> packages
are available from sstate, BitBake does not need the
<filename>do_package</filename> task data.
</para>
<para>
To handle all these complexities, BitBake runs in two
phases.
The first is the "setscene" stage.
During this stage, BitBake first checks the sstate cache
for any targets it is planning to build.
BitBake does a fast check to see if the object exists
rather than a complete download.
If nothing exists, the second phase, which is the setscene
stage, completes and the main build proceeds.
</para>
<para>
If objects are found in the sstate cache, the OpenEmbedded
build system works backwards from the end targets specified
by the user.
For example, if an image is being built, the OpenEmbedded
build system first looks for the packages needed for
that image and the tools needed to construct an image.
If those are available, the compiler is not needed.
Thus, the compiler is not even downloaded.
If something was found to be unavailable, or the
download or setscene task fails, the OpenEmbedded build
system then tries to install dependencies, such as the
compiler, from the cache.
</para>
<para>
The availability of objects in the sstate cache is
handled by the function specified by the
<ulink url='&YOCTO_DOCS_BB_URL;#var-BB_HASHCHECK_FUNCTION'><filename>BB_HASHCHECK_FUNCTION</filename></ulink>
variable and returns a list of the objects that are
available.
The function specified by the
<ulink url='&YOCTO_DOCS_BB_URL;#var-BB_SETSCENE_DEPVALID'><filename>BB_SETSCENE_DEPVALID</filename></ulink>
variable is the function that determines whether a given
dependency needs to be followed, and whether for any given
relationship the function needs to be passed.
The function returns a True or False value.
</para>
</section>
</section>
<section id='images-dev-environment'>
<title>Images</title>
<para>
The images produced by the OpenEmbedded build system
are compressed forms of the
root filesystem that are ready to boot on a target device.
You can see from the
<link linkend='general-workflow-figure'>general workflow figure</link>
that BitBake output, in part, consists of images.
This section is going to look more closely at this output:
<imagedata fileref="figures/images.png" align="center" width="5.5in" depth="5.5in" />
</para>
<para>
For a list of example images that the Yocto Project provides,
see the
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>"
chapter in the Yocto Project Reference Manual.
</para>
<para>
Images are written out to the
<ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>
inside the
<filename>tmp/deploy/images/<replaceable>machine</replaceable>/</filename>
folder as shown in the figure.
This folder contains any files expected to be loaded on the
target device.
The
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></ulink>
variable points to the <filename>deploy</filename> directory,
while the
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_IMAGE'><filename>DEPLOY_DIR_IMAGE</filename></ulink>
variable points to the appropriate directory containing images
for the current configuration.
<itemizedlist>
<listitem><para>
<filename><replaceable>kernel-image</replaceable></filename>:
A kernel binary file.
The
<ulink url='&YOCTO_DOCS_REF_URL;#var-KERNEL_IMAGETYPE'><filename>KERNEL_IMAGETYPE</filename></ulink>
variable setting determines the naming scheme for the
kernel image file.
Depending on that variable, the file could begin with
a variety of naming strings.
The
<filename>deploy/images/<replaceable>machine</replaceable></filename>
directory can contain multiple image files for the
machine.
</para></listitem>
<listitem><para>
<filename><replaceable>root-filesystem-image</replaceable></filename>:
Root filesystems for the target device (e.g.
<filename>*.ext3</filename> or
<filename>*.bz2</filename> files).
The
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FSTYPES'><filename>IMAGE_FSTYPES</filename></ulink>
variable setting determines the root filesystem image
type.
The
<filename>deploy/images/<replaceable>machine</replaceable></filename>
directory can contain multiple root filesystems for the
machine.
</para></listitem>
<listitem><para>
<filename><replaceable>kernel-modules</replaceable></filename>:
Tarballs that contain all the modules built for the
kernel.
Kernel module tarballs exist for legacy purposes and
can be suppressed by setting the
<ulink url='&YOCTO_DOCS_REF_URL;#var-MODULE_TARBALL_DEPLOY'><filename>MODULE_TARBALL_DEPLOY</filename></ulink>
variable to "0".
The
<filename>deploy/images/<replaceable>machine</replaceable></filename>
directory can contain multiple kernel module tarballs
for the machine.
</para></listitem>
<listitem><para>
<filename><replaceable>bootloaders</replaceable></filename>:
Bootloaders supporting the image, if applicable to the
target machine.
The <filename>deploy/images/<replaceable>machine</replaceable></filename>
directory can contain multiple bootloaders for the
machine.
</para></listitem>
<listitem><para>
<filename><replaceable>symlinks</replaceable></filename>:
The
<filename>deploy/images/<replaceable>machine</replaceable></filename>
folder contains a symbolic link that points to the
most recently built file for each machine.
These links might be useful for external scripts that
need to obtain the latest version of each file.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='sdk-dev-environment'>
<title>Application Development SDK</title>
<para>
In the
<link linkend='general-workflow-figure'>general Yocto Project Development Environment figure</link>,
the output labeled "Application Development SDK" represents an
SDK.
The SDK generation process differs depending on whether you
build a standard SDK (e.g.
<filename>bitbake -c populate_sdk</filename> <replaceable>imagename</replaceable>)
or an extensible SDK (e.g.
<filename>bitbake -c populate_sdk_ext</filename> <replaceable>imagename</replaceable>).
This section is going to take a closer look at this output:
<imagedata fileref="figures/sdk.png" align="center" width="9in" depth="7.25in" />
</para>
<para>
The specific form of this output is a self-extracting
SDK installer (<filename>*.sh</filename>) that, when run,
installs the SDK, which consists of a cross-development
toolchain, a set of libraries and headers, and an SDK
environment setup script.
Running this installer essentially sets up your
cross-development environment.
You can think of the cross-toolchain as the "host"
part because it runs on the SDK machine.
You can think of the libraries and headers as the "target"
part because they are built for the target hardware.
The environment setup script is added so that you can
initialize the environment before using the tools.
</para>
<note><title>Notes</title>
<itemizedlist>
<listitem><para>
The Yocto Project supports several methods by which
you can set up this cross-development environment.
These methods include downloading pre-built SDK
installers or building and installing your own SDK
installer.
</para></listitem>
<listitem><para>
For background information on cross-development
toolchains in the Yocto Project development
environment, see the
"<link linkend='cross-development-toolchain-generation'>Cross-Development Toolchain Generation</link>"
section.
</para></listitem>
<listitem><para>
For information on setting up a cross-development
environment, see the
<ulink url='&YOCTO_DOCS_SDK_URL;'>Yocto Project Application Development and the Extensible Software Development Kit (eSDK)</ulink>
manual.
</para></listitem>
</itemizedlist>
</note>
<para>
Once built, the SDK installers are written out to the
<filename>deploy/sdk</filename> folder inside the
<ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>
as shown in the figure at the beginning of this section.
Depending on the type of SDK, several variables exist that help
configure these files.
The following list shows the variables associated with
a standard SDK:
<itemizedlist>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></ulink>:
Points to the <filename>deploy</filename>
directory.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>:
Specifies the architecture of the machine
on which the cross-development tools are run to
create packages for the target hardware.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDKIMAGE_FEATURES'><filename>SDKIMAGE_FEATURES</filename></ulink>:
Lists the features to include in the "target" part
of the SDK.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-TOOLCHAIN_HOST_TASK'><filename>TOOLCHAIN_HOST_TASK</filename></ulink>:
Lists packages that make up the host
part of the SDK (i.e. the part that runs on
the <filename>SDKMACHINE</filename>).
When you use
<filename>bitbake -c populate_sdk <replaceable>imagename</replaceable></filename>
to create the SDK, a set of default packages
apply.
This variable allows you to add more packages.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-TOOLCHAIN_TARGET_TASK'><filename>TOOLCHAIN_TARGET_TASK</filename></ulink>:
Lists packages that make up the target part
of the SDK (i.e. the part built for the
target hardware).
