summaryrefslogtreecommitdiffstats
path: root/documentation/mega-manual/mega-manual.html
blob: 1b4419f3b9c67e995f5ae971b6f053e10fcac3db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title></title><link rel="stylesheet" href="mega-style.css" type="text/css" /><meta name="generator" content="DocBook XSL Stylesheets V1.75.2" /></head><body><div xml:lang="en" class="book" lang="en"><div class="titlepage"><hr /></div>

    <div class="article"><div class="titlepage"><hr /></div><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 90px"><td align="right"><img src="figures/yocto-project-transp.png" align="right" width="135" /></td></tr></table><div class="section" title="1. The Yocto Project Quick Start"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="fake-title"></a>1. The Yocto Project Quick Start</h2></div></div></div><p>Copyright © 2010-2012 Linux Foundation</p></div><div class="section" title="2. Welcome!"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="welcome"></a>2. Welcome!</h2></div></div></div><p>
        Welcome to the Yocto Project!  
        The Yocto Project is an open-source collaboration project focused on embedded Linux
        developers.
        Among other things, the Yocto Project uses a build system based on the Poky project
        to construct complete Linux images.
        The Poky project, in turn, draws from and contributes back to the OpenEmbedded project.
    </p><p>
        If you don't have a system that runs Linux and you want to give the Yocto Project a test run, 
        you might consider using the Yocto Project Build Appliance.
        The Build Appliance allows you to build and boot a custom embedded Linux image with the Yocto 
        Project using a non-Linux development system.  
        See the <a class="ulink" href="http://www.yoctoproject.org/documentation/build-appliance" target="_top">Yocto 
        Project Build Appliance</a> for more information.
    </p><p>
        On the other hand, if you know all about open-source development, Linux development environments, 
        Git source repositories and the like and you just want some quick information that lets you try out
        the Yocto Project on your Linux system, skip right to the 
        "<a class="link" href="#super-user" title="6. Super User">Super User</a>" section at the end of this quick start.
    </p><p>
        For the rest of you, this short document will give you some basic information about the environment and 
        let you experience it in its simplest form.  
        After reading this document, you will have a basic understanding of what the Yocto Project is
        and how to use some of its core components.  
        This document steps you through a simple example showing you how to build a small image 
        and run it using the Quick EMUlator (QEMU emulator).
    </p><p>
        For more detailed information on the Yocto Project, you should check out these resources:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Website:</em></span> The <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project Website</a>
                provides the latest builds, breaking news, full development documentation, and a rich Yocto 
                Project Development Community into which you can tap.
                </p></li><li class="listitem"><p><span class="emphasis"><em>FAQs:</em></span> Lists commonly asked Yocto Project questions and answers.
                You can find two FAQs: <a class="ulink" href="https://wiki.yoctoproject.org/wiki/FAQ" target="_top">Yocto Project FAQ</a> on 
                a wiki, and the 
                <a class="link" href="#faq" target="_top">FAQ</a> chapter in  
                the Yocto Project Reference Manual.
                </p></li><li class="listitem"><p><span class="emphasis"><em>Developer Screencast:</em></span> The 
                <a class="ulink" href="http://vimeo.com/36450321" target="_top">Getting Started with the Yocto Project - New
                Developer Screencast Tutorial</a> provides a 30-minute video for the user 
                new to the Yocto Project but familiar with Linux build systems.</p></li></ul></div><p>
    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
        Due to production processes, there could be differences between the Yocto Project
        documentation bundled in a released tarball and the 
        Yocto Project Quick Start on
        the <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project</a> website.
        For the latest version of this manual, see the manual on the website.
    </div></div><div class="section" title="3. Introducing the Yocto Project Development Environment"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="yp-intro"></a>3. Introducing the Yocto Project Development Environment</h2></div></div></div><p>
        The Yocto Project through the OpenEmbedded build system provides an open source development 
        environment targeting the ARM, MIPS, PowerPC and x86 architectures for a variety of 
        platforms including x86-64 and emulated ones.
        You can use components from the Yocto Project to design, develop, build, debug, simulate,
        and test the complete software stack using Linux, the X Window System, GNOME Mobile-based
        application frameworks, and Qt frameworks.
    </p><div class="mediaobject" align="center"><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="100%"><tr><td align="center"><img src="figures/yocto-environment.png" align="middle" width="100%" /></td></tr></table><div class="caption"><p>The Yocto Project Development Environment</p></div></div><p>
        Here are some highlights for the Yocto Project:
    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Provides a recent Linux kernel along with a set of system commands and libraries suitable for the embedded environment.</p></li><li class="listitem"><p>Makes available system components such as X11, Matchbox, GTK+, Pimlico, Clutter,
            GuPNP and Qt (among others) so you can create a richer user interface experience on 
            devices that use displays or have a GUI.
            For devices that don't have a GUI or display, you simply would not employ these 
            components.</p></li><li class="listitem"><p>Creates a focused and stable core compatible with the OpenEmbedded 
            project with which you can easily and reliably build and develop.</p></li><li class="listitem"><p>Fully supports a wide range of hardware and device emulation through the QEMU
            Emulator.</p></li></ul></div><p>
        The Yocto Project can generate images for many kinds of devices.  
        However, the standard example machines target QEMU full-system emulation for x86, x86-64, ARM, MIPS,
        and PPC-based architectures as well as specific hardware such as the 
        <span class="trademark">Intel</span>® Desktop Board DH55TC.  
        Because an image developed with the Yocto Project can boot inside a QEMU emulator, the 
        development environment works nicely as a test platform for developing embedded software.
    </p><p>
        Another important Yocto Project feature is the Sato reference User Interface. 
        This optional GNOME mobile-based UI, which is intended for devices with
        restricted screen sizes, sits neatly on top of a device using the 
        GNOME Mobile Stack and provides a well-defined user experience. 
        Implemented in its own layer, it makes it clear to developers how they can implement 
        their own user interface on top of a Linux image created with the Yocto Project.
    </p></div><div class="section" title="4. What You Need and How You Get It"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="yp-resources"></a>4. What You Need and How You Get It</h2></div></div></div><p>
        You need these things to develop in the Yocto Project environment:
    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>A host system running a supported Linux distribution (i.e. recent releases of
                Fedora, openSUSE, CentOS, and Ubuntu).
                If the host system supports multiple cores and threads, you can configure the 
                Yocto Project build system to decrease the time needed to build images
                significantly.
            </p></li><li class="listitem"><p>The right packages.</p></li><li class="listitem"><p>A release of the Yocto Project.</p></li></ul></div><div class="section" title="4.1. The Linux Distribution"><div class="titlepage"><div><div><h3 class="title"><a id="the-linux-distro"></a>4.1. The Linux Distribution</h3></div></div></div><p>
            The Yocto Project team is continually verifying more and more Linux 
            distributions with each release.
            In general, if you have the current release minus one of the following 
            distributions you should have no problems.
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Ubuntu</p></li><li class="listitem"><p>Fedora</p></li><li class="listitem"><p>openSUSE</p></li><li class="listitem"><p>CentOS</p></li></ul></div><p>
            For a list of the distributions under validation and their status, see the
            <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Distribution_Support" target="_top">Distribution
            Support</a> wiki page.
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                For notes about using the Yocto Project on a RHEL 4-based host, see the
                <a class="ulink" href="https://wiki.yoctoproject.org/wiki/BuildingOnRHEL4" target="_top">BuildingOnRHEL4</a>
                wiki page.
            </div><p>
            </p><p>
            The OpenEmbedded build system should be able to run on any modern distribution with Python 2.6 or 2.7.
            Earlier releases of Python are known to not work and the system does not support Python 3 at this time.
            This document assumes you are running one of the previously noted distributions on your Linux-based 
            host systems.
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
            If you attempt to use a distribution not in the above list, you may or may not have success - you 
            are venturing into untested territory.
            Refer to  
            <a class="ulink" href="http://www.openembedded.org/index.php?title=OEandYourDistro&amp;action=historysubmit&amp;diff=4309&amp;okdid=4225" target="_top">OE and Your Distro</a> and 
            <a class="ulink" href="http://www.openembedded.org/index.php?title=Required_software&amp;action=historysubmit&amp;diff=4311&amp;oldid=4251" target="_top">Required Software</a> 
            for information for other distributions used with the OpenEmbedded project, which might be
            a starting point for exploration.
            If you go down this path, you should expect problems.
            When you do, please go to <a class="ulink" href="http://bugzilla.yoctoproject.org" target="_top">Yocto Project Bugzilla</a>
            and submit a bug.
            We are interested in hearing about your experience.
        </p></div></div><div class="section" title="4.2. The Packages"><div class="titlepage"><div><div><h3 class="title"><a id="packages"></a>4.2. The Packages</h3></div></div></div><p>
            Packages and package installation vary depending on your development system.  
            In general, you need to have root access and then install the required packages.
            The next few sections show you how to get set up with the right packages for
            Ubuntu, Fedora, openSUSE, and CentOS.
        </p><div class="section" title="4.2.1. Ubuntu"><div class="titlepage"><div><div><h4 class="title"><a id="ubuntu"></a>4.2.1. Ubuntu</h4></div></div></div><p>
                The packages you need for a supported Ubuntu distribution are shown in the following command:
            </p><pre class="literallayout">
     $ sudo apt-get install sed wget subversion git-core coreutils \
     unzip texi2html texinfo libsdl1.2-dev docbook-utils fop gawk \
     python-pysqlite2 diffstat make gcc build-essential xsltproc \
     g++ desktop-file-utils chrpath libgl1-mesa-dev libglu1-mesa-dev \
     autoconf automake groff libtool xterm libxml-parser-perl dblatex
                </pre></div><div class="section" title="4.2.2. Fedora"><div class="titlepage"><div><div><h4 class="title"><a id="fedora"></a>4.2.2. Fedora</h4></div></div></div><p>
                The packages you need for a supported Fedora distribution are shown in the following
                commands:
            </p><pre class="literallayout">
     $ sudo yum groupinstall "development tools"
     $ sudo yum install python m4 make wget curl ftp tar bzip2 gzip \
     unzip perl texinfo texi2html diffstat openjade \
     docbook-style-dsssl sed docbook-style-xsl docbook-dtds fop libxslt \
     docbook-utils sed bc eglibc-devel ccache pcre pcre-devel quilt \
     groff linuxdoc-tools patch cmake \
     perl-ExtUtils-MakeMaker tcl-devel gettext chrpath ncurses apr \
     SDL-devel mesa-libGL-devel mesa-libGLU-devel gnome-doc-utils \
     autoconf automake libtool xterm dblatex
                </pre></div><div class="section" title="4.2.3. openSUSE"><div class="titlepage"><div><div><h4 class="title"><a id="opensuse"></a>4.2.3. openSUSE</h4></div></div></div><p>
                The packages you need for a supported openSUSE distribution are shown in the following 
                command:
            </p><pre class="literallayout">
     $ sudo zypper install python gcc gcc-c++ libtool fop \
     subversion git chrpath automake make wget xsltproc \
     diffstat texinfo freeglut-devel libSDL-devel dblatex
                </pre></div><div class="section" title="4.2.4. CentOS"><div class="titlepage"><div><div><h4 class="title"><a id="centos"></a>4.2.4. CentOS</h4></div></div></div><p>
                The packages you need for a supported CentOS distribution are shown in the following 
