summaryrefslogtreecommitdiffstats
path: root/documentation/overview-manual/overview-concepts.xml
blob: 0a45cd72563fc95c68d75c3a494b9b27ab1a553f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >

<chapter id='overview-concepts'>
<title>Yocto Project Concepts</title>

    <para>
        This chapter describes concepts for various areas of the Yocto Project.
        Currently, topics include Yocto Project components, cross-development
        generation, shared state (sstate) cache, runtime dependencies,
        Pseudo and Fakeroot, x32 psABI, Wayland support, and Licenses.
    </para>

    <section id='yocto-project-components'>
        <title>Yocto Project Components</title>

        <para>
            The
            <ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
            task executor together with various types of configuration files
            form the OpenEmbedded Core.
            This section overviews these components by describing their use and
            how they interact.
        </para>

        <para>
            BitBake handles the parsing and execution of the data files.
            The data itself is of various types:
            <itemizedlist>
                <listitem><para>
                    <emphasis>Recipes:</emphasis>
                    Provides details about particular pieces of software.
                    </para></listitem>
                <listitem><para>
                    <emphasis>Class Data:</emphasis>
                    Abstracts common build information (e.g. how to build a
                    Linux kernel).
                    </para></listitem>
                <listitem><para>
                    <emphasis>Configuration Data:</emphasis>
                    Defines machine-specific settings, policy decisions, and
                    so forth.
                    Configuration data acts as the glue to bind everything
                    together.
                    </para></listitem>
            </itemizedlist>
        </para>

        <para>
            BitBake knows how to combine multiple data sources together and
            refers to each data source as a layer.
            For information on layers, see the
            "<ulink url='&YOCTO_DOCS_DEV_URL;#understanding-and-creating-layers'>Understanding and Creating Layers</ulink>"
            section of the Yocto Project Development Tasks Manual.
        </para>

        <para>
            Following are some brief details on these core components.
            For additional information on how these components interact during
            a build, see the
            "<link linkend='development-concepts'>Development Concepts</link>"
            section.
        </para>

        <section id='usingpoky-components-bitbake'>
            <title>BitBake</title>

            <para>
                BitBake is the tool at the heart of the OpenEmbedded build
                system and is responsible for parsing the
                <ulink url='&YOCTO_DOCS_REF_URL;#metadata'>Metadata</ulink>,
                generating a list of tasks from it, and then executing those
                tasks.
            </para>

            <para>
                This section briefly introduces BitBake.
                If you want more information on BitBake, see the
                <ulink url='&YOCTO_DOCS_BB_URL;#bitbake-user-manual'>BitBake User Manual</ulink>.
            </para>

            <para>
                To see a list of the options BitBake supports, use either of
                the following commands:
                <literallayout class='monospaced'>
     $ bitbake -h
     $ bitbake --help
                </literallayout>
            </para>

            <para>
                The most common usage for BitBake is
                <filename>bitbake <replaceable>packagename</replaceable></filename>,
                where <filename>packagename</filename> is the name of the
                package you want to build (referred to as the "target" in this
                manual).
                The target often equates to the first part of a recipe's
                filename (e.g. "foo" for a recipe named
                <filename>foo_1.3.0-r0.bb</filename>).
                So, to process the
                <filename>matchbox-desktop_1.2.3.bb</filename> recipe file, you
                might type the following:
                <literallayout class='monospaced'>
     $ bitbake matchbox-desktop
                </literallayout>
                Several different versions of
                <filename>matchbox-desktop</filename> might exist.
                BitBake chooses the one selected by the distribution
                configuration.
                You can get more details about how BitBake chooses between
                different target versions and providers in the
                "<ulink url='&YOCTO_DOCS_BB_URL;#bb-bitbake-preferences'>Preferences</ulink>"
                section of the BitBake User Manual.
            </para>

            <para>
                BitBake also tries to execute any dependent tasks first.
                So for example, before building
                <filename>matchbox-desktop</filename>, BitBake would build a
                cross compiler and <filename>glibc</filename> if they had not
                already been built.
            </para>

            <para>
                A useful BitBake option to consider is the
                <filename>-k</filename> or <filename>--continue</filename>
                option.
                This option instructs BitBake to try and continue processing
                the job as long as possible even after encountering an error.
                When an error occurs, the target that failed and those that
                depend on it cannot be remade.
                However, when you use this option other dependencies can
                still be processed.
            </para>
        </section>

        <section id='usingpoky-components-metadata'>
            <title>Metadata (Recipes)</title>

            <para>
                Files that have the <filename>.bb</filename> suffix are
                "recipes" files.
                In general, a recipe contains information about a single piece
                of software.
                This information includes the location from which to download
                the unaltered source, any source patches to be applied to that
                source (if needed), which special configuration options to
                apply, how to compile the source files, and how to package the
                compiled output.
            </para>