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDKPATH'><filename>SDKPATH</filename></ulink>:
Defines the default SDK installation path offered
by the installation script.
</para></listitem>
</itemizedlist>
This next list, shows the variables associated with an
extensible SDK:
<itemizedlist>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></ulink>:
Points to the <filename>deploy</filename> directory.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_EXT_TYPE'><filename>SDK_EXT_TYPE</filename></ulink>:
Controls whether or not shared state artifacts are
copied into the extensible SDK.
By default, all required shared state artifacts are
copied into the SDK.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_INCLUDE_PKGDATA'><filename>SDK_INCLUDE_PKGDATA</filename></ulink>:
Specifies whether or not packagedata will be
included in the extensible SDK for all recipes in
the "world" target.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_INCLUDE_TOOLCHAIN'><filename>SDK_INCLUDE_TOOLCHAIN</filename></ulink>:
Specifies whether or not the toolchain will be included
when building the extensible SDK.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_LOCAL_CONF_WHITELIST'><filename>SDK_LOCAL_CONF_WHITELIST</filename></ulink>:
A list of variables allowed through from the build
system configuration into the extensible SDK
configuration.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_LOCAL_CONF_BLACKLIST'><filename>SDK_LOCAL_CONF_BLACKLIST</filename></ulink>:
A list of variables not allowed through from the build
system configuration into the extensible SDK
configuration.
</para></listitem>
<listitem><para>
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_INHERIT_BLACKLIST'><filename>SDK_INHERIT_BLACKLIST</filename></ulink>:
A list of classes to remove from the
<ulink url='&YOCTO_DOCS_REF_URL;#var-INHERIT'><filename>INHERIT</filename></ulink>
value globally within the extensible SDK configuration.
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
<section id="cross-development-toolchain-generation">
<title>Cross-Development Toolchain Generation</title>
<para>
The Yocto Project does most of the work for you when it comes to
creating
<ulink url='&YOCTO_DOCS_REF_URL;#cross-development-toolchain'>cross-development toolchains</ulink>.
This section provides some technical background on how
cross-development toolchains are created and used.
For more information on toolchains, you can also see the
<ulink url='&YOCTO_DOCS_SDK_URL;'>Yocto Project Application Development and the Extensible Software Development Kit (eSDK)</ulink>
manual.
</para>
<para>
In the Yocto Project development environment, cross-development
toolchains are used to build the image and applications that run
on the target hardware.
With just a few commands, the OpenEmbedded build system creates
these necessary toolchains for you.
</para>
<para>
The following figure shows a high-level build environment regarding
toolchain construction and use.
</para>
<para>
<imagedata fileref="figures/cross-development-toolchains.png" width="8in" depth="6in" align="center" />
</para>
<para>
Most of the work occurs on the Build Host.
This is the machine used to build images and generally work within
the the Yocto Project environment.
When you run
<ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
to create an image, the OpenEmbedded build system
uses the host <filename>gcc</filename> compiler to bootstrap a
cross-compiler named <filename>gcc-cross</filename>.
The <filename>gcc-cross</filename> compiler is what BitBake uses to
compile source files when creating the target image.
You can think of <filename>gcc-cross</filename> simply as an
automatically generated cross-compiler that is used internally
within BitBake only.
<note>
The extensible SDK does not use
<filename>gcc-cross-canadian</filename> since this SDK
ships a copy of the OpenEmbedded build system and the sysroot
within it contains <filename>gcc-cross</filename>.
</note>
</para>
<para>
The chain of events that occurs when <filename>gcc-cross</filename> is
bootstrapped is as follows:
<literallayout class='monospaced'>
gcc -> binutils-cross -> gcc-cross-initial -> linux-libc-headers -> glibc-initial -> glibc -> gcc-cross -> gcc-runtime
</literallayout>
<itemizedlist>
<listitem><para>
<filename>gcc</filename>:
The build host's GNU Compiler Collection (GCC).
</para></listitem>
<listitem><para>
<filename>binutils-cross</filename>:
The bare minimum binary utilities needed in order to run
the <filename>gcc-cross-initial</filename> phase of the
bootstrap operation.
</para></listitem>
<listitem><para>
<filename>gcc-cross-initial</filename>:
An early stage of the bootstrap process for creating
the cross-compiler.
This stage builds enough of the <filename>gcc-cross</filename>,
the C library, and other pieces needed to finish building the
final cross-compiler in later stages.
This tool is a "native" package (i.e. it is designed to run on
the build host).
</para></listitem>
<listitem><para>
<filename>linux-libc-headers</filename>:
Headers needed for the cross-compiler.
</para></listitem>
<listitem><para>
<filename>glibc-initial</filename>:
An initial version of the Embedded GLIBC needed to bootstrap
<filename>glibc</filename>.
</para></listitem>
<listitem><para>
<filename>gcc-cross</filename>:
The final stage of the bootstrap process for the
cross-compiler.
This stage results in the actual cross-compiler that
BitBake uses when it builds an image for a targeted
device.
<note>
If you are replacing this cross compiler toolchain
with a custom version, you must replace
<filename>gcc-cross</filename>.
</note>
This tool is also a "native" package (i.e. it is
designed to run on the build host).
</para></listitem>
<listitem><para>
<filename>gcc-runtime</filename>:
Runtime libraries resulting from the toolchain bootstrapping
process.
This tool produces a binary that consists of the
runtime libraries need for the targeted device.
</para></listitem>
</itemizedlist>
</para>
<para>
You can use the OpenEmbedded build system to build an installer for
the relocatable SDK used to develop applications.
When you run the installer, it installs the toolchain, which
contains the development tools (e.g.,
<filename>gcc-cross-canadian</filename>,
<filename>binutils-cross-canadian</filename>, and other
<filename>nativesdk-*</filename> tools),
which are tools native to the SDK (i.e. native to
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_ARCH'><filename>SDK_ARCH</filename></ulink>),
you need to cross-compile and test your software.
The figure shows the commands you use to easily build out this
toolchain.
This cross-development toolchain is built to execute on the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>,
which might or might not be the same
machine as the Build Host.
<note>
If your target architecture is supported by the Yocto Project,
you can take advantage of pre-built images that ship with the
Yocto Project and already contain cross-development toolchain
installers.
</note>
</para>
<para>
Here is the bootstrap process for the relocatable toolchain:
<literallayout class='monospaced'>
gcc -> binutils-crosssdk -> gcc-crosssdk-initial -> linux-libc-headers ->
glibc-initial -> nativesdk-glibc -> gcc-crosssdk -> gcc-cross-canadian
</literallayout>
<itemizedlist>
<listitem><para>
<filename>gcc</filename>:
The build host's GNU Compiler Collection (GCC).
</para></listitem>
<listitem><para>
<filename>binutils-crosssdk</filename>:
The bare minimum binary utilities needed in order to run
the <filename>gcc-crosssdk-initial</filename> phase of the
bootstrap operation.
</para></listitem>
<listitem><para>
<filename>gcc-crosssdk-initial</filename>:
An early stage of the bootstrap process for creating
the cross-compiler.
This stage builds enough of the
<filename>gcc-crosssdk</filename> and supporting pieces so that
the final stage of the bootstrap process can produce the
finished cross-compiler.
This tool is a "native" binary that runs on the build host.
</para></listitem>
<listitem><para>
<filename>linux-libc-headers</filename>:
Headers needed for the cross-compiler.
</para></listitem>
<listitem><para>
<filename>glibc-initial</filename>:
An initial version of the Embedded GLIBC needed to bootstrap
<filename>nativesdk-glibc</filename>.
</para></listitem>
<listitem><para>
<filename>nativesdk-glibc</filename>:
The Embedded GLIBC needed to bootstrap the
<filename>gcc-crosssdk</filename>.