                commands:
            </p><pre class="literallayout">
     $ sudo yum -y groupinstall "development tools"
     $ sudo yum -y install tetex gawk sqlite-devel vim-common redhat-lsb xz \
       m4 make wget curl ftp tar bzip2 gzip python-devel \
       unzip perl texinfo texi2html diffstat openjade zlib-devel \
       docbook-style-dsssl sed docbook-style-xsl docbook-dtds \
       docbook-utils bc glibc-devel pcre pcre-devel \
       groff linuxdoc-tools patch cmake \
       tcl-devel gettext ncurses apr \
       SDL-devel mesa-libGL-devel mesa-libGLU-devel gnome-doc-utils \
       autoconf automake libtool xterm dblatex
                </pre><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
                Depending on the CentOS version you are using, other requirements and dependencies
                might exist. 
                For details, you should look at the CentOS sections on the 
                <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Poky/GettingStarted/Dependencies" target="_top">Poky/GettingStarted/Dependencies</a>
                wiki page.
            </p></div></div></div><div class="section" title="4.3. Yocto Project Release"><div class="titlepage"><div><div><h3 class="title"><a id="releases"></a>4.3. Yocto Project Release</h3></div></div></div><p>
            You can download the latest Yocto Project release by going to the 
            <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">Yocto Project Download page</a>.
            Just go to the page and click the "Yocto Downloads" link found in the "Download"
            navigation pane to the right to view all available Yocto Project releases. 
            Then, click the "Yocto Release" link for the release you want from the list to 
            begin the download. 
            Nightly and developmental builds are also maintained at
            <a class="ulink" href="http://autobuilder.yoctoproject.org/nightly/" target="_top">http://autobuilder.yoctoproject.org/nightly/</a>.  
            However, for this document a released version of Yocto Project is used.
        </p><p>
            You can also get the Yocto Project files you need by setting up (cloning in Git terms)
            a local copy of the <code class="filename">poky</code> Git repository on your host development 
            system. 
            Doing so allows you to contribute back to the Yocto Project project.
            For information on how to get set up using this method, see the 
            "<a class="link" href="#local-yp-release" target="_top">Yocto 
            Project Release</a>" item in the Yocto Project Development Manual.
        </p></div></div><div class="section" title="5. A Quick Test Run"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="test-run"></a>5. A Quick Test Run</h2></div></div></div><p>
        Now that you have your system requirements in order, you can give the Yocto Project a try.  
        This section presents some steps that let you do the following:
    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Build an image and run it in the QEMU emulator</p></li><li class="listitem"><p>Use a pre-built image and run it in the QEMU emulator</p></li></ul></div><div class="section" title="5.1. Building an Image"><div class="titlepage"><div><div><h3 class="title"><a id="building-image"></a>5.1. Building an Image</h3></div></div></div><p>
            In the development environment you will need to build an image whenever you change hardware 
            support, add or change system libraries, or add or change services that have dependencies.
        </p><div class="mediaobject" align="center"><img src="figures/building-an-image.png" align="middle" /><div class="caption"><p>Building an Image</p></div></div><p>
             Use the following commands to build your image.  
             The OpenEmbedded build process creates an entire Linux distribution, including the toolchain, 
             from source.
         </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
             The build process using Sato currently consumes about 50GB of disk space.
             To allow for variations in the build process and for future package expansion, we 
             recommend having at least 100GB of free disk space.
         </p></div><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
             By default, the build process searches for source code using a pre-determined order
             through a set of locations.
             If you encounter problems with the build process finding and downloading source code, see the 
             "<a class="link" href="#how-does-the-yocto-project-obtain-source-code-and-will-it-work-behind-my-firewall-or-proxy-server" target="_top">How does the OpenEmbedded build system obtain source code and will it work behind my
             firewall or proxy server?</a>" in the Yocto Project Reference Manual.
         </p></div><p>
             </p><pre class="literallayout">
     $ wget http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/poky-1.2+snapshot-8.0.tar.bz2
     $ tar xjf poky-1.2+snapshot-8.0.tar.bz2
     $ source poky-1.2+snapshot-8.0/oe-init-build-env poky-1.2+snapshot-8.0-build
             </pre><p>
         </p><div class="tip" title="Tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Tip</h3><p>
             To help conserve disk space during builds, you can add the following statement
             to your project's configuration file, which for this example
             is <code class="filename">poky-1.2+snapshot-8.0-build/conf/local.conf</code>.
             Adding this statement deletes the work directory used for building a package
             once the package is built.
             </p><pre class="literallayout">
     INHERIT += "rm_work"
             </pre><p>
         </p></div><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>In the previous example, the first command retrieves the Yocto Project
                 release tarball from the source repositories using the
                 <code class="filename">wget</code> command.
                 Alternatively, you can go to the 
                 <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">Yocto Project website's Downloads page</a>
                 to retrieve the tarball.</p></li><li class="listitem"><p>The second command extracts the files from the tarball and places 
                 them into a directory named <code class="filename">poky-1.2+snapshot-8.0</code> in the current 
                 directory.</p></li><li class="listitem"><p>The third command runs the Yocto Project environment setup script.
                 Running this script defines OpenEmbedded build environment settings needed to 
                 complete the build.
                 The script also creates the 
                 <a class="link" href="#build-directory" target="_top">build directory</a>,
                 which is <code class="filename">poky-1.2+snapshot-8.0-build</code> in this case.
                 After the script runs, your current working directory is set 
                 to the build directory.
                 Later, when the build completes, the build directory contains all the files 
                 created during the build.
                 </p></li></ul></div><p>
             Take some time to examine your <code class="filename">local.conf</code> file 
             in your project's configuration directory.
             The defaults in that file should work fine.
             However, there are some variables of interest at which you might look.
         </p><p>  
             By default, the target architecture for the build is <code class="filename">qemux86</code>, 
             which produces an image that can be used in the QEMU emulator and is targeted at an
             <span class="trademark">Intel</span>® 32-bit based architecture.
             To change this default, edit the value of the <code class="filename">MACHINE</code> variable 
             in the configuration file before launching the build.
         </p><p>
             Another couple of variables of interest are the 
             <a class="link" href="#var-BB_NUMBER_THREADS" target="_top"><code class="filename">BB_NUMBER_THREADS</code></a> and the 
             <a class="link" href="#var-PARALLEL_MAKE" target="_top"><code class="filename">PARALLEL_MAKE</code></a> variables.
             By default, these variables are commented out. 
             However, if you have a multi-core CPU you might want to uncomment
             the lines and set both variables equal to twice the number of your 
             host's processor cores.
             Setting these variables can significantly shorten your build time.
         </p><p>
            Another consideration before you build is the package manager used when creating 
            the image. 
            By default, the OpenEmbedded build system uses the RPM package manager.
            You can control this configuration by using the 
            <code class="filename"><a class="link" href="#var-PACKAGE_CLASSES" target="_top"><code class="filename">PACKAGE_CLASSES</code></a></code> variable.  
             For additional package manager selection information, see 
             "<a class="link" href="#ref-classes-package" target="_top">Packaging - <code class="filename">package*.bbclass</code></a>" 
             in the Yocto Project Reference Manual.
        </p><p>
             Continue with the following command to build an OS image for the target, which is 
             <code class="filename">core-image-sato</code> in this example.
             For information on the <code class="filename">-k</code> option use the 
             <code class="filename">bitbake --help</code> command or see the
             "<a class="link" href="#usingpoky-components-bitbake" target="_top">BitBake</a>" section in 
             the Yocto Project Reference Manual.
             </p><pre class="literallayout">
     $ bitbake -k core-image-sato
             </pre><p>
             </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
                 BitBake requires Python 2.6 or 2.7.  For more information on this requirement, 
                 see the 
                 <a class="link" href="#faq" target="_top">FAQ</a> in the Yocto Project Reference 
                 Manual.
             </p></div><p>
             The final command runs the image:
             </p><pre class="literallayout">
     $ runqemu qemux86
             </pre><p>
             </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
                 Depending on the number of processors and cores, the amount or RAM, the speed of your
                 Internet connection and other factors, the build process could take several hours the first
                 time you run it.
                 Subsequent builds run much faster since parts of the build are cached.
             </p></div><p>
         </p></div><div class="section" title="5.2. Using Pre-Built Binaries and QEMU"><div class="titlepage"><div><div><h3 class="title"><a id="using-pre-built"></a>5.2. Using Pre-Built Binaries and QEMU</h3></div></div></div><p>
            If hardware, libraries and services are stable, you can get started by using a pre-built binary 
            of the filesystem image, kernel, and toolchain and run it using the QEMU emulator.  
            This scenario is useful for developing application software.
        </p><div class="mediaobject" align="center"><img src="figures/using-a-pre-built-image.png" align="middle" /><div class="caption"><p>Using a Pre-Built Image</p></div></div><p>
            For this scenario, you need to do several things:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Install the appropriate stand-alone toolchain tarball.</p></li><li class="listitem"><p>Download the pre-built image that will boot with QEMU.  
                You need to be sure to get the QEMU image that matches your target machine’s 
                architecture (e.g. x86, ARM, etc.).</p></li><li class="listitem"><p>Download the filesystem image for your target machine's architecture.
                </p></li><li class="listitem"><p>Set up the environment to emulate the hardware and then start the QEMU emulator.
                </p></li></ul></div><div class="section" title="5.2.1. Installing the Toolchain"><div class="titlepage"><div><div><h4 class="title"><a id="installing-the-toolchain"></a>5.2.1. Installing the Toolchain</h4></div></div></div><p>
                You can download a tarball with the pre-built toolchain, which includes the 
                <code class="filename">runqemu</code> 
                script and support files, from the appropriate directory under
                <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/toolchain/" target="_top">http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/toolchain/</a>.  
                Toolchains are available for 32-bit and 64-bit development systems from the 
                <code class="filename">i686</code> and <code class="filename">x86-64</code> directories, respectively. 
                Each type of development system supports five target architectures.
                The names of the tarballs are such that a string representing the host system appears 
                first in the filename and then is immediately followed by a string representing
                the target architecture.
            </p><pre class="literallayout">
     poky-eglibc-&lt;<span class="emphasis"><em>host_system</em></span>&gt;-&lt;<span class="emphasis"><em>arch</em></span>&gt;-toolchain-gmae-&lt;<span class="emphasis"><em>release</em></span>&gt;.tar.bz2

     Where:
         &lt;<span class="emphasis"><em>host_system</em></span>&gt; is a string representing your development system: 
                i686 or x86_64.
       