            <para>
                The term "package" is sometimes used to refer to recipes.
                However, since the word "package" is used for the packaged
                output from the OpenEmbedded build system (i.e.
                <filename>.ipk</filename> or <filename>.deb</filename> files),
                this document avoids using the term "package" when referring
                to recipes.
            </para>
        </section>

        <section id='metadata-virtual-providers'>
            <title>Metadata (Virtual Providers)</title>

            <para>
                Prior to the build, if you know that several different recipes
                provide the same functionality, you can use a virtual provider
                (i.e. <filename>virtual/*</filename>) as a placeholder for the
                actual provider.
                The actual provider would be determined at build time.
                In this case, you should add <filename>virtual/*</filename>
                to
                <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPENDS'><filename>DEPENDS</filename></ulink>,
                rather than listing the specified provider.
                You would select the actual provider by setting the
                <ulink url='&YOCTO_DOCS_REF_URL;#var-PREFERRED_PROVIDER'><filename>PREFERRED_PROVIDER</filename></ulink>
                variable (i.e.
                <filename>PREFERRED_PROVIDER_virtual/*</filename>)
                in the build's configuration file (e.g.
                <filename>poky/build/conf/local.conf</filename>).
                <note>
                    Any recipe that PROVIDES a <filename>virtual/*</filename>
                    item that is ultimately not selected through
                    <filename>PREFERRED_PROVIDER</filename> does not get built.
                    Preventing these recipes from building is usually the
                    desired behavior since this mechanism's purpose is to
                    select between mutually exclusive alternative providers.
                </note>
            </para>

            <para>
                The following lists specific examples of virtual providers:
                <itemizedlist>
                    <listitem><para>
                        <filename>virtual/mesa</filename>:
                        Provides <filename>gbm.pc</filename>.
                        </para></listitem>
                    <listitem><para>
                        <filename>virtual/egl</filename>:
                        Provides <filename>egl.pc</filename> and possibly
                        <filename>wayland-egl.pc</filename>.
                        </para></listitem>
                    <listitem><para>
                        <filename>virtual/libgl</filename>:
                        Provides <filename>gl.pc</filename> (i.e. libGL).
                        </para></listitem>
                    <listitem><para>
                        <filename>virtual/libgles1</filename>:
                        Provides <filename>glesv1_cm.pc</filename>
                        (i.e. libGLESv1_CM).
                        </para></listitem>
                    <listitem><para>
                        <filename>virtual/libgles2</filename>:
                        Provides <filename>glesv2.pc</filename>
                        (i.e. libGLESv2).
                        </para></listitem>
                </itemizedlist>
            </para>
        </section>

        <section id='usingpoky-components-classes'>
            <title>Classes</title>

            <para>
                Class files (<filename>.bbclass</filename>) contain information
                that is useful to share between
                <ulink url='&YOCTO_DOCS_REF_URL;#metadata'>Metadata</ulink>
                files.
                An example is the
                <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-autotools'><filename>autotools</filename></ulink>
                class, which contains common settings for any application that
                Autotools uses.
                The
                "<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes'>Classes</ulink>"
                chapter in the Yocto Project Reference Manual provides
                details about classes and how to use them.
            </para>
        </section>

        <section id='usingpoky-components-configuration'>
            <title>Configuration</title>

            <para>
                The configuration files (<filename>.conf</filename>) define
                various configuration variables that govern the OpenEmbedded
                build process.
                These files fall into several areas that define machine
                configuration options, distribution configuration options,
                compiler tuning options, general common configuration options,
                and user configuration options in
                <filename>local.conf</filename>, which is found in the
                <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>.
            </para>
        </section>
    </section>

    <section id="cross-development-toolchain-generation">
        <title>Cross-Development Toolchain Generation</title>

        <para>
            The Yocto Project does most of the work for you when it comes to
            creating
            <ulink url='&YOCTO_DOCS_REF_URL;#cross-development-toolchain'>cross-development toolchains</ulink>.
            This section provides some technical background on how
            cross-development toolchains are created and used.
            For more information on toolchains, you can also see the
            <ulink url='&YOCTO_DOCS_SDK_URL;'>Yocto Project Application Development and the Extensible Software Development Kit (eSDK)</ulink>
            manual.
        </para>

        <para>
            In the Yocto Project development environment, cross-development
            toolchains are used to build the image and applications that run
            on the target hardware.
            With just a few commands, the OpenEmbedded build system creates
            these necessary toolchains for you.
        </para>

        <para>
            The following figure shows a high-level build environment regarding
            toolchain construction and use.
        </para>