</para></listitem>
<listitem><para>
<filename>gcc-crosssdk</filename>:
The final stage of the bootstrap process for the
relocatable cross-compiler.
The <filename>gcc-crosssdk</filename> is a transitory compiler
and never leaves the build host.
Its purpose is to help in the bootstrap process to create the
eventual relocatable <filename>gcc-cross-canadian</filename>
compiler, which is relocatable.
This tool is also a "native" package (i.e. it is
designed to run on the build host).
</para></listitem>
<listitem><para>
<filename>gcc-cross-canadian</filename>:
The final relocatable cross-compiler.
When run on the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>,
this tool
produces executable code that runs on the target device.
Only one cross-canadian compiler is produced per architecture
since they can be targeted at different processor optimizations
using configurations passed to the compiler through the
compile commands.
This circumvents the need for multiple compilers and thus
reduces the size of the toolchains.
</para></listitem>
</itemizedlist>
</para>
<note>
For information on advantages gained when building a
cross-development toolchain installer, see the
"<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-building-an-sdk-installer'>Building an SDK Installer</ulink>"
section in the Yocto Project Application Development and the
Extensible Software Development Kit (eSDK) manual.
</note>
</section>
<section id="shared-state-cache">
<title>Shared State Cache</title>
<para>
By design, the OpenEmbedded build system builds everything from
scratch unless
<ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
can determine that parts do not need to be rebuilt.
Fundamentally, building from scratch is attractive as it means all
parts are built fresh and there is no possibility of stale data
causing problems.
When developers hit problems, they typically default back to
building from scratch so they know the state of things from the
start.
</para>
<para>
Building an image from scratch is both an advantage and a
disadvantage to the process.
As mentioned in the previous paragraph, building from scratch
ensures that everything is current and starts from a known state.
However, building from scratch also takes much longer as it
generally means rebuilding things that do not necessarily need
to be rebuilt.
</para>
<para>
The Yocto Project implements shared state code that supports
incremental builds.
The implementation of the shared state code answers the following
questions that were fundamental roadblocks within the OpenEmbedded
incremental build support system:
<itemizedlist>
<listitem><para>
What pieces of the system have changed and what pieces have
not changed?
</para></listitem>
<listitem><para>
How are changed pieces of software removed and replaced?
</para></listitem>
<listitem><para>
How are pre-built components that do not need to be rebuilt
from scratch used when they are available?
</para></listitem>
</itemizedlist>
</para>
<para>
For the first question, the
<ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>
detects changes in the "inputs" to a given task by creating a
checksum (or signature) of the task's inputs.
If the checksum changes, the system assumes the inputs have changed
and the task needs to be rerun.
For the second question, the shared state (sstate) code tracks
which tasks add which output to the build process.
This means the output from a given task can be removed, upgraded
or otherwise manipulated.
The third question is partly addressed by the solution for the
second question assuming the build system can fetch the sstate
objects from remote locations and install them if they are deemed
to be valid.
<note>
The OpenEmbedded build system does not maintain
<ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>
information as part of the shared state packages.
Consequently, considerations exist that affect maintaining
shared state feeds.
For information on how the OpenEmbedded build system
works with packages and can track incrementing
<filename>PR</filename> information, see the
"<ulink url='&YOCTO_DOCS_DEV_URL;#automatically-incrementing-a-binary-package-revision-number'>Automatically Incrementing a Binary Package Revision Number</ulink>"
section in the Yocto Project Development Tasks Manual.
</note>
</para>
<para>
The rest of this section goes into detail about the overall
incremental build architecture, the checksums (signatures), shared
state, and some tips and tricks.
</para>
<section id='concepts-overall-architecture'>
<title>Overall Architecture</title>
<para>
When determining what parts of the system need to be built,
BitBake works on a per-task basis rather than a per-recipe
basis.
You might wonder why using a per-task basis is preferred over
a per-recipe basis.
To help explain, consider having the IPK packaging backend
enabled and then switching to DEB.
In this case, the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>
and
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
task outputs are still valid.
However, with a per-recipe approach, the build would not
include the <filename>.deb</filename> files.
Consequently, you would have to invalidate the whole build and
rerun it.
Rerunning everything is not the best solution.
Also, in this case, the core must be "taught" much about
specific tasks.
This methodology does not scale well and does not allow users
to easily add new tasks in layers or as external recipes
without touching the packaged-staging core.
</para>
</section>
<section id='overview-checksums'>
<title>Checksums (Signatures)</title>
<para>
The shared state code uses a checksum, which is a unique
signature of a task's inputs, to determine if a task needs to
be run again.
Because it is a change in a task's inputs that triggers a
rerun, the process needs to detect all the inputs to a given
task.
For shell tasks, this turns out to be fairly easy because
the build process generates a "run" shell script for each task
and it is possible to create a checksum that gives you a good
idea of when the task's data changes.
</para>
<para>
To complicate the problem, there are things that should not be
included in the checksum.
First, there is the actual specific build path of a given
task - the
<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>.
It does not matter if the work directory changes because it
should not affect the output for target packages.
Also, the build process has the objective of making native
or cross packages relocatable.
<note>
Both native and cross packages run on the
<ulink url='&YOCTO_DOCS_REF_URL;#hardware-build-system-term'>build host</ulink>.
However, cross packages generate output for the target
architecture.
</note>
The checksum therefore needs to exclude
<filename>WORKDIR</filename>.
The simplistic approach for excluding the work directory is to
set <filename>WORKDIR</filename> to some fixed value and
create the checksum for the "run" script.
</para>
<para>
Another problem results from the "run" scripts containing
functions that might or might not get called.
The incremental build solution contains code that figures out
dependencies between shell functions.
This code is used to prune the "run" scripts down to the
minimum set, thereby alleviating this problem and making the
"run" scripts much more readable as a bonus.
</para>
<para>
So far, solutions for shell scripts exist.
What about Python tasks?
The same approach applies even though these tasks are more
difficult.
The process needs to figure out what variables a Python
function accesses and what functions it calls.
Again, the incremental build solution contains code that first
figures out the variable and function dependencies, and then
creates a checksum for the data used as the input to the task.
</para>
<para>
Like the <filename>WORKDIR</filename> case, situations exist
where dependencies should be ignored.
For these situations, you can instruct the build process to
ignore a dependency by using a line like the following:
<literallayout class='monospaced'>
PACKAGE_ARCHS[vardepsexclude] = "MACHINE"
</literallayout>
This example ensures that the
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_ARCHS'><filename>PACKAGE_ARCHS</filename></ulink>
variable does not depend on the value of
<ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'><filename>MACHINE</filename></ulink>,
even if it does reference it.
</para>
<para>
Equally, there are cases where you need to add dependencies
BitBake is not able to find.
You can accomplish this by using a line like the following:
<literallayout class='monospaced'>
PACKAGE_ARCHS[vardeps] = "MACHINE"
</literallayout>
This example explicitly adds the <filename>MACHINE</filename>
variable as a dependency for
<filename>PACKAGE_ARCHS</filename>.
</para>
<para>
As an example, consider a case with in-line Python where
BitBake is not able to figure out dependencies.
When running in debug mode (i.e. using
<filename>-DDD</filename>), BitBake produces output when it
discovers something for which it cannot figure out dependencies.
The Yocto Project team has currently not managed to cover
those dependencies in detail and is aware of the need to fix
this situation.
</para>
<para>
Thus far, this section has limited discussion to the direct
inputs into a task.
Information based on direct inputs is referred to as the
"basehash" in the code.
However, there is still the question of a task's indirect
inputs - the things that were already built and present in the
<ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>.
The checksum (or signature) for a particular task needs to add
the hashes of all the tasks on which the particular task
depends.