         &lt;<span class="emphasis"><em>arch</em></span>&gt; is a string representing the target architecture: 
                i586, x86_64, powerpc, mips, or arm.
       
         &lt;<span class="emphasis"><em>release</em></span>&gt; is the version of Yocto Project.
            </pre><p>       
                For example, the following toolchain tarball is for a 64-bit development 
                host system and a 32-bit target architecture:
            </p><pre class="literallayout">
     poky-eglibc-x86_64-i586-toolchain-gmae-1.3.tar.bz2
            </pre><p>
                The toolchain tarballs are self-contained and must be installed into <code class="filename">/opt/poky</code>.
                The following commands show how you install the toolchain tarball given a 64-bit development 
                host system and a 32-bit target architecture.
                The example assumes the toolchain tarball is located in <code class="filename">~/toolchains/</code>.
                You must have your working directory set to root before unpacking the tarball:
            </p><p>
                </p><pre class="literallayout">
     $ cd /
     $ sudo tar -xvjf ~/toolchains/poky-eglibc-x86_64-i586-toolchain-gmae-1.3.tar.bz2
                </pre><p>
            </p><p>
                For more information on how to install tarballs, see the 
                "<a class="link" href="#using-an-existing-toolchain-tarball" target="_top">Using a Cross-Toolchain Tarball</a>" and 
                "<a class="link" href="#using-the-toolchain-from-within-the-build-tree" target="_top">Using BitBake and the Build Directory</a>" sections in the Yocto Project Application Developer's Guide.
            </p></div><div class="section" title="5.2.2. Downloading the Pre-Built Linux Kernel"><div class="titlepage"><div><div><h4 class="title"><a id="downloading-the-pre-built-linux-kernel"></a>5.2.2. Downloading the Pre-Built Linux Kernel</h4></div></div></div><p>
                You can download the pre-built Linux kernel suitable for running in the QEMU emulator from 
                <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines/qemu" target="_top">http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines/qemu</a>.
                Be sure to use the kernel that matches the architecture you want to simulate.
                Download areas exist for the five supported machine architectures:
                <code class="filename">qemuarm</code>, <code class="filename">qemumips</code>, <code class="filename">qemuppc</code>,
                <code class="filename">qemux86</code>, and <code class="filename">qemux86-64</code>.
            </p><p>  
                Most kernel files have one of the following forms:
                </p><pre class="literallayout">
     *zImage-qemu&lt;<span class="emphasis"><em>arch</em></span>&gt;.bin
     vmlinux-qemu&lt;<span class="emphasis"><em>arch</em></span>&gt;.bin

     Where:
         &lt;<span class="emphasis"><em>arch</em></span>&gt; is a string representing the target architecture: 
                x86, x86-64, ppc, mips, or arm.
                </pre><p>
            </p><p>
                You can learn more about downloading a Yocto Project kernel in the 
                "<a class="link" href="#local-kernel-files" target="_top">Yocto Project Kernel</a>" 
                bulleted item in the Yocto Project Development Manual.
            </p></div><div class="section" title="5.2.3. Downloading the Filesystem"><div class="titlepage"><div><div><h4 class="title"><a id="downloading-the-filesystem"></a>5.2.3. Downloading the Filesystem</h4></div></div></div><p>
                You can also download the filesystem image suitable for your target architecture from
                <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines/qemu" target="_top">http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines/qemu</a>.
                Again, be sure to use the filesystem that matches the architecture you want 
                to simulate.
            </p><p>
                The filesystem image has two tarball forms: <code class="filename">ext3</code> and 
                <code class="filename">tar</code>.
                You must use the <code class="filename">ext3</code> form when booting an image using the 
                QEMU emulator.
                The <code class="filename">tar</code> form can be flattened out in your host development system
                and used for build purposes with the Yocto Project.
                </p><pre class="literallayout">
     core-image-&lt;<span class="emphasis"><em>profile</em></span>&gt;-qemu&lt;<span class="emphasis"><em>arch</em></span>&gt;.ext3
     core-image-&lt;<span class="emphasis"><em>profile</em></span>&gt;-qemu&lt;<span class="emphasis"><em>arch</em></span>&gt;.tar.bz2

     Where:
         &lt;<span class="emphasis"><em>profile</em></span>&gt; is the filesystem image's profile:
                   lsb, lsb-dev, lsb-sdk, lsb-qt3, minimal, minimal-dev, sato, sato-dev, or sato-sdk.
                   For information on these types of image profiles, see the
                   "<a class="link" href="#ref-images" target="_top">Images</a>" chapter
                   in the Yocto Project Reference Manual.

         &lt;<span class="emphasis"><em>arch</em></span>&gt; is a string representing the target architecture: 
                x86, x86-64, ppc, mips, or arm.
                </pre><p>
            </p></div><div class="section" title="5.2.4. Setting Up the Environment and Starting the QEMU Emulator"><div class="titlepage"><div><div><h4 class="title"><a id="setting-up-the-environment-and-starting-the-qemu-emulator"></a>5.2.4. Setting Up the Environment and Starting the QEMU Emulator</h4></div></div></div><p>
                Before you start the QEMU emulator, you need to set up the emulation environment.
                The following command form sets up the emulation environment.
                </p><pre class="literallayout">
     $ source /opt/poky/1.3/environment-setup-&lt;<span class="emphasis"><em>arch</em></span>&gt;-poky-linux-&lt;<span class="emphasis"><em>if</em></span>&gt; 

     Where:
         &lt;<span class="emphasis"><em>arch</em></span>&gt; is a string representing the target architecture: 
                i586, x86_64, ppc603e, mips, or armv5te.

         &lt;<span class="emphasis"><em>if</em></span>&gt; is a string representing an embedded application binary interface.
              Not all setup scripts include this string.
                </pre><p>
            </p><p>
                Finally, this command form invokes the QEMU emulator 
                </p><pre class="literallayout">
     $ runqemu &lt;<span class="emphasis"><em>qemuarch</em></span>&gt; &lt;<span class="emphasis"><em>kernel-image</em></span>&gt; &lt;<span class="emphasis"><em>filesystem-image</em></span>&gt;

     Where:
         &lt;<span class="emphasis"><em>qemuarch</em></span>&gt; is a string representing the target architecture: qemux86, qemux86-64, 
                    qemuppc, qemumips, or qemuarm.

         &lt;<span class="emphasis"><em>kernel-image</em></span>&gt; is the architecture-specific kernel image.

         &lt;<span class="emphasis"><em>filesystem-image</em></span>&gt; is the .ext3 filesystem image.