        <para>
            <imagedata fileref="figures/cross-development-toolchains.png" width="8in" depth="6in" align="center" />
        </para>

        <para>
            Most of the work occurs on the Build Host.
            This is the machine used to build images and generally work within the
            the Yocto Project environment.
            When you run BitBake to create an image, the OpenEmbedded build system
            uses the host <filename>gcc</filename> compiler to bootstrap a
            cross-compiler named <filename>gcc-cross</filename>.
            The <filename>gcc-cross</filename> compiler is what BitBake uses to
            compile source files when creating the target image.
            You can think of <filename>gcc-cross</filename> simply as an
            automatically generated cross-compiler that is used internally within
            BitBake only.
            <note>
                The extensible SDK does not use
                <filename>gcc-cross-canadian</filename> since this SDK
                ships a copy of the OpenEmbedded build system and the sysroot
                within it contains <filename>gcc-cross</filename>.
            </note>
        </para>

        <para>
            The chain of events that occurs when <filename>gcc-cross</filename> is
            bootstrapped is as follows:
            <literallayout class='monospaced'>
     gcc -> binutils-cross -> gcc-cross-initial -> linux-libc-headers -> glibc-initial -> glibc -> gcc-cross -> gcc-runtime
            </literallayout>
            <itemizedlist>
                <listitem><para>
                    <filename>gcc</filename>:
                    The build host's GNU Compiler Collection (GCC).
                    </para></listitem>
                <listitem><para>
                    <filename>binutils-cross</filename>:
                    The bare minimum binary utilities needed in order to run
                    the <filename>gcc-cross-initial</filename> phase of the
                    bootstrap operation.
                    </para></listitem>
                <listitem><para>
                    <filename>gcc-cross-initial</filename>:
                    An early stage of the bootstrap process for creating
                    the cross-compiler.
                    This stage builds enough of the <filename>gcc-cross</filename>,
                    the C library, and other pieces needed to finish building the
                    final cross-compiler in later stages.
                    This tool is a "native" package (i.e. it is designed to run on
                    the build host).
                    </para></listitem>
                <listitem><para>
                    <filename>linux-libc-headers</filename>:
                    Headers needed for the cross-compiler.
                    </para></listitem>
                <listitem><para>
                    <filename>glibc-initial</filename>:
                    An initial version of the Embedded GLIBC needed to bootstrap
                    <filename>glibc</filename>.
                    </para></listitem>
                <listitem><para>
                    <filename>gcc-cross</filename>:
                    The final stage of the bootstrap process for the
                    cross-compiler.
                    This stage results in the actual cross-compiler that
                    BitBake uses when it builds an image for a targeted
                    device.
                    <note>
                        If you are replacing this cross compiler toolchain
                        with a custom version, you must replace
                        <filename>gcc-cross</filename>.
                    </note>
                    This tool is also a "native" package (i.e. it is
                    designed to run on the build host).
                    </para></listitem>
                <listitem><para>
                    <filename>gcc-runtime</filename>:
                    Runtime libraries resulting from the toolchain bootstrapping
                    process.
                    This tool produces a binary that consists of the
                    runtime libraries need for the targeted device.
                    </para></listitem>
            </itemizedlist>
        </para>

        <para>
            You can use the OpenEmbedded build system to build an installer for
            the relocatable SDK used to develop applications.
            When you run the installer, it installs the toolchain, which contains
            the development tools (e.g., the
            <filename>gcc-cross-canadian</filename>),
            <filename>binutils-cross-canadian</filename>, and other
            <filename>nativesdk-*</filename> tools,
            which are tools native to the SDK (i.e. native to
            <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_ARCH'><filename>SDK_ARCH</filename></ulink>),
            you need to cross-compile and test your software.
            The figure shows the commands you use to easily build out this
            toolchain.
            This cross-development toolchain is built to execute on the
            <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>,
            which might or might not be the same
            machine as the Build Host.
            <note>
                If your target architecture is supported by the Yocto Project,
                you can take advantage of pre-built images that ship with the
                Yocto Project and already contain cross-development toolchain
                installers.
            </note>
        </para>