Choosing which dependencies to add is a policy decision.
However, the effect is to generate a master checksum that
combines the basehash and the hashes of the task's
dependencies.
</para>
<para>
At the code level, a variety of ways exist by which both the
basehash and the dependent task hashes can be influenced.
Within the BitBake configuration file, you can give BitBake
some extra information to help it construct the basehash.
The following statement effectively results in a list of
global variable dependency excludes - variables never
included in any checksum:
<literallayout class='monospaced'>
BB_HASHBASE_WHITELIST ?= "TMPDIR FILE PATH PWD BB_TASKHASH BBPATH DL_DIR \
SSTATE_DIR THISDIR FILESEXTRAPATHS FILE_DIRNAME HOME LOGNAME SHELL TERM \
USER FILESPATH STAGING_DIR_HOST STAGING_DIR_TARGET COREBASE PRSERV_HOST \
PRSERV_DUMPDIR PRSERV_DUMPFILE PRSERV_LOCKDOWN PARALLEL_MAKE \
CCACHE_DIR EXTERNAL_TOOLCHAIN CCACHE CCACHE_DISABLE LICENSE_PATH SDKPKGSUFFIX"
</literallayout>
The previous example excludes
<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>
since that variable is actually constructed as a path within
<ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>,
which is on the whitelist.
</para>
<para>
The rules for deciding which hashes of dependent tasks to
include through dependency chains are more complex and are
generally accomplished with a Python function.
The code in <filename>meta/lib/oe/sstatesig.py</filename> shows
two examples of this and also illustrates how you can insert
your own policy into the system if so desired.
This file defines the two basic signature generators
<ulink url='&YOCTO_DOCS_REF_URL;#oe-core'>OE-Core</ulink>
uses: "OEBasic" and "OEBasicHash".
By default, there is a dummy "noop" signature handler enabled
in BitBake.
This means that behavior is unchanged from previous versions.
OE-Core uses the "OEBasicHash" signature handler by default
through this setting in the <filename>bitbake.conf</filename>
file:
<literallayout class='monospaced'>
BB_SIGNATURE_HANDLER ?= "OEBasicHash"
</literallayout>
The "OEBasicHash" <filename>BB_SIGNATURE_HANDLER</filename>
is the same as the "OEBasic" version but adds the task hash to
the stamp files.
This results in any
<ulink url='&YOCTO_DOCS_REF_URL;#metadata'>Metadata</ulink>
change that changes the task hash, automatically
causing the task to be run again.
This removes the need to bump
<ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>
values, and changes to Metadata automatically ripple across
the build.
</para>
<para>
It is also worth noting that the end result of these
signature generators is to make some dependency and hash
information available to the build.
This information includes:
<itemizedlist>
<listitem><para>
<filename>BB_BASEHASH_task-</filename><replaceable>taskname</replaceable>:
The base hashes for each task in the recipe.
</para></listitem>
<listitem><para>
<filename>BB_BASEHASH_</filename><replaceable>filename</replaceable><filename>:</filename><replaceable>taskname</replaceable>:
The base hashes for each dependent task.
</para></listitem>
<listitem><para>
<filename>BBHASHDEPS_</filename><replaceable>filename</replaceable><filename>:</filename><replaceable>taskname</replaceable>:
The task dependencies for each task.
</para></listitem>
<listitem><para>
<filename>BB_TASKHASH</filename>:
The hash of the currently running task.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='shared-state'>
<title>Shared State</title>
<para>
Checksums and dependencies, as discussed in the previous
section, solve half the problem of supporting a shared state.
The other part of the problem is being able to use checksum
information during the build and being able to reuse or rebuild
specific components.
</para>
<para>
The
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-sstate'><filename>sstate</filename></ulink>
class is a relatively generic implementation of how to
"capture" a snapshot of a given task.
The idea is that the build process does not care about the
source of a task's output.
Output could be freshly built or it could be downloaded and
unpacked from somewhere - the build process does not need to
worry about its origin.
</para>
<para>
Two types of output exist.
One type is just about creating a directory in
<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>.
A good example is the output of either
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>
or
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>.
The other type of output occurs when a set of data is merged
into a shared directory tree such as the sysroot.
</para>
<para>
The Yocto Project team has tried to keep the details of the
implementation hidden in <filename>sstate</filename> class.
From a user's perspective, adding shared state wrapping to a task
is as simple as this
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-deploy'><filename>do_deploy</filename></ulink>
example taken from the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-deploy'><filename>deploy</filename></ulink>
class:
<literallayout class='monospaced'>
DEPLOYDIR = "${WORKDIR}/deploy-${PN}"
SSTATETASKS += "do_deploy"
do_deploy[sstate-inputdirs] = "${DEPLOYDIR}"
do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}"
python do_deploy_setscene () {
sstate_setscene(d)
}
addtask do_deploy_setscene
do_deploy[dirs] = "${DEPLOYDIR} ${B}"
</literallayout>
The following list explains the previous example:
<itemizedlist>
<listitem><para>
Adding "do_deploy" to <filename>SSTATETASKS</filename>
adds some required sstate-related processing, which is
implemented in the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-sstate'><filename>sstate</filename></ulink>
class, to before and after the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-deploy'><filename>do_deploy</filename></ulink>
task.
</para></listitem>
<listitem><para>
The
<filename>do_deploy[sstate-inputdirs] = "${DEPLOYDIR}"</filename>
declares that <filename>do_deploy</filename> places its
output in <filename>${DEPLOYDIR}</filename> when run
normally (i.e. when not using the sstate cache).
This output becomes the input to the shared state cache.
</para></listitem>
<listitem><para>
The
<filename>do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}"</filename>
line causes the contents of the shared state cache to be
copied to <filename>${DEPLOY_DIR_IMAGE}</filename>.
<note>
If <filename>do_deploy</filename> is not already in
the shared state cache or if its input checksum
(signature) has changed from when the output was
cached, the task will be run to populate the shared
state cache, after which the contents of the shared
state cache is copied to
<filename>${DEPLOY_DIR_IMAGE}</filename>.
If <filename>do_deploy</filename> is in the shared
state cache and its signature indicates that the
cached output is still valid (i.e. if no
relevant task inputs have changed), then the
contents of the shared state cache will be copied
directly to
<filename>${DEPLOY_DIR_IMAGE}</filename> by the
<filename>do_deploy_setscene</filename> task
instead, skipping the
<filename>do_deploy</filename> task.
</note>
</para></listitem>
<listitem><para>
The following task definition is glue logic needed to
make the previous settings effective:
<literallayout class='monospaced'>
python do_deploy_setscene () {
sstate_setscene(d)
}
addtask do_deploy_setscene
</literallayout>
<filename>sstate_setscene()</filename> takes the flags
above as input and accelerates the
<filename>do_deploy</filename> task through the
shared state cache if possible.
If the task was accelerated,
<filename>sstate_setscene()</filename> returns True.
Otherwise, it returns False, and the normal
<filename>do_deploy</filename> task runs.
For more information, see the
"<ulink url='&YOCTO_DOCS_BB_URL;#setscene'>setscene</ulink>"
section in the BitBake User Manual.
</para></listitem>
<listitem><para>
The <filename>do_deploy[dirs] = "${DEPLOYDIR} ${B}"</filename>
line creates <filename>${DEPLOYDIR}</filename> and
<filename>${B}</filename> before the
<filename>do_deploy</filename> task runs, and also sets
the current working directory of
<filename>do_deploy</filename> to
<filename>${B}</filename>.
For more information, see the
"<ulink url='&YOCTO_DOCS_BB_URL;#variable-flags'>Variable Flags</ulink>"
section in the BitBake User Manual.
<note>
In cases where
<filename>sstate-inputdirs</filename> and
<filename>sstate-outputdirs</filename> would be the
same, you can use
<filename>sstate-plaindirs</filename>.