                </pre><p>
            </p><p>
                Continuing with the example, the following two commands setup the emulation 
                environment and launch QEMU.
                This example assumes the root filesystem (<code class="filename">.ext3</code> file) and 
                the pre-built kernel image file both reside in your home directory. 
                The kernel and filesystem are for a 32-bit target architecture.
                </p><pre class="literallayout">
     $ cd $HOME
     $ source /opt/poky/1.3/environment-setup-i586-poky-linux 
     $ runqemu qemux86 bzImage-qemux86.bin \
     core-image-sato-qemux86.ext3
                </pre><p>
            </p><p>
                The environment in which QEMU launches varies depending on the filesystem image and on the 
                target architecture.  
                For example, if you source the environment for the ARM target 
                architecture and then boot the minimal QEMU image, the emulator comes up in a new 
                shell in command-line mode.  
                However, if you boot the SDK image, QEMU comes up with a GUI.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>Booting the PPC image results in QEMU launching in the same shell in 
                command-line mode.</div><p>
            </p></div></div></div><div class="section" title="6. Super User"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="super-user"></a>6. Super User 
</h2></div></div></div><p>
        This section 
        <sup>[<a id="id1482592" href="#ftn.id1482592" class="footnote">1</a>]</sup>
        gives you a very fast description of how to use the Yocto Project to build images 
        for a BeagleBoard xM starting from scratch. 
        The steps were performed on a 64-bit Ubuntu 10.04 system.
    </p><div class="section" title="6.1. Getting the Yocto Project"><div class="titlepage"><div><div><h3 class="title"><a id="getting-yocto"></a>6.1. Getting the Yocto Project</h3></div></div></div><p>
            Set up your <a class="link" href="#source-directory" target="_top">source directory</a>
            one of two ways:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Tarball:</em></span> 
                    Use if you want the latest stable release:
                    </p><pre class="literallayout">
     $ wget http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/poky-1.2+snapshot-8.0.tar.bz2
     $ tar xvjf poky-1.2+snapshot-8.0.tar.bz2
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Git Repository:</em></span>
                    Use if you want to work with cutting edge development content:
                    </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/poky
                    </pre></li></ul></div><p>
            The remainder of the section assumes the Git repository method.
        </p></div><div class="section" title="6.2. Setting Up Your Host"><div class="titlepage"><div><div><h3 class="title"><a id="setting-up-your-host"></a>6.2. Setting Up Your Host</h3></div></div></div><p>
            You need some packages for everything to work. 
            Rather than duplicate them here, look at the "<a class="link" href="#packages" title="4.2. The Packages">The Packages</a>"
            section earlier in this quick start.
        </p></div><div class="section" title="6.3. Initializing the Build Environment"><div class="titlepage"><div><div><h3 class="title"><a id="initializing-the-build-environment"></a>6.3. Initializing the Build Environment</h3></div></div></div><p>
            From the parent directory of local source directory, initialize your environment 
            and provide a meaningful 
            <a class="link" href="#build-directory" target="_top">build directory</a>
            name:
            </p><pre class="literallayout">
     $ source poky/oe-init-build-env mybuilds
            </pre><p>
            At this point, the <code class="filename">mybuilds</code> directory has been created for you 
            and it is now your current working directory.
            If you don't provide your own directory name it defaults to <code class="filename">build</code>.
        </p></div><div class="section" title="6.4. Configuring the local.conf File"><div class="titlepage"><div><div><h3 class="title"><a id="configuring-the-local.conf-file"></a>6.4. Configuring the local.conf File</h3></div></div></div><p>
            Initializing the build environment creates a <code class="filename">conf/local.conf</code> configuration file
            in the build directory.
            You need to manually edit this file to specify the machine you are building and to optimize
            your build time.
            Here are the minimal changes to make:
            </p><pre class="literallayout">
     BB_NUMBER_THREADS = "8"
     PARALLEL_MAKE = "-j 8"
     MACHINE ?= "beagleboard"
            </pre><p>
            Briefly, set <a class="link" href="#var-BB_NUMBER_THREADS" target="_top"><code class="filename">BB_NUMBER_THREADS</code></a> 
            and <a class="link" href="#var-PARALLEL_MAKE" target="_top"><code class="filename">PARALLEL_MAKE</code></a> to
            twice your host processor's number of cores.
        </p><p>
            A good deal that goes into a Yocto Project build is simply downloading all of the source 
            tarballs. 
            Maybe you have been working with another build system (OpenEmbedded, Angstrom, etc) for which 
            you've built up a sizable directory of source tarballs.
            Or perhaps someone else has such a directory for which you have read access. 
            If so, you can save time by adding the <code class="filename">PREMIRRORS</code>
            statement to your configuration file so that local directories are first checked for existing 
            tarballs before running out to the net:
            </p><pre class="literallayout">
     PREMIRRORS_prepend = "\
     git://.*/.* file:///home/you/dl/ \n \
     svn://.*/.* file:///home/you/dl/ \n \
     cvs://.*/.* file:///home/you/dl/ \n \
     ftp://.*/.* file:///home/you/dl/ \n \
     http://.*/.* file:///home/you/dl/ \n \
     https://.*/.* file:///home/you/dl/ \n"
            </pre><p>
        </p></div><div class="section" title="6.5. Building the Image"><div class="titlepage"><div><div><h3 class="title"><a id="building-the-image"></a>6.5. Building the Image</h3></div></div></div><p>
            At this point, you need to select an image to build for the BeagleBoard xM.
            If this is your first build using the Yocto Project, you should try the smallest and simplest
            image:
            </p><pre class="literallayout">
     $ bitbake core-image-minimal
            </pre><p>
            Now you just wait for the build to finish.
        </p><p>
            Here are some variations on the build process that could be helpful:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Fetch all the necessary sources without starting the build:
                    </p><pre class="literallayout">
     $ bitbake -c fetchall core-image-minimal
                    </pre><p>
                    This variation guarantees that you have all the sources for that BitBake target 
                    should you to disconnect from the net and want to do the build later offline.
                    </p></li><li class="listitem"><p>Specify to continue the build even if BitBake encounters an error.
                    By default, BitBake aborts the build when it encounters an error.
                    This command keeps a faulty build going:
                    </p><pre class="literallayout">
     $ bitbake -k core-image-minimal
                    </pre></li></ul></div><p>
        </p><p>
            Once you have your image, you can take steps to load and boot it on the target hardware.
        </p></div></div><div class="footnotes"><br /><hr width="100" align="left" /><div class="footnote"><p><sup>[<a id="ftn.id1482592" href="#id1482592" class="para">1</a>] </sup>
                Kudos and thanks to Robert P. J. Day of 
                <a class="ulink" href="http://www.crashcourse.ca" target="_top">CrashCourse</a> for providing the basis
                for this "expert" section with information from one of his
                <a class="ulink" href="http://www.crashcourse.ca/wiki/index.php/Yocto_Project_Quick_Start" target="_top">wiki</a>
                pages.
            </p></div></div></div>

<table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="100%"><tr><td align="left"><img src="figures/dev-title.png" align="left" width="100%" /></td></tr></table> 

    <div xml:lang="en" class="book" lang="en"><div class="titlepage"><div><div><h1 class="title"><a id="dev-manual"></a></h1></div><div><div class="authorgroup">
            <div class="author"><h3 class="author"><span class="firstname">Scott</span> <span class="surname">Rifenbark</span></h3><div class="affiliation">
                    <span class="orgname">Intel Corporation<br /></span>
                </div><code class="email">&lt;<a class="email" href="mailto:scott.m.rifenbark@intel.com">scott.m.rifenbark@intel.com</a>&gt;</code></div>
        </div></div><div><p class="copyright">Copyright © 2010-2012 Linux Foundation</p></div><div><div class="legalnotice" title="Legal Notice"><a id="id1482939"></a>
      <p>
          Permission is granted to copy, distribute and/or modify this document under 
          the terms of the <a class="ulink" href="http://creativecommons.org/licenses/by-sa/2.0/uk/" target="_top">
          Creative Commons Attribution-Share Alike 2.0 UK: England &amp; Wales</a> as published by 
          Creative Commons.
      </p>

      <div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
          Due to production processes, there could be differences between the Yocto Project
          documentation bundled in the release tarball and the
          Yocto Project Development Manual on
          the <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project</a> website.
          For the latest version of this manual, see the manual on the website.
      </div>
    </div></div><div><div class="revhistory"><table border="1" width="100%" summary="Revision history"><tr><th align="left" valign="top" colspan="2"><b>Revision History</b></th></tr>
            <tr><td align="left">Revision 1.1</td><td align="left">6 October 2011</td></tr><tr><td align="left" colspan="2">The initial document released with the Yocto Project 1.1 Release.</td></tr>
            <tr><td align="left">Revision 1.2</td><td align="left">April 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.2 Release.</td></tr>
            <tr><td align="left">Revision 1.3</td><td align="left">Sometime in 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.3 Release.</td></tr>
        </table></div></div></div><hr /></div>
    