        <para>
            Here is the bootstrap process for the relocatable toolchain:
            <literallayout class='monospaced'>
     gcc -> binutils-crosssdk -> gcc-crosssdk-initial -> linux-libc-headers ->
        glibc-initial -> nativesdk-glibc -> gcc-crosssdk -> gcc-cross-canadian
            </literallayout>
            <itemizedlist>
                <listitem><para>
                    <filename>gcc</filename>:
                    The build host's GNU Compiler Collection (GCC).
                    </para></listitem>
                <listitem><para>
                    <filename>binutils-crosssdk</filename>:
                    The bare minimum binary utilities needed in order to run
                    the <filename>gcc-crosssdk-initial</filename> phase of the
                    bootstrap operation.
                    </para></listitem>
                <listitem><para>
                    <filename>gcc-crosssdk-initial</filename>:
                    An early stage of the bootstrap process for creating
                    the cross-compiler.
                    This stage builds enough of the
                    <filename>gcc-crosssdk</filename> and supporting pieces so that
                    the final stage of the bootstrap process can produce the
                    finished cross-compiler.
                    This tool is a "native" binary that runs on the build host.
                    </para></listitem>
                <listitem><para>
                    <filename>linux-libc-headers</filename>:
                    Headers needed for the cross-compiler.
                    </para></listitem>
                <listitem><para>
                    <filename>glibc-initial</filename>:
                    An initial version of the Embedded GLIBC needed to bootstrap
                    <filename>nativesdk-glibc</filename>.
                    </para></listitem>
                <listitem><para>
                    <filename>nativesdk-glibc</filename>:
                    The Embedded GLIBC needed to bootstrap the
                    <filename>gcc-crosssdk</filename>.
                    </para></listitem>
                <listitem><para>
                    <filename>gcc-crosssdk</filename>:
                    The final stage of the bootstrap process for the
                    relocatable cross-compiler.
                    The <filename>gcc-crosssdk</filename> is a transitory compiler
                    and never leaves the build host.
                    Its purpose is to help in the bootstrap process to create the
                    eventual relocatable <filename>gcc-cross-canadian</filename>
                    compiler, which is relocatable.
                    This tool is also a "native" package (i.e. it is
                    designed to run on the build host).
                    </para></listitem>
                <listitem><para>
                    <filename>gcc-cross-canadian</filename>:
                    The final relocatable cross-compiler.
                    When run on the
                    <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>,
                    this tool
                    produces executable code that runs on the target device.
                    Only one cross-canadian compiler is produced per architecture
                    since they can be targeted at different processor optimizations
                    using configurations passed to the compiler through the
                    compile commands.
                    This circumvents the need for multiple compilers and thus
                    reduces the size of the toolchains.
                    </para></listitem>
            </itemizedlist>
        </para>

        <note>
            For information on advantages gained when building a
            cross-development toolchain installer, see the
            "<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-building-an-sdk-installer'>Building an SDK Installer</ulink>"
            section in the Yocto Project Application Development and the
            Extensible Software Development Kit (eSDK) manual.
        </note>
    </section>

    <section id='x32'>
        <title>x32 psABI</title>

        <para>
            x32 processor-specific Application Binary Interface
            (<ulink url='https://software.intel.com/en-us/node/628948'>x32 psABI</ulink>)
            is a native 32-bit processor-specific ABI for
            <trademark class='registered'>Intel</trademark> 64 (x86-64)
            architectures.
            An ABI defines the calling conventions between functions in a
            processing environment.
            The interface determines what registers are used and what the sizes are
            for various C data types.
        </para>

        <para>
            Some processing environments prefer using 32-bit applications even
            when running on Intel 64-bit platforms.
            Consider the i386 psABI, which is a very old 32-bit ABI for Intel
            64-bit platforms.
            The i386 psABI does not provide efficient use and access of the
            Intel 64-bit processor resources, leaving the system underutilized.
            Now consider the x86_64 psABI.
            This ABI is newer and uses 64-bits for data sizes and program
            pointers.
            The extra bits increase the footprint size of the programs,
            libraries, and also increases the memory and file system size
            requirements.
            Executing under the x32 psABI enables user programs to utilize CPU
            and system resources more efficiently while keeping the memory
            footprint of the applications low.
            Extra bits are used for registers but not for addressing mechanisms.
        </para>

        <para>
            The Yocto Project supports the final specifications of x32 psABI
            as follows:
            <itemizedlist>
                <listitem><para>
                    You can create packages and images in x32 psABI format on
                    x86_64 architecture targets.
                    </para></listitem>
                <listitem><para>
                    You can successfully build recipes with the x32 toolchain.
                    </para></listitem>
                <listitem><para>
                    You can create and boot
                    <filename>core-image-minimal</filename> and
                    <filename>core-image-sato</filename> images.
                    </para></listitem>
                <listitem><para>
                    RPM Package Manager (RPM) support exists for x32 binaries.
                    </para></listitem>
                <listitem><para>
                    Support for large images exists.
                    </para></listitem>
            </itemizedlist>
        </para>

        <para>
            For steps on how to use x32 psABI, see the
            "<ulink url='&YOCTO_DOCS_DEV_URL;#using-x32-psabi'>Using x32 psABI</ulink>"
            section in the Yocto Project Development Tasks Manual.
        </para>
    </section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->