For example, to preserve the
<filename>${PKGD}</filename> and
<filename>${PKGDEST}</filename> output from the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
task, use the following:
<literallayout class='monospaced'>
do_package[sstate-plaindirs] = "${PKGD} ${PKGDEST}"
</literallayout>
</note>
</para></listitem>
<listitem><para>
<filename>sstate-inputdirs</filename> and
<filename>sstate-outputdirs</filename> can also be used
with multiple directories.
For example, the following declares
<filename>PKGDESTWORK</filename> and
<filename>SHLIBWORK</filename> as shared state
input directories, which populates the shared state
cache, and <filename>PKGDATA_DIR</filename> and
<filename>SHLIBSDIR</filename> as the corresponding
shared state output directories:
<literallayout class='monospaced'>
do_package[sstate-inputdirs] = "${PKGDESTWORK} ${SHLIBSWORKDIR}"
do_package[sstate-outputdirs] = "${PKGDATA_DIR} ${SHLIBSDIR}"
</literallayout>
</para></listitem>
<listitem><para>
These methods also include the ability to take a
lockfile when manipulating shared state directory
structures, for cases where file additions or removals
are sensitive:
<literallayout class='monospaced'>
do_package[sstate-lockfile] = "${PACKAGELOCK}"
</literallayout>
</para></listitem>
</itemizedlist>
</para>
<para>
Behind the scenes, the shared state code works by looking in
<ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_DIR'><filename>SSTATE_DIR</filename></ulink>
and
<ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_MIRRORS'><filename>SSTATE_MIRRORS</filename></ulink>
for shared state files.
Here is an example:
<literallayout class='monospaced'>
SSTATE_MIRRORS ?= "\
file://.* http://someserver.tld/share/sstate/PATH;downloadfilename=PATH \n \
file://.* file:///some/local/dir/sstate/PATH"
</literallayout>
<note>
The shared state directory
(<filename>SSTATE_DIR</filename>) is organized into
two-character subdirectories, where the subdirectory
names are based on the first two characters of the hash.
If the shared state directory structure for a mirror has the
same structure as <filename>SSTATE_DIR</filename>, you must
specify "PATH" as part of the URI to enable the build system
to map to the appropriate subdirectory.
</note>
</para>
<para>
The shared state package validity can be detected just by
looking at the filename since the filename contains the task
checksum (or signature) as described earlier in this section.
If a valid shared state package is found, the build process
downloads it and uses it to accelerate the task.
</para>
<para>
The build processes use the <filename>*_setscene</filename>
tasks for the task acceleration phase.
BitBake goes through this phase before the main execution
code and tries to accelerate any tasks for which it can find
shared state packages.
If a shared state package for a task is available, the
shared state package is used.
This means the task and any tasks on which it is dependent
are not executed.
</para>
<para>
As a real world example, the aim is when building an IPK-based
image, only the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_ipk'><filename>do_package_write_ipk</filename></ulink>
tasks would have their shared state packages fetched and
extracted.
Since the sysroot is not used, it would never get extracted.
This is another reason why a task-based approach is preferred
over a recipe-based approach, which would have to install the
output from every task.n
</para>
</section>
<section id='concepts-tips-and-tricks'>
<title>Tips and Tricks</title>
<para>
The code in the build system that supports incremental builds
is not simple code.
This section presents some tips and tricks that help you work
around issues related to shared state code.
</para>
<section id='concepts-overview-debugging'>
<title>Debugging</title>
<para>
Seeing what metadata went into creating the input signature
of a shared state (sstate) task can be a useful debugging
aid.
This information is available in signature information
(<filename>siginfo</filename>) files in
<ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_DIR'><filename>SSTATE_DIR</filename></ulink>.
For information on how to view and interpret information in
<filename>siginfo</filename> files, see the
"<ulink url='&YOCTO_DOCS_DEV_URL;#dev-viewing-task-variable-dependencies'>Viewing Task Variable Dependencies</ulink>"
section in the Yocto Project Development Tasks Manual.
</para>
</section>
<section id='concepts-invalidating-shared-state'>
<title>Invalidating Shared State</title>
<para>
The OpenEmbedded build system uses checksums and shared
state cache to avoid unnecessarily rebuilding tasks.
Collectively, this scheme is known as "shared state code."
</para>
<para>
As with all schemes, this one has some drawbacks.
It is possible that you could make implicit changes to your
code that the checksum calculations do not take into
account.
These implicit changes affect a task's output but do not
trigger the shared state code into rebuilding a recipe.
Consider an example during which a tool changes its output.
Assume that the output of <filename>rpmdeps</filename>
changes.
The result of the change should be that all the
<filename>package</filename> and
<filename>package_write_rpm</filename> shared state cache
items become invalid.
However, because the change to the output is
external to the code and therefore implicit,
the associated shared state cache items do not become
invalidated.
In this case, the build process uses the cached items
rather than running the task again.
Obviously, these types of implicit changes can cause
problems.
</para>
<para>
To avoid these problems during the build, you need to
understand the effects of any changes you make.
Realize that changes you make directly to a function
are automatically factored into the checksum calculation.
Thus, these explicit changes invalidate the associated
area of shared state cache.
However, you need to be aware of any implicit changes that
are not obvious changes to the code and could affect
the output of a given task.
</para>
<para>
When you identify an implicit change, you can easily
take steps to invalidate the cache and force the tasks
to run.
The steps you can take are as simple as changing a
function's comments in the source code.
For example, to invalidate package shared state files,
change the comment statements of
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
or the comments of one of the functions it calls.
Even though the change is purely cosmetic, it causes the
checksum to be recalculated and forces the OpenEmbedded
build system to run the task again.
<note>
For an example of a commit that makes a cosmetic
change to invalidate shared state, see this
<ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54'>commit</ulink>.
</note>
</para>
</section>
</section>
</section>
<section id='automatically-added-runtime-dependencies'>
<title>Automatically Added Runtime Dependencies</title>
<para>
The OpenEmbedded build system automatically adds common types of
runtime dependencies between packages, which means that you do not
need to explicitly declare the packages using
<ulink url='&YOCTO_DOCS_REF_URL;#var-RDEPENDS'><filename>RDEPENDS</filename></ulink>.
Three automatic mechanisms exist (<filename>shlibdeps</filename>,
<filename>pcdeps</filename>, and <filename>depchains</filename>)
that handle shared libraries, package configuration (pkg-config)
modules, and <filename>-dev</filename> and
<filename>-dbg</filename> packages, respectively.
For other types of runtime dependencies, you must manually declare
the dependencies.
<itemizedlist>
<listitem><para>
<filename>shlibdeps</filename>:
During the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
task of each recipe, all shared libraries installed by the
recipe are located.
For each shared library, the package that contains the
shared library is registered as providing the shared
library.
More specifically, the package is registered as providing
the
<ulink url='https://en.wikipedia.org/wiki/Soname'>soname</ulink>
of the library.
The resulting shared-library-to-package mapping
is saved globally in
<ulink url='&YOCTO_DOCS_REF_URL;#var-PKGDATA_DIR'><filename>PKGDATA_DIR</filename></ulink>
by the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-packagedata'><filename>do_packagedata</filename></ulink>
task.</para>
<para>Simultaneously, all executables and shared libraries
installed by the recipe are inspected to see what shared
libraries they link against.
For each shared library dependency that is found,
<filename>PKGDATA_DIR</filename> is queried to
see if some package (likely from a different recipe)
contains the shared library.
If such a package is found, a runtime dependency is added
from the package that depends on the shared library to the
package that contains the library.</para>
<para>The automatically added runtime dependency also
includes a version restriction.
This version restriction specifies that at least the
current version of the package that provides the shared
library must be used, as if
"<replaceable>package</replaceable> (>= <replaceable>version</replaceable>)"
had been added to <filename>RDEPENDS</filename>.