    <div class="chapter" title="Chapter 1. The Yocto Project Development Manual"><div class="titlepage"><div><div><h2 class="title"><a id="dev-manual-intro"></a>Chapter 1. The Yocto Project Development Manual</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#intro">1.1. Introduction</a></span></dt><dt><span class="section"><a href="#what-this-manual-provides">1.2. What this Manual Provides</a></span></dt><dt><span class="section"><a href="#what-this-manual-does-not-provide">1.3. What this Manual Does Not Provide</a></span></dt><dt><span class="section"><a href="#other-information">1.4. Other Information</a></span></dt></dl></div><div class="section" title="1.1. Introduction"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="intro"></a>1.1. Introduction</h2></div></div></div><p>
            Welcome to the Yocto Project Development Manual!
            This manual gives you an idea of how to use the Yocto Project to develop embedded Linux 
            images and user-space applications to run on targeted devices. 
            Reading this manual gives you an overview of image, kernel, and user-space application development
            using the Yocto Project. 
            Because much of the information in this manual is general, it contains many references to other
            sources where you can find more detail.
            For example, detailed information on Git, repositories and open source in general
            can be found in many places.  
            Another example is how to get set up to use the Yocto Project, which our Yocto Project 
            Quick Start covers.
        </p><p>  
            The Yocto Project Development Manual, however, does provide detailed examples on how to create a 
            Board Support Package (BSP), change the kernel source code, and reconfigure the kernel.
            You can find this information in the appendices of the manual.
        </p></div><div class="section" title="1.2. What this Manual Provides"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="what-this-manual-provides"></a>1.2. What this Manual Provides</h2></div></div></div><p>
            The following list describes what you can get from this guide:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Information that lets you get set 
                    up to develop using the Yocto Project.</p></li><li class="listitem"><p>Information to help developers who are new to the open source environment 
                    and to the distributed revision control system Git, which the Yocto Project 
                    uses.</p></li><li class="listitem"><p>An understanding of common end-to-end development models and tasks.</p></li><li class="listitem"><p>Development case overviews for both system development and user-space 
                    applications.</p></li><li class="listitem"><p>An overview and understanding of the emulation environment used with 
                    the Yocto Project (QEMU).</p></li><li class="listitem"><p>An understanding of basic kernel architecture and concepts.</p></li><li class="listitem"><p>Many references to other sources of related information.</p></li></ul></div><p>
        </p></div><div class="section" title="1.3. What this Manual Does Not Provide"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="what-this-manual-does-not-provide"></a>1.3. What this Manual Does Not Provide</h2></div></div></div><p>
            This manual will not give you the following:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Step-by-step instructions if those instructions exist in other Yocto 
                    Project documentation.  
                    For example, the Yocto Project Development Manual contains detailed 
                    instruction on how to obtain and configure the 
                    <span class="trademark">Eclipse</span>™ Yocto Plug-in.</p></li><li class="listitem"><p>Reference material.  
                    This type of material resides in an appropriate reference manual.  
                    For example, system variables are documented in the 
                    Yocto Project Reference Manual.</p></li><li class="listitem"><p>Detailed public information that is not specific to the Yocto Project.  
                    For example, exhaustive information on how to use Git is covered better through the 
                    Internet than in this manual.</p></li></ul></div><p>
        </p></div><div class="section" title="1.4. Other Information"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="other-information"></a>1.4. Other Information</h2></div></div></div><p>
            Because this manual presents overview information for many different topics, you will
            need to supplement it with other information.
            The following list presents other sources of information you might find helpful:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>The <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project Website</a>:
                    </em></span> The home page for the Yocto Project provides lots of information on the project 
                    as well as links to software and documentation.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    Yocto Project Quick Start:</em></span> This short document lets you get started 
                    with the Yocto Project quickly and start building an image.</p></li><li class="listitem"><p><span class="emphasis"><em> 
                    Yocto Project Reference Manual:</em></span> This manual is a reference 
                    guide to the OpenEmbedded build system known as "Poky."  
                    The manual also contains a reference chapter on Board Support Package (BSP) 
                    layout.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    Yocto Project Application Developer's Guide:</em></span>
                    This guide provides information that lets you get going with the Application 
                    Development Toolkit (ADT) and stand-alone cross-development toolchains to 
                    develop projects using the Yocto Project.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    Yocto Project Board Support Package (BSP) Developer's Guide:</em></span>
                    This guide defines the structure for BSP components.  
                    Having a commonly understood structure encourages standardization.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    Yocto Project Kernel Architecture and Use Manual:</em></span>
                    This manual describes the architecture of the Yocto Project kernel and provides 
                    some work flow examples.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://www.youtube.com/watch?v=3ZlOu-gLsh0" target="_top">
                    Eclipse IDE Yocto Plug-in</a>:</em></span> A step-by-step instructional video that
                    demonstrates how an application developer uses Yocto Plug-in features within 
                    the Eclipse IDE.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="https://wiki.yoctoproject.org/wiki/FAQ" target="_top">FAQ</a>:</em></span>
                    A list of commonly asked questions and their answers.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://www.yoctoproject.org/download/yocto/yocto-project-1.1-release-notes-poky-8.0" target="_top">
                    Release Notes</a>:</em></span> Features, updates and known issues for the current 
                    release of the Yocto Project.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://www.yoctoproject.org/projects/hob" target="_top">
                    Hob</a>:</em></span> A graphical user interface for BitBake. 
                    Hob's primary goal is to enable a user to perform common tasks more easily.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://www.yoctoproject.org/documentation/build-appliance" target="_top">
                    Build Appliance</a>:</em></span> A bootable custom embedded Linux image you can 
                    either build using a non-Linux development system (VMware applications) or download 
                    from the Yocto Project website.
                    See the <a class="ulink" href="http://www.yoctoproject.org/documentation/build-appliance" target="_top">Build Appliance</a>
                    page for more information.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://bugzilla.yoctoproject.org" target="_top">Bugzilla</a>:</em></span>
                    The bug tracking application the Yocto Project uses.
                    If you find problems with the Yocto Project, you should report them using this
                    application.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    Yocto Project Mailing Lists:</em></span> To subscribe to the Yocto Project mailing 
                    lists, click on the following URLs and follow the instructions:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="circle"><li class="listitem"><p><a class="ulink" href="http://lists.yoctoproject.org/listinfo/yocto" target="_top">http://lists.yoctoproject.org/listinfo/yocto</a> for a 
                            Yocto Project Discussions mailing list.</p></li><li class="listitem"><p><a class="ulink" href="http://lists.yoctoproject.org/listinfo/poky" target="_top">http://lists.yoctoproject.org/listinfo/poky</a> for a 
                            Yocto Project Discussions mailing list about the Poky build system.</p></li><li class="listitem"><p><a class="ulink" href="http://lists.yoctoproject.org/listinfo/yocto-announce" target="_top">http://lists.yoctoproject.org/listinfo/yocto-announce</a>
                            for a mailing list to receive official Yocto Project announcements for developments and
                            as well as Yocto Project milestones.</p></li></ul></div></li><li class="listitem"><p><span class="emphasis"><em>Internet Relay Chat (IRC):</em></span>
                    Two IRC channels on freenode are available 
                    for Yocto Project and Poky discussions: <code class="filename">#yocto</code> and 
                    <code class="filename">#poky</code>, respectively.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://o-hand.com" target="_top">OpenedHand</a>:</em></span>
                    The company that initially developed the Poky project, which is the basis
                    for the OpenEmbedded build system used by the Yocto Project.
                    OpenedHand was acquired by Intel Corporation in 2008.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://www.intel.com/" target="_top">Intel Corporation</a>:</em></span>
                    A multinational semiconductor chip manufacturer company whose Software and 
                    Services Group created and supports the Yocto Project.
                    Intel acquired OpenedHand in 2008.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://www.openembedded.org" target="_top">OpenEmbedded</a>:</em></span>
                    The build system used by the Yocto Project. 
                    This project is the upstream, generic, embedded distribution from which the Yocto 
                    Project derives its build system (Poky) from and to which it contributes.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://developer.berlios.de/projects/bitbake/" target="_top">
                    BitBake</a>:</em></span> The tool used by the OpenEmbedded build system 
                    to process project metadata.</p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">
                    BitBake User Manual</a>:</em></span> A comprehensive guide to the BitBake tool.
                    </p></li><li class="listitem"><p><span class="emphasis"><em>
                    <a class="ulink" href="http://wiki.qemu.org/Index.html" target="_top">QEMU</a>:
                    </em></span> An open-source machine emulator and virtualizer.</p></li></ul></div><p>
        </p></div></div>