This forces an upgrade of the package containing the shared
library when installing the package that depends on the
library, if needed.</para>
<para>If you want to avoid a package being registered as
providing a particular shared library (e.g. because the library
is for internal use only), then add the library to
<ulink url='&YOCTO_DOCS_REF_URL;#var-PRIVATE_LIBS'><filename>PRIVATE_LIBS</filename></ulink>
inside the package's recipe.
</para></listitem>
<listitem><para>
<filename>pcdeps</filename>:
During the <filename>do_package</filename> task of each
recipe, all pkg-config modules
(<filename>*.pc</filename> files) installed by the recipe
are located.
For each module, the package that contains the module is
registered as providing the module.
The resulting module-to-package mapping is saved globally in
<filename>PKGDATA_DIR</filename> by the
<filename>do_packagedata</filename> task.</para>
<para>Simultaneously, all pkg-config modules installed by
the recipe are inspected to see what other pkg-config
modules they depend on.
A module is seen as depending on another module if it
contains a "Requires:" line that specifies the other module.
For each module dependency,
<filename>PKGDATA_DIR</filename> is queried to see if some
package contains the module.
If such a package is found, a runtime dependency is added
from the package that depends on the module to the package
that contains the module.
<note>
The <filename>pcdeps</filename> mechanism most often
infers dependencies between <filename>-dev</filename>
packages.
</note>
</para></listitem>
<listitem><para>
<filename>depchains</filename>:
If a package <filename>foo</filename> depends on a package
<filename>bar</filename>, then <filename>foo-dev</filename>
and <filename>foo-dbg</filename> are also made to depend on
<filename>bar-dev</filename> and
<filename>bar-dbg</filename>, respectively.
Taking the <filename>-dev</filename> packages as an
example, the <filename>bar-dev</filename> package might
provide headers and shared library symlinks needed by
<filename>foo-dev</filename>, which shows the need
for a dependency between the packages.</para>
<para>The dependencies added by
<filename>depchains</filename> are in the form of
<ulink url='&YOCTO_DOCS_REF_URL;#var-RRECOMMENDS'><filename>RRECOMMENDS</filename></ulink>.
<note>
By default, <filename>foo-dev</filename> also has an
<filename>RDEPENDS</filename>-style dependency on
<filename>foo</filename>, because the default value of
<filename>RDEPENDS_${PN}-dev</filename> (set in
<filename>bitbake.conf</filename>) includes
"${PN}".
</note></para>
<para>To ensure that the dependency chain is never broken,
<filename>-dev</filename> and <filename>-dbg</filename>
packages are always generated by default, even if the
packages turn out to be empty.
See the
<ulink url='&YOCTO_DOCS_REF_URL;#var-ALLOW_EMPTY'><filename>ALLOW_EMPTY</filename></ulink>
variable for more information.
</para></listitem>
</itemizedlist>
</para>
<para>
The <filename>do_package</filename> task depends on the
<filename>do_packagedata</filename> task of each recipe in
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPENDS'><filename>DEPENDS</filename></ulink>
through use of a
<filename>[</filename><ulink url='&YOCTO_DOCS_BB_URL;#variable-flags'><filename>deptask</filename></ulink><filename>]</filename>
declaration, which guarantees that the required
shared-library/module-to-package mapping information will be available
when needed as long as <filename>DEPENDS</filename> has been
correctly set.
</para>
</section>
<section id='fakeroot-and-pseudo'>
<title>Fakeroot and Pseudo</title>
<para>
Some tasks are easier to implement when allowed to perform certain
operations that are normally reserved for the root user (e.g.
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write*</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-rootfs'><filename>do_rootfs</filename></ulink>,
and
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-image'><filename>do_image*</filename></ulink>).
For example, the <filename>do_install</filename> task benefits
from being able to set the UID and GID of installed files to
arbitrary values.
</para>
<para>
One approach to allowing tasks to perform root-only operations
would be to require
<ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
to run as root.
However, this method is cumbersome and has security issues.
The approach that is actually used is to run tasks that benefit
from root privileges in a "fake" root environment.
Within this environment, the task and its child processes believe
that they are running as the root user, and see an internally
consistent view of the filesystem.
As long as generating the final output (e.g. a package or an image)
does not require root privileges, the fact that some earlier
steps ran in a fake root environment does not cause problems.
</para>
<para>
The capability to run tasks in a fake root environment is known as
"<ulink url='http://man.he.net/man1/fakeroot'>fakeroot</ulink>",
which is derived from the BitBake keyword/variable
flag that requests a fake root environment for a task.
</para>
<para>
In the
<ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>,
the program that implements fakeroot is known as Pseudo.
Pseudo overrides system calls by using the environment variable
<filename>LD_PRELOAD</filename>, which results in the illusion
of running as root.
To keep track of "fake" file ownership and permissions resulting
from operations that require root permissions, Pseudo uses
an SQLite 3 database.
This database is stored in
<filename>${</filename><ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink><filename>}/pseudo/files.db</filename>
for individual recipes.
Storing the database in a file as opposed to in memory
gives persistence between tasks and builds, which is not
accomplished using fakeroot.
<note><title>Caution</title>
If you add your own task that manipulates the same files or
directories as a fakeroot task, then that task also needs to
run under fakeroot.
Otherwise, the task cannot run root-only operations, and
cannot see the fake file ownership and permissions set by the
other task.
You need to also add a dependency on
<filename>virtual/fakeroot-native:do_populate_sysroot</filename>,
giving the following:
<literallayout class='monospaced'>
fakeroot do_mytask () {
...
}
do_mytask[depends] += "virtual/fakeroot-native:do_populate_sysroot"
</literallayout>
</note>
For more information, see the
<ulink url='&YOCTO_DOCS_BB_URL;#var-FAKEROOT'><filename>FAKEROOT*</filename></ulink>
variables in the BitBake User Manual.
You can also reference the
"<ulink url='http://www.ibm.com/developerworks/opensource/library/os-aapseudo1/index.html'>Pseudo</ulink>"
and
"<ulink url='https://github.com/wrpseudo/pseudo/wiki/WhyNotFakeroot'>Why Not Fakeroot?</ulink>"
articles for background information on Pseudo.
</para>
</section>
<section id="wayland">
<title>Wayland</title>
<para>
<ulink url='http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)'>Wayland</ulink>
is a computer display server protocol that
provides a method for compositing window managers to communicate
directly with applications and video hardware and expects them to
communicate with input hardware using other libraries.
Using Wayland with supporting targets can result in better control
over graphics frame rendering than an application might otherwise
achieve.
</para>
<para>
The Yocto Project provides the Wayland protocol libraries and the
reference
<ulink url='http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)#Weston'>Weston</ulink>
compositor as part of its release.
This section describes what you need to do to implement Wayland and
use the compositor when building an image for a supporting target.
</para>
<section id="wayland-support">
<title>Support</title>
<para>
The Wayland protocol libraries and the reference Weston
compositor ship as integrated packages in the
<filename>meta</filename> layer of the
<ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>.
Specifically, you can find the recipes that build both Wayland
and Weston at
<filename>meta/recipes-graphics/wayland</filename>.
</para>
<para>
You can build both the Wayland and Weston packages for use only
with targets that accept the
<ulink url='https://en.wikipedia.org/wiki/Mesa_(computer_graphics)'>Mesa 3D and Direct Rendering Infrastructure</ulink>,
which is also known as Mesa DRI.
This implies that you cannot build and use the packages if your
target uses, for example, the
<trademark class='registered'>Intel</trademark> Embedded Media
and Graphics Driver
(<trademark class='registered'>Intel</trademark> EMGD) that
overrides Mesa DRI.
<note>
Due to lack of EGL support, Weston 1.0.3 will not run
directly on the emulated QEMU hardware.
However, this version of Weston will run under X emulation
without issues.
</note>
</para>
</section>
<section id="enabling-wayland-in-an-image">
<title>Enabling Wayland in an Image</title>
<para>
To enable Wayland, you need to enable it to be built and enable
it to be included in the image.
</para>
<section id="enable-building">
<title>Building</title>
<para>
To cause Mesa to build the <filename>wayland-egl</filename>
platform and Weston to build Wayland with Kernel Mode
Setting
(<ulink url='https://wiki.archlinux.org/index.php/Kernel_Mode_Setting'>KMS</ulink>)
support, include the "wayland" flag in the
<ulink url="&YOCTO_DOCS_REF_URL;#var-DISTRO_FEATURES"><filename>DISTRO_FEATURES</filename></ulink>
statement in your <filename>local.conf</filename> file:
<literallayout class='monospaced'>
DISTRO_FEATURES_append = " wayland"
</literallayout>
<note>
If X11 has been enabled elsewhere, Weston will build
Wayland with X11 support
</note>
</para>
</section>
<section id="enable-installation-in-an-image">
<title>Installing</title>
<para>
To install the Wayland feature into an image, you must
include the following
<ulink url='&YOCTO_DOCS_REF_URL;#var-CORE_IMAGE_EXTRA_INSTALL'><filename>CORE_IMAGE_EXTRA_INSTALL</filename></ulink>
statement in your <filename>local.conf</filename> file:
<literallayout class='monospaced'>
CORE_IMAGE_EXTRA_INSTALL += "wayland weston"
</literallayout>
</para>
</section>
</section>
<section id="running-weston">
<title>Running Weston</title>
<para>
To run Weston inside X11, enabling it as described earlier and
building a Sato image is sufficient.
If you are running your image under Sato, a Weston Launcher
appears in the "Utility" category.
</para>
<para>
Alternatively, you can run Weston through the command-line
interpretor (CLI), which is better suited for development work.
To run Weston under the CLI, you need to do the following after
your image is built:
<orderedlist>
<listitem><para>
Run these commands to export
<filename>XDG_RUNTIME_DIR</filename>:
<literallayout class='monospaced'>
mkdir -p /tmp/$USER-weston
chmod 0700 /tmp/$USER-weston
export XDG_RUNTIME_DIR=/tmp/$USER-weston
</literallayout>
</para></listitem>
<listitem><para>
Launch Weston in the shell:
<literallayout class='monospaced'>
weston
</literallayout></para></listitem>
</orderedlist>
</para>
</section>
</section>
<section id="overview-licenses">
<title>Licenses</title>
<para>
This section describes the mechanism by which the
<ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>
tracks changes to licensing text.
The section also describes how to enable commercially licensed
recipes, which by default are disabled.
</para>
<para>
For information that can help you maintain compliance with
various open source licensing during the lifecycle of the product,
see the
"<ulink url='&YOCTO_DOCS_DEV_URL;#maintaining-open-source-license-compliance-during-your-products-lifecycle'>Maintaining Open Source License Compliance During Your Project's Lifecycle</ulink>"
section in the Yocto Project Development Tasks Manual.
</para>
<section id="usingpoky-configuring-LIC_FILES_CHKSUM">
<title>Tracking License Changes</title>
<para>
The license of an upstream project might change in the future.
In order to prevent these changes going unnoticed, the
<ulink url='&YOCTO_DOCS_REF_URL;#var-LIC_FILES_CHKSUM'><filename>LIC_FILES_CHKSUM</filename></ulink>
variable tracks changes to the license text. The checksums are
validated at the end of the configure step, and if the
checksums do not match, the build will fail.
</para>
<section id="usingpoky-specifying-LIC_FILES_CHKSUM">
<title>Specifying the <filename>LIC_FILES_CHKSUM</filename> Variable</title>
<para>
The <filename>LIC_FILES_CHKSUM</filename>
variable contains checksums of the license text in the
source code for the recipe.
Following is an example of how to specify
<filename>LIC_FILES_CHKSUM</filename>:
<literallayout class='monospaced'>
LIC_FILES_CHKSUM = "file://COPYING;md5=xxxx \
file://licfile1.txt;beginline=5;endline=29;md5=yyyy \
file://licfile2.txt;endline=50;md5=zzzz \
..."
</literallayout>
<note><title>Notes</title>
<itemizedlist>
<listitem><para>
When using "beginline" and "endline", realize
that line numbering begins with one and not
zero.
Also, the included lines are inclusive (i.e.
lines five through and including 29 in the
previous example for
<filename>licfile1.txt</filename>).
</para></listitem>
<listitem><para>
When a license check fails, the selected license
text is included as part of the QA message.
Using this output, you can determine the exact
start and finish for the needed license text.
</para></listitem>
</itemizedlist>
</note>
</para>
<para>
The build system uses the
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>
variable as the default directory when searching files
listed in <filename>LIC_FILES_CHKSUM</filename>.
The previous example employs the default directory.
</para>
<para>
Consider this next example:
<literallayout class='monospaced'>
LIC_FILES_CHKSUM = "file://src/ls.c;beginline=5;endline=16;\
md5=bb14ed3c4cda583abc85401304b5cd4e"
LIC_FILES_CHKSUM = "file://${WORKDIR}/license.html;md5=5c94767cedb5d6987c902ac850ded2c6"
</literallayout>
</para>
<para>
The first line locates a file in
<filename>${S}/src/ls.c</filename> and isolates lines five
through 16 as license text.
The second line refers to a file in
<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>.
</para>
<para>
Note that <filename>LIC_FILES_CHKSUM</filename> variable is
mandatory for all recipes, unless the
<filename>LICENSE</filename> variable is set to "CLOSED".
</para>
</section>
<section id="usingpoky-LIC_FILES_CHKSUM-explanation-of-syntax">
<title>Explanation of Syntax</title>
<para>
As mentioned in the previous section, the
<filename>LIC_FILES_CHKSUM</filename> variable lists all
the important files that contain the license text for the
source code.
It is possible to specify a checksum for an entire file,
or a specific section of a file (specified by beginning and
ending line numbers with the "beginline" and "endline"
parameters, respectively).
The latter is useful for source files with a license
notice header, README documents, and so forth.
If you do not use the "beginline" parameter, then it is
assumed that the text begins on the first line of the file.
Similarly, if you do not use the "endline" parameter,
it is assumed that the license text ends with the last
line of the file.
</para>
<para>
The "md5" parameter stores the md5 checksum of the license
text.
If the license text changes in any way as compared to
this parameter then a mismatch occurs.
This mismatch triggers a build failure and notifies
the developer.
Notification allows the developer to review and address
the license text changes.
Also note that if a mismatch occurs during the build,
the correct md5 checksum is placed in the build log and
can be easily copied to the recipe.
</para>
<para>
There is no limit to how many files you can specify using
the <filename>LIC_FILES_CHKSUM</filename> variable.
Generally, however, every project requires a few
specifications for license tracking.
Many projects have a "COPYING" file that stores the
license information for all the source code files.
This practice allows you to just track the "COPYING"
file as long as it is kept up to date.
<note><title>Tips</title>
<itemizedlist>
<listitem><para>
If you specify an empty or invalid "md5"
parameter,
<ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
returns an md5 mis-match
error and displays the correct "md5" parameter
value during the build.
The correct parameter is also captured in
the build log.
</para></listitem>
<listitem><para>
If the whole file contains only license text,
you do not need to use the "beginline" and
"endline" parameters.
</para></listitem>
</itemizedlist>
</note>
</para>
</section>
</section>
<section id="enabling-commercially-licensed-recipes">
<title>Enabling Commercially Licensed Recipes</title>
<para>
By default, the OpenEmbedded build system disables
components that have commercial or other special licensing
requirements.