    <div class="chapter" title="Chapter 2. Getting Started with the Yocto Project"><div class="titlepage"><div><div><h2 class="title"><a id="dev-manual-start"></a>Chapter 2. Getting Started with the Yocto Project</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#introducing-the-yocto-project">2.1. Introducing the Yocto Project</a></span></dt><dt><span class="section"><a href="#getting-setup">2.2. Getting Set Up</a></span></dt><dt><span class="section"><a href="#building-images">2.3. Building Images</a></span></dt><dt><span class="section"><a href="#using-pre-built-binaries-and-qemu">2.4. Using Pre-Built Binaries and QEMU</a></span></dt></dl></div><p>
    This chapter introduces the Yocto Project and gives you an idea of what you need to get started.  
    You can find enough information to set up your development host and build or use images for 
    hardware supported by the Yocto Project by reading the 
    Yocto Project Quick Start.
</p><p>
    The remainder of this chapter summarizes what is in the Yocto Project Quick Start and provides 
    some higher-level concepts you might want to consider.
</p><div class="section" title="2.1. Introducing the Yocto Project"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="introducing-the-yocto-project"></a>2.1. Introducing the Yocto Project</h2></div></div></div><p>
        The Yocto Project is an open-source collaboration project focused on embedded Linux development.  
        The project currently provides a build system, which is 
        referred to as the OpenEmbedded build system in the Yocto Project documentation.
        The Yocto Project provides various ancillary tools suitable for the embedded developer  
        and also features the Sato reference User Interface, which is optimized for 
        stylus driven, low-resolution screens.
    </p><p>
        You can use the OpenEmbedded build system, which uses 
        <a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">BitBake</a>, to develop complete Linux 
        images and associated user-space applications for architectures based on ARM, MIPS, PowerPC, 
        x86 and x86-64.  
        While the Yocto Project does not provide a strict testing framework,
        it does provide or generate for you artifacts that let you perform target-level and 
        emulated testing and debugging.  
        Additionally, if you are an <span class="trademark">Eclipse</span>™
        IDE user, you can install an Eclipse Yocto Plug-in to allow you to 
        develop within that familiar environment.
    </p></div><div class="section" title="2.2. Getting Set Up"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="getting-setup"></a>2.2. Getting Set Up</h2></div></div></div><p>
        Here is what you need to get set up to use the Yocto Project:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Host System:</em></span>  You should have a reasonably current 
                Linux-based host system.
                You will have the best results with a recent release of Fedora, 
                OpenSUSE, Ubuntu, or CentOS as these releases are frequently tested against the Yocto Project
                and officially supported.  
                You should also have about 100 gigabytes of free disk space for building images.
                </p></li><li class="listitem"><p><span class="emphasis"><em>Packages:</em></span>  The OpenEmbedded build system
                requires certain packages exist on your development system (e.g. Python 2.6 or 2.7).  
                See "<a class="link" href="#packages" target="_top">The Packages</a>" 
                section in the Yocto Project Quick Start for the exact package
                requirements and the installation commands to install them 
                for the supported distributions.</p></li><li class="listitem"><p><a id="local-yp-release"></a><span class="emphasis"><em>Yocto Project Release:</em></span>  
                You need a release of the Yocto Project.  
                You set up a with local <a class="link" href="#source-directory">source directory</a>
                one of two ways depending on whether you 
                are going to contribute back into the Yocto Project or not.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    Regardless of the method you use, this manual refers to the resulting local
                    hierarchical set of files as the "source directory."
                </div><p>
                </p><div class="itemizedlist"><ul class="itemizedlist" type="circle"><li class="listitem"><p><span class="emphasis"><em>Tarball Extraction:</em></span>  If you are not going to contribute 
                        back into the Yocto Project, you can simply download a Yocto Project release you want 
                        from the website’s <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">download page</a>.
                        Once you have the tarball, just extract it into a directory of your choice.</p><p>For example, the following command extracts the Yocto Project 1.3 
                        release tarball 
                        into the current working directory and sets up the local source directory
                        with a top-level folder named <code class="filename">poky-1.2+snapshot-8.0</code>:
                        </p><pre class="literallayout">
     $ tar xfj poky-1.2+snapshot-8.0.tar.bz2
                        </pre><p>This method does not produce a local Git repository. 
                        Instead, you simply end up with a snapshot of the release.</p></li><li class="listitem"><p><span class="emphasis"><em>Git Repository Method:</em></span>  If you are going to be contributing
                        back into the Yocto Project or you simply want to keep up
                        with the latest developments, you should use Git commands to set up a local
                        Git repository of the upstream <code class="filename">poky</code> source repository.
                        Doing so creates a repository with a complete history of changes and allows 
                        you to easily submit your changes upstream to the project.
                        Because you cloned the repository, you have access to all the Yocto Project development
                        branches and tag names used in the upstream repository.</p><p>The following transcript shows how to clone the <code class="filename">poky</code>  
                        Git repository into the current working directory.
                        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>You can view the Yocto Project Source Repositories at
                        <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a></div><p>  
                        The command creates the local repository in a directory named <code class="filename">poky</code>.
                        For information on Git used within the Yocto Project, see the
                        "<a class="link" href="#git" title="3.6. Git">Git</a>" section.
                        </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/poky
     Initialized empty Git repository in /home/scottrif/poky/.git/
     remote: Counting objects: 141863, done.
     remote: Compressing objects: 100% (38624/38624), done.
     remote: Total 141863 (delta 99661), reused 141816 (delta 99614)
     Receiving objects: 100% (141863/141863), 76.64 MiB | 126 KiB/s, done.
     Resolving deltas: 100% (99661/99661), done.
                        </pre><p>For another example of how to set up your own local Git repositories, see this
                        <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Transcript:_from_git_checkout_to_meta-intel_BSP" target="_top">
                        wiki page</a>, which describes how to create both <code class="filename">poky</code>
                        and <code class="filename">meta-intel</code> Git repositories.</p></li></ul></div></li><li class="listitem"><p><a id="local-kernel-files"></a><span class="emphasis"><em>Yocto Project Kernel:</em></span>  
                If you are going to be making modifications to a supported Yocto Project kernel, you 
                need to establish local copies of the source.
                You can find Git repositories of supported Yocto Project Kernels organized under
                "Yocto Project Linux Kernel" in the Yocto Project Source Repositories at
                <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a>.</p><p>This setup involves creating a bare clone of the Yocto Project kernel and then 
                copying that cloned repository.
                You can create the bare clone and the copy of the bare clone anywhere you like.
                For simplicity, it is recommended that you create these structures outside of the 
                source directory (usually <code class="filename">poky</code>).</p><p>As an example, the following transcript shows how to create the bare clone
                of the <code class="filename">linux-yocto-3.2</code> kernel and then create a copy of 
                that clone.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>When you have a local Yocto Project kernel Git repository, you can 
                reference that repository rather than the upstream Git repository as 
                part of the <code class="filename">clone</code> command.
                Doing so can speed up the process.</div><p>In the following example, the bare clone is named 
                <code class="filename">linux-yocto-3.2.git</code>, while the 
                copy is named <code class="filename">my-linux-yocto-3.2-work</code>: 
                </p><pre class="literallayout">
     $ git clone --bare git://git.yoctoproject.org/linux-yocto-3.2 linux-yocto-3.2.git
     Initialized empty Git repository in /home/scottrif/linux-yocto-3.2.git/
     remote: Counting objects: 2468027, done.
     remote: Compressing objects: 100% (392255/392255), done.
     remote: Total 2468027 (delta 2071693), reused 2448773 (delta 2052498)
     Receiving objects: 100% (2468027/2468027), 530.46 MiB | 129 KiB/s, done.
     Resolving deltas: 100% (2071693/2071693), done.
                </pre><p>Now create a clone of the bare clone just created:
                </p><pre class="literallayout">
     $ git clone linux-yocto-3.2.git my-linux-yocto-3.2-work
     Initialized empty Git repository in /home/scottrif/my-linux-yocto-3.2-work/.git/
     Checking out files: 100% (37619/37619), done.
                </pre></li><li class="listitem"><p><a id="poky-extras-repo"></a><span class="emphasis"><em>
                The <code class="filename">poky-extras</code> Git Repository</em></span>:
                The <code class="filename">poky-extras</code> Git repository contains metadata needed 
                only if you are modifying and building the kernel image.
                In particular, it contains the kernel BitBake append (<code class="filename">.bbappend</code>)
                files that you 
                edit to point to your locally modified kernel source files and to build the kernel
                image. 
                Pointing to these local files is much more efficient than requiring a download of the 
                kernel's source files from upstream each time you make changes to the kernel.</p><p>You can find the <code class="filename">poky-extras</code> Git Repository in the 
                "Yocto Metadata Layers" area of the Yocto Project Source Repositories at 
                <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a>.
                It is good practice to create this Git repository inside the source directory.</p><p>Following is an example that creates the <code class="filename">poky-extras</code> Git 
                repository inside the source directory, which is named <code class="filename">poky</code> 
                in this case:
                </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/poky-extras poky-extras
     Initialized empty Git repository in /home/scottrif/poky/poky-extras/.git/
     remote: Counting objects: 618, done.
     remote: Compressing objects: 100% (558/558), done.
     remote: Total 618 (delta 192), reused 307 (delta 39)
     Receiving objects: 100% (618/618), 526.26 KiB | 111 KiB/s, done.
     Resolving deltas: 100% (192/192), done.
                </pre></li><li class="listitem"><p><a id="supported-board-support-packages-(bsps)"></a><span class="emphasis"><em>Supported Board 
                Support Packages (BSPs):</em></span>  
                The Yocto Project provides a layer called <code class="filename">meta-intel</code> and 
                it is maintained in its own separate Git repository.
                The <code class="filename">meta-intel</code> layer contains many supported 
                <a class="link" href="#bsp-layers" target="_top">BSP Layers</a>.</p><p>Similar considerations exist for setting up the <code class="filename">meta-intel</code>
                layer.  
                You can get set up for BSP development one of two ways: tarball extraction or
                with a local Git repository.
                It is a good idea to use the same method that you used to set up the source directory.
                Regardless of the method you use, the Yocto Project uses the following BSP layer 
                naming scheme:
                </p><pre class="literallayout"> 
     meta-&lt;BSP_name&gt; 
                </pre><p>
                where &lt;BSP_name&gt; is the recognized BSP name.
                Here are some examples:
                </p><pre class="literallayout">
     meta-crownbay
     meta-emenlow
     meta-n450
                </pre><p>
                See the
                "<a class="link" href="#bsp-layers" target="_top">BSP Layers</a>"
                section in the Yocto Project Board Support Package (BSP) Developer's Guide for more
                information on BSP Layers.
                </p><div class="itemizedlist"><ul class="itemizedlist" type="circle"><li class="listitem"><p><span class="emphasis"><em>Tarball Extraction:</em></span>  You can download any released 
                        BSP tarball from the same 
                        <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">download site</a> used 
                        to get the Yocto Project release.  
                        Once you have the tarball, just extract it into a directory of your choice.
                        Again, this method just produces a snapshot of the BSP layer in the form
                        of a hierarchical directory structure.</p></li><li class="listitem"><p><span class="emphasis"><em>Git Repository Method:</em></span>  If you are working 
                        with a local Git repository for your source directory, you should also use this method 
                        to set up the <code class="filename">meta-intel</code> Git repository.
                        You can locate the <code class="filename">meta-intel</code> Git repository in the 
                        "Yocto Metadata Layers" area of the Yocto Project Source Repositories at
                        <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a>.</p><p>Typically, you set up the <code class="filename">meta-intel</code> Git repository inside
                        the source directory.
                        For example, the following transcript shows the steps to clone the 
                        <code class="filename">meta-intel</code>
                        Git repository inside the local <code class="filename">poky</code> Git repository.
                        </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/meta-intel.git
     Initialized empty Git repository in /home/scottrif/poky/meta-intel/.git/
     remote: Counting objects: 3380, done.
     remote: Compressing objects: 100% (2750/2750), done.
     remote: Total 3380 (delta 1689), reused 227 (delta 113)
     Receiving objects: 100% (3380/3380), 1.77 MiB | 128 KiB/s, done.
     Resolving deltas: 100% (1689/1689), done.
                        </pre><p>The same  
                        <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Transcript:_from_git_checkout_to_meta-intel_BSP" target="_top">
                        wiki page</a> referenced earlier covers how to 
                        set up the <code class="filename">meta-intel</code> Git repository.</p></li></ul></div></li><li class="listitem"><p><span class="emphasis"><em>Eclipse Yocto Plug-in:</em></span>  If you are developing 
                applications using the Eclipse Integrated Development Environment (IDE),
                you will need this plug-in.  
                See the 
                "<a class="link" href="#setting-up-the-eclipse-ide" title="5.2.2.1. Setting Up the Eclipse IDE">Setting up the Eclipse IDE</a>"
                section for more information.</p></li></ul></div><p>
    </p></div><div class="section" title="2.3. Building Images"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="building-images"></a>2.3. Building Images</h2></div></div></div><p>
        The build process creates an entire Linux distribution, including the toolchain, from source.  
        For more information on this topic, see the 
        "<a class="link" href="#building-image" target="_top">Building an Image</a>"
        section in the Yocto Project Quick Start.
    </p><p>
        The build process is as follows:
        </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Make sure you have set up the source directory described in the 
                previous section.</p></li><li class="listitem"><p>Initialize the build environment by sourcing a build environment 
                script.</p></li><li class="listitem"><p>Optionally ensure the <code class="filename">conf/local.conf</code> configuration file,
                which is found in the 
                <a class="link" href="#build-directory">build directory</a>, 
                is set up how you want it.  
                This file defines many aspects of the build environment including 
                the target machine architecture through the 
                <code class="filename"><a class="link" href="#var-MACHINE" target="_top">MACHINE</a></code> variable, 
                the development machine's processor use through the 
                <code class="filename"><a class="link" href="#var-BB_NUMBER_THREADS" target="_top">BB_NUMBER_THREADS</a></code> and 
                <code class="filename"><a class="link" href="#var-PARALLEL_MAKE" target="_top">PARALLEL_MAKE</a></code> variables, and
                a centralized tarball download directory through the  
                <code class="filename"><a class="link" href="#var-DL_DIR" target="_top">DL_DIR</a></code> variable.</p></li><li class="listitem"><p>Build the image using the <code class="filename">bitbake</code> command.
                If you want information on BitBake, see the user manual at
                <a class="ulink" href="http://docs.openembedded.org/bitbake/html" target="_top">http://docs.openembedded.org/bitbake/html</a>.</p></li><li class="listitem"><p>Run the image either on the actual hardware or using the QEMU 
                emulator.</p></li></ol></div><p>
    </p></div><div class="section" title="2.4. Using Pre-Built Binaries and QEMU"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="using-pre-built-binaries-and-qemu"></a>2.4. Using Pre-Built Binaries and QEMU</h2></div></div></div><p>
        Another option you have to get started is to use pre-built binaries. 
        The Yocto Project provides many types of binaries with each release. 
        See the <a class="link" href="#ref-images" target="_top">Images</a>
        chapter in the Yocto Project Reference Manual
        for descriptions of the types of binaries that ship with a Yocto Project
        release.
    </p><p>
        Using a pre-built binary is ideal for developing software applications to run on your 
        target hardware.  
        To do this, you need to be able to access the appropriate cross-toolchain tarball for 
        the architecture on which you are developing.  
        If you are using an SDK type image, the image ships with the complete toolchain native to 
        the architecture. 
        If you are not using an SDK type image, you need to separately download and 
        install the stand-alone Yocto Project cross-toolchain tarball.
    </p><p>
        Regardless of the type of image you are using, you need to download the pre-built kernel 
        that you will boot in the QEMU emulator and then download and extract the target root 
        filesystem for your target machine’s architecture.
        You can get architecture-specific binaries and filesystem from
        <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines" target="_top">machines</a>.
        You can get stand-alone toolchains from
        <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/toolchain/" target="_top">toolchains</a>.
        Once you have all your files, you set up the environment to emulate the hardware 
        by sourcing an environment setup script. 
        Finally, you start the QEMU emulator.
        You can find details on all these steps in the 
        "<a class="link" href="#using-pre-built" target="_top">Using Pre-Built Binaries and QEMU</a>"
        section of the Yocto Project Quick Start. 
    </p><p> 
        Using QEMU to emulate your hardware can result in speed issues
        depending on the target and host architecture mix.
        For example, using the <code class="filename">qemux86</code> image in the emulator 
        on an Intel-based 32-bit (x86) host machine is fast because the target and 
        host architectures match.
        On the other hand, using the <code class="filename">qemuarm</code> image on the same Intel-based
        host can be slower.
        But, you still achieve faithful emulation of ARM-specific issues. 
    </p><p>
        To speed things up, the QEMU images support using <code class="filename">distcc</code>
        to call a cross-compiler outside the emulated system. 
        If you used <code class="filename">runqemu</code> to start QEMU, and the
        <code class="filename">distccd</code> application is present on the host system, any 
        BitBake cross-compiling toolchain available from the build system is automatically
        used from within QEMU simply by calling <code class="filename">distcc</code>.
        You can accomplish this by defining the cross-compiler variable 
        (e.g. <code class="filename">export CC="distcc"</code>).
        Alternatively, if you are using a suitable SDK image or the appropriate
        stand-alone toolchain is present in <code class="filename">/opt/poky</code>,
        the toolchain is also automatically used.
    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
        Several mechanisms exist that let you connect to the system running on the 
        QEMU emulator:
        <div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>QEMU provides a framebuffer interface that makes standard 
                consoles available.</p></li><li class="listitem"><p>Generally, headless embedded devices have a serial port.
                If so, you can configure the operating system of the running image
                to use that port to run a console. 
                The connection uses standard IP networking.</p></li><li class="listitem"><p>SSH servers exist in some QEMU images.
                The <code class="filename">core-image-sato</code> QEMU image has a Dropbear secure 
                shell (ssh) server that runs with the root password disabled.
                The <code class="filename">core-image-basic</code> and <code class="filename">core-image-lsb</code> QEMU images 
                have OpenSSH instead of Dropbear.
                Including these SSH servers allow you to use standard <code class="filename">ssh</code> and 
                <code class="filename">scp</code> commands.
                The <code class="filename">core-image-minimal</code> QEMU image, however, contains no ssh 
                server.</p></li><li class="listitem"><p>You can use a provided, user-space NFS server to boot the QEMU session 
                using a local copy of the root filesystem on the host.
                In order to make this connection, you must extract a root filesystem tarball by using the 
                <code class="filename">runqemu-extract-sdk</code> command.
                After running the command, you must then point the <code class="filename">runqemu</code>
                script to the extracted directory instead of a root filesystem image file.</p></li></ul></div></div></div></div>