Such requirements are defined on a
recipe-by-recipe basis through the
<ulink url='&YOCTO_DOCS_REF_URL;#var-LICENSE_FLAGS'><filename>LICENSE_FLAGS</filename></ulink>
variable definition in the affected recipe.
For instance, the
<filename>poky/meta/recipes-multimedia/gstreamer/gst-plugins-ugly</filename>
recipe contains the following statement:
<literallayout class='monospaced'>
LICENSE_FLAGS = "commercial"
</literallayout>
Here is a slightly more complicated example that contains both
an explicit recipe name and version (after variable expansion):
<literallayout class='monospaced'>
LICENSE_FLAGS = "license_${PN}_${PV}"
</literallayout>
In order for a component restricted by a
<filename>LICENSE_FLAGS</filename> definition to be enabled and
included in an image, it needs to have a matching entry in the
global
<ulink url='&YOCTO_DOCS_REF_URL;#var-LICENSE_FLAGS_WHITELIST'><filename>LICENSE_FLAGS_WHITELIST</filename></ulink>
variable, which is a variable typically defined in your
<filename>local.conf</filename> file.
For example, to enable the
<filename>poky/meta/recipes-multimedia/gstreamer/gst-plugins-ugly</filename>
package, you could add either the string
"commercial_gst-plugins-ugly" or the more general string
"commercial" to <filename>LICENSE_FLAGS_WHITELIST</filename>.
See the
"<link linkend='license-flag-matching'>License Flag Matching</link>"
section for a full
explanation of how <filename>LICENSE_FLAGS</filename> matching
works.
Here is the example:
<literallayout class='monospaced'>
LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly"
</literallayout>
Likewise, to additionally enable the package built from the
recipe containing
<filename>LICENSE_FLAGS = "license_${PN}_${PV}"</filename>,
and assuming that the actual recipe name was
<filename>emgd_1.10.bb</filename>, the following string would
enable that package as well as the original
<filename>gst-plugins-ugly</filename> package:
<literallayout class='monospaced'>
LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly license_emgd_1.10"
</literallayout>
As a convenience, you do not need to specify the complete
license string in the whitelist for every package.
You can use an abbreviated form, which consists
of just the first portion or portions of the license
string before the initial underscore character or characters.
A partial string will match any license that contains the
given string as the first portion of its license.
For example, the following whitelist string will also match
both of the packages previously mentioned as well as any other
packages that have licenses starting with "commercial" or
"license".
<literallayout class='monospaced'>
LICENSE_FLAGS_WHITELIST = "commercial license"
</literallayout>
</para>
<section id="license-flag-matching">
<title>License Flag Matching</title>
<para>
License flag matching allows you to control what recipes
the OpenEmbedded build system includes in the build.
Fundamentally, the build system attempts to match
<filename>LICENSE_FLAGS</filename> strings found in recipes
against <filename>LICENSE_FLAGS_WHITELIST</filename>
strings found in the whitelist.
A match causes the build system to include a recipe in the
build, while failure to find a match causes the build
system to exclude a recipe.
</para>
<para>
In general, license flag matching is simple.
However, understanding some concepts will help you
correctly and effectively use matching.
</para>
<para>
Before a flag
defined by a particular recipe is tested against the
contents of the whitelist, the expanded string
<filename>_${PN}</filename> is appended to the flag.
This expansion makes each
<filename>LICENSE_FLAGS</filename> value recipe-specific.
After expansion, the string is then matched against the
whitelist.
Thus, specifying
<filename>LICENSE_FLAGS = "commercial"</filename>
in recipe "foo", for example, results in the string
<filename>"commercial_foo"</filename>.
And, to create a match, that string must appear in the
whitelist.
</para>
<para>
Judicious use of the <filename>LICENSE_FLAGS</filename>
strings and the contents of the
<filename>LICENSE_FLAGS_WHITELIST</filename> variable
allows you a lot of flexibility for including or excluding
recipes based on licensing.
For example, you can broaden the matching capabilities by
using license flags string subsets in the whitelist.
<note>
When using a string subset, be sure to use the part of
the expanded string that precedes the appended
underscore character (e.g.
<filename>usethispart_1.3</filename>,
<filename>usethispart_1.4</filename>, and so forth).
</note>
For example, simply specifying the string "commercial" in
the whitelist matches any expanded
<filename>LICENSE_FLAGS</filename> definition that starts
with the string "commercial" such as "commercial_foo" and
"commercial_bar", which are the strings the build system
automatically generates for hypothetical recipes named
"foo" and "bar" assuming those recipes simply specify the
following:
<literallayout class='monospaced'>
LICENSE_FLAGS = "commercial"
</literallayout>
Thus, you can choose to exhaustively
enumerate each license flag in the whitelist and
allow only specific recipes into the image, or
you can use a string subset that causes a broader range of
matches to allow a range of recipes into the image.
</para>
<para>
This scheme works even if the
<filename>LICENSE_FLAGS</filename> string already
has <filename>_${PN}</filename> appended.
For example, the build system turns the license flag
"commercial_1.2_foo" into "commercial_1.2_foo_foo" and
would match both the general "commercial" and the specific
"commercial_1.2_foo" strings found in the whitelist, as
expected.
</para>
<para>
Here are some other scenarios:
<itemizedlist>
<listitem><para>
You can specify a versioned string in the recipe
such as "commercial_foo_1.2" in a "foo" recipe.
The build system expands this string to
"commercial_foo_1.2_foo".
Combine this license flag with a whitelist that has
the string "commercial" and you match the flag
along with any other flag that starts with the
string "commercial".
</para></listitem>
<listitem><para>
Under the same circumstances, you can use
"commercial_foo" in the whitelist and the build
system not only matches "commercial_foo_1.2" but
also matches any license flag with the string
"commercial_foo", regardless of the version.
</para></listitem>
<listitem><para>
You can be very specific and use both the
package and version parts in the whitelist (e.g.
"commercial_foo_1.2") to specifically match a
versioned recipe.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id="other-variables-related-to-commercial-licenses">
<title>Other Variables Related to Commercial Licenses</title>
<para>
Other helpful variables related to commercial
license handling exist and are defined in the
<filename>poky/meta/conf/distro/include/default-distrovars.inc</filename> file:
<literallayout class='monospaced'>
COMMERCIAL_AUDIO_PLUGINS ?= ""
COMMERCIAL_VIDEO_PLUGINS ?= ""
</literallayout>
If you want to enable these components, you can do so by
making sure you have statements similar to the following
in your <filename>local.conf</filename> configuration file:
<literallayout class='monospaced'>
COMMERCIAL_AUDIO_PLUGINS = "gst-plugins-ugly-mad \
gst-plugins-ugly-mpegaudioparse"
COMMERCIAL_VIDEO_PLUGINS = "gst-plugins-ugly-mpeg2dec \
gst-plugins-ugly-mpegstream gst-plugins-bad-mpegvideoparse"
LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly commercial_gst-plugins-bad commercial_qmmp"
</literallayout>
Of course, you could also create a matching whitelist
for those components using the more general "commercial"
in the whitelist, but that would also enable all the
other packages with <filename>LICENSE_FLAGS</filename>
containing "commercial", which you may or may not want:
<literallayout class='monospaced'>
LICENSE_FLAGS_WHITELIST = "commercial"
</literallayout>
</para>
<para>
Specifying audio and video plug-ins as part of the
<filename>COMMERCIAL_AUDIO_PLUGINS</filename> and
<filename>COMMERCIAL_VIDEO_PLUGINS</filename> statements
(along with the enabling
<filename>LICENSE_FLAGS_WHITELIST</filename>) includes the
plug-ins or components into built images, thus adding
support for media formats or components.
</para>
</section>
</section>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->
|