    <div class="chapter" title="Chapter 3. The Yocto Project Open Source Development Environment"><div class="titlepage"><div><div><h2 class="title"><a id="dev-manual-newbie"></a>Chapter 3. The Yocto Project Open Source Development Environment</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#open-source-philosophy">3.1. Open Source Philosophy</a></span></dt><dt><span class="section"><a href="#usingpoky-changes-collaborate">3.2. Using the Yocto Project in a Team Environment</a></span></dt><dt><span class="section"><a href="#yocto-project-repositories">3.3. Yocto Project Source Repositories</a></span></dt><dt><span class="section"><a href="#yocto-project-terms">3.4. Yocto Project Terms</a></span></dt><dt><span class="section"><a href="#licensing">3.5. Licensing</a></span></dt><dt><span class="section"><a href="#git">3.6. Git</a></span></dt><dd><dl><dt><span class="section"><a href="#repositories-tags-and-branches">3.6.1. Repositories, Tags, and Branches</a></span></dt><dt><span class="section"><a href="#basic-commands">3.6.2. Basic Commands</a></span></dt></dl></dd><dt><span class="section"><a href="#workflows">3.7. Workflows</a></span></dt><dt><span class="section"><a href="#tracking-bugs">3.8. Tracking Bugs</a></span></dt><dt><span class="section"><a href="#how-to-submit-a-change">3.9. How to Submit a Change</a></span></dt><dd><dl><dt><span class="section"><a href="#pushing-a-change-upstream">3.9.1. Using Scripts to Push a Change Upstream and Request a Pull</a></span></dt><dt><span class="section"><a href="#submitting-a-patch">3.9.2. Using Email to Submit a Patch</a></span></dt></dl></dd></dl></div><p>
    This chapter helps you understand the Yocto Project as an open source development project.
    In general, working in an open source environment is very different from working in a 
    closed, proprietary environment.  
    Additionally, the Yocto Project uses specific tools and constructs as part of its development 
    environment.  
    This chapter specifically addresses open source philosophy, licensing issues, code repositories, 
    the open source distributed version control system Git, and best practices using the Yocto Project.
</p><div class="section" title="3.1. Open Source Philosophy"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="open-source-philosophy"></a>3.1. Open Source Philosophy</h2></div></div></div><p>
        Open source philosophy is characterized by software development directed by peer production 
        and collaboration through an active community of developers.
        Contrast this to the more standard centralized development models used by commercial software 
        companies where a finite set of developers produces a product for sale using a defined set
        of procedures that ultimately result in an end product whose architecture and source material
        are closed to the public.
    </p><p>
        Open source projects conceptually have differing concurrent agendas, approaches, and production.   
        These facets of the development process can come from anyone in the public (community) that has a 
        stake in the software project.  
        The open source environment contains new copyright, licensing, domain, and consumer issues 
        that differ from the more traditional development environment.  
        In an open source environment, the end product, source material, and documentation are
        all available to the public at no cost.
    </p><p>
        A benchmark example of an open source project is the Linux Kernel, which was initially conceived 
        and created by Finnish computer science student Linus Torvalds in 1991.  
        Conversely, a good example of a non-open source project is the 
        <span class="trademark">Windows</span>® family of operating 
        systems developed by <span class="trademark">Microsoft</span>® Corporation.
    </p><p>
        Wikipedia has a good historical description of the Open Source Philosophy  
        <a class="ulink" href="http://en.wikipedia.org/wiki/Open_source" target="_top">here</a>. 
        You can also find helpful information on how to participate in the Linux Community 
        <a class="ulink" href="http://ldn.linuxfoundation.org/book/how-participate-linux-community" target="_top">here</a>.
    </p></div><div class="section" title="3.2. Using the Yocto Project in a Team Environment"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-changes-collaborate"></a>3.2. Using the Yocto Project in a Team Environment</h2></div></div></div><p>
        It might not be immediately clear how you can use the Yocto Project in a team environment, 
        or scale it for a large team of developers. 
        The specifics of any situation determine the best solution.
        Granted that the Yocto Project offers immense flexibility regarding this, practices do exist 
        that experience has shown work well.
    </p><p>
        The core component of any development effort with the Yocto Project is often an 
        automated build and testing framework along with an image generation process. 
        You can use these core components to check that the metadata can be built, 
        highlight when commits break the build, and provide up-to-date images that 
        allow developers to test the end result and use it as a base platform for further 
        development. 
        Experience shows that buildbot is a good fit for this role. 
        What works well is to configure buildbot to make two types of builds:
        incremental and full (from scratch).  
        See <a class="ulink" href="http://autobuilder.yoctoproject.org:8010/" target="_top">the buildbot for the 
        Yocto Project</a> for an example implementation that uses buildbot.
    </p><p>
        You can tie incremental builds to a commit hook that triggers the build
        each time a commit is made to the metadata.  
        This practice results in useful acid tests that determine whether a given commit 
        breaks the build in some serious way. 
        Associating a build to a commit can catch a lot of simple errors.
        Furthermore, the tests are fast so developers can get quick feedback on changes.
    </p><p>
        Full builds build and test everything from the ground up. 
        These types of builds usually happen at predetermined times like during the 
        night when the machine load is low.
    </p><p>
        Most teams have many pieces of software undergoing active development at any given time. 
        You can derive large benefits by putting these pieces under the control of a source 
        control system that is compatible (i.e. Git or Subversion (SVN)) with the OpenEmbeded 
        build system that the Yocto Project uses.
        You can then set the autobuilder to pull the latest revisions of the packages 
        and test the latest commits by the builds.
        This practice quickly highlights issues. 
        The build system easily supports testing configurations that use both a 
        stable known good revision and a floating revision.
        The build system can also take just the changes from specific source control branches.
        This capability allows you to track and test specific changes.
    </p><p>
        Perhaps the hardest part of setting this up is defining the software project or 
        the metadata policies that surround the different source control systems.
        Of course circumstances will be different in each case.
        However, this situation reveals one of the Yocto Project's advantages - 
        the system itself does not
        force any particular policy on users, unlike a lot of build systems. 
        The system allows the best policies to be chosen for the given circumstances.
    </p></div><div class="section" title="3.3. Yocto Project Source Repositories"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="yocto-project-repositories"></a>3.3. Yocto Project Source Repositories</h2></div></div></div><p>
        The Yocto Project team maintains complete source repositories for all Yocto Project files 
        at <a class="ulink" href="http://git.yoctoproject.org/cgit/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit/cgit.cgi</a>.
        This web-based source code browser is organized into categories by function such as
        IDE Plugins, Matchbox, Poky, Yocto Linux Kernel, and so forth.
        From the interface, you can click on any particular item in the "Name" column and 
        see the URL at the bottom of the page that you need to set up a Git repository for 
        that particular item.
        Having a local Git repository of the source directory (poky) allows you to 
        make changes, contribute to the history, and ultimately enhance the Yocto Project's 
        tools, Board Support Packages, and so forth.
    </p><p>  
        Conversely, if you are a developer that is not interested in contributing back to the 
        Yocto Project, you have the ability to simply download and extract release tarballs
        and use them within the Yocto Project environment.
        All that is required is a particular release of the Yocto Project and 
        your application source code.  
    </p><p>
        For any supported release of Yocto Project, you can go to the Yocto Project website’s 
        <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">download page</a> and get a 
        tarball of the release.  
        You can also go to this site to download any supported BSP tarballs.
        Unpacking the tarball gives you a hierarchical source directory that lets you develop 
        using the Yocto Project.
    </p><p>
        Once you are set up through either tarball extraction or creation of Git repositories, 
        you are ready to develop.
    </p><p>
        In summary, here is where you can get the project files needed for development:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><a id="source-repositories"></a><span class="emphasis"><em><a class="ulink" href="http://git.yoctoproject.org/cgit/cgit.cgi" target="_top">Source Repositories:</a></em></span>
                This area contains IDE Plugins, Matchbox, Poky, Poky Support, Tools, Yocto Linux Kernel, and Yocto 
                Metadata Layers.
                You can create local copies of Git repositories for each of these areas.</p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 360px"><td align="center"><img src="figures/source-repos.png" align="middle" width="540" /></td></tr></table><p>
                </p></li><li class="listitem"><p><a id="index-downloads"></a><span class="emphasis"><em><a class="ulink" href="http://downloads.yoctoproject.org/releases/" target="_top">Index of /releases:</a></em></span>
                This area contains index releases such as 
                the <span class="trademark">Eclipse</span>™
                Yocto Plug-in, miscellaneous support, poky, pseudo, cross-development toolchains,
                and all released versions of Yocto Project in the form of images or tarballs.
                Downloading and extracting these files does not produce a local copy of the 
                Git repository but rather a snapshot of a particular release or image.</p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 360px"><td align="center"><img src="figures/index-downloads.png" align="middle" width="540" /></td></tr></table><p>
                </p></li><li class="listitem"><p><span class="emphasis"><em><a class="ulink" href="http://www.yoctoproject.org/download" target="_top">Yocto Project Download Page</a></em></span>
                This page on the Yocto Project website allows you to download any Yocto Project
                release or Board Support Package (BSP) in tarball form.
                The tarballs are similar to those found in the 
                <a class="ulink" href="http://downloads.yoctoproject.org/releases/" target="_top">Index of /releases:</a> area.</p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 360px"><td align="center"><img src="figures/yp-download.png" align="middle" width="540" /></td></tr></table><p>
            </p></li></ul></div><p>
    </p></div><div class="section" title="3.4. Yocto Project Terms"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="yocto-project-terms"></a>3.4. Yocto Project Terms</h2></div></div></div><p>
        Following is a list of terms and definitions users new to the Yocto Project development 
        environment might find helpful.
        While some of these terms are universal, the list includes them just in case:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Append Files:</em></span> Files that append build information to 
                a recipe file.
                Append files are known as BitBake append files and <code class="filename">.bbappend</code> files.
                The OpenEmbedded build system expects every append file to have a corresponding and 
                underlying recipe (<code class="filename">.bb</code>) file.
                Furthermore, the append file and the underlying recipe must have the same root filename.
                The filenames can differ only in the file type suffix used (e.g. 
                <code class="filename">formfactor_0.0.bb</code> and <code class="filename">formfactor_0.0.bbappend</code>).
                </p><p>Information in append files overrides the information in the similarly-named recipe file.
                For examples of <code class="filename">.bbappend</code> file in use, see the
                "<a class="link" href="#using-bbappend-files" title="4.1.4. Using .bbappend Files">Using .bbappend Files</a>" and 
                "<a class="link" href="#changing-recipes-kernel" title="A.5.2.4. Changing  recipes-kernel">Changing <code class="filename">recipes-kernel</code></a>"
                sections.</p></li><li class="listitem"><p><span class="emphasis"><em>BitBake:</em></span> The task executor and scheduler used by 
                the OpenEmbedded build system to build images. 
                For more information on BitBake, see the <a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">
                BitBake documentation</a>.</p></li><li class="listitem"><p><a id="build-directory"></a><span class="emphasis"><em>Build Directory:</em></span>
                This term refers to the area used by the OpenEmbedded build system for builds.  
                The area is created when you <code class="filename">source</code> the setup 
                environment script that is found in the source directory
                (i.e. <code class="filename">oe-init-build-env</code>).
                The <a class="link" href="#var-TOPDIR" target="_top"><code class="filename">TOPDIR</code></a>
                variable points to the build directory.</p><p>You have a lot of flexibility when creating the build directory.
                Following are some examples that show how to create the directory:
                   </p><div class="itemizedlist"><ul class="itemizedlist" type="circle"><li class="listitem"><p>Create the build directory in your current working directory
                            and name it <code class="filename">build</code>.
                            This is the default behavior.
                            </p><pre class="literallayout">
     $ source oe-init-build-env
                            </pre></li><li class="listitem"><p>Provide a directory path and specifically name the build 
                            directory. 
                            This next example creates a build directory named <code class="filename">YP-8.0</code>
                            in your home directory within the directory <code class="filename">mybuilds</code>.
                            If <code class="filename">mybuilds</code> does not exist, the directory is created for you:
                            </p><pre class="literallayout"> 
     $ source poky-1.2+snapshot-8.0/oe-init-build-env $HOME/mybuilds/YP-8.0
                            </pre></li><li class="listitem"><p>Provide an existing directory to use as the build directory.
                            This example uses the existing <code class="filename">mybuilds</code> directory 
                            as the build directory.
                            </p><pre class="literallayout"> 
     $ source poky-1.2+snapshot-8.0/oe-init-build-env $HOME/mybuilds/
                            </pre></li></ul></div><p> 
                </p></li><li class="listitem"><p><span class="emphasis"><em>Build System:</em></span> In the context of the Yocto Project 
                this term refers to the OpenEmbedded build system used by the project. 
                This build system is based on the project known as "Poky."
                For some historical information about Poky, see the 
                <a class="link" href="#poky">poky</a> term further along in this section.
                </p></li><li class="listitem"><p><span class="emphasis"><em>Classes:</em></span> Files that provide for logic encapsulation
                and inheritance allowing commonly used patterns to be defined once and easily used 
                in multiple recipes.  
                Class files end with the <code class="filename">.bbclass</code> filename extension.
                </p></li><li class="listitem"><p><span class="emphasis"><em>Configuration File:</em></span>  Configuration information in various
                <code class="filename">.conf</code> files provides global definitions of variables.
                The <code class="filename">conf/local.conf</code> configuration file in the 
                <a class="link" href="#build-directory">build directory</a>
                contains user-defined variables that affect each build.
                The <code class="filename">meta-yocto/conf/distro/poky.conf</code> configuration file
                defines Yocto ‘distro’ configuration
                variables used only when building with this policy.  
                Machine configuration files, which 
                are located throughout the 
                <a class="link" href="#source-directory">source directory</a>, define
                variables for specific hardware and are only used when building for that target 
                (e.g. the <code class="filename">machine/beagleboard.conf</code> configuration file defines 
                variables for the Texas Instruments ARM Cortex-A8 development board).  
                Configuration files end with a <code class="filename">.conf</code> filename extension.
                </p></li><li class="listitem"><p><span class="emphasis"><em>Cross-Development Toolchain:</em></span> 
                A collection of software development
                tools and utilities that allow you to develop software for targeted architectures.
                This toolchain contains cross-compilers, linkers, and debuggers that are specific to 
                an architecture.
                You can use the OpenEmbedded build system to build cross-development toolchains in tarball 
                form that, when
                unpacked, contain the development tools you need to cross-compile and test your software.
                The Yocto Project ships with images that contain toolchains for supported architectures
                as well.
                Sometimes this toolchain is referred to as the meta-toolchain.</p></li><li class="listitem"><p><span class="emphasis"><em>Image:</em></span> An image is the result produced when 
                BitBake processes a given collection of recipes and related metadata.
                Images are the binary output that run on specific hardware and for specific
                use cases.
                For a list of the supported image types that the Yocto Project provides, see the
                "<a class="link" href="#ref-images" target="_top">Images</a>"
                chapter in the Yocto Project Reference Manual.</p></li><li class="listitem"><p><a id="layer"></a><span class="emphasis"><em>Layer:</em></span> A collection of recipes representing the core, 
                a BSP, or an application stack.
                For a discussion on BSP Layers, see the 
                "<a class="link" href="#bsp-layers" target="_top">BSP Layers</a>"
                section in the Yocto Project Board Support Packages (BSP) Developer's Guide.</p></li><li class="listitem"><p><a id="metadata"></a><span class="emphasis"><em>Metadata:</em></span> The files that BitBake parses when 
                building an image. 
                Metadata includes recipes, classes, and configuration files.</p></li><li class="listitem"><p><span class="emphasis"><em>OE-Core:</em></span> A core set of metadata originating 
                with OpenEmbedded (OE) that is shared between OE and the Yocto Project.
                This metadata is found in the <code class="filename">meta</code> directory of the source
                directory.</p></li><li class="listitem"><p><span class="emphasis"><em>Package:</em></span> The packaged output from a baked recipe.
                A package is generally the compiled binaries produced from the recipe's sources.  
                You ‘bake’ something by running it through BitBake.</p></li><li class="listitem"><p><a id="poky"></a><span class="emphasis"><em>Poky:</em></span> The term "poky" can mean several things.
                In its most general sence, it is an open-source project that was initially developed
                by OpenedHand.  With OpenedHand, poky was developed off of the existing OpenEmbedded
                build system becoming a build system for embedded images. 
                After Intel Corporation aquired OpenedHand, the project poky became the basis for 
                the Yocto Project's build system.
                Within the Yocto Project source repositories, poky exists as a separate Git repository
                that can be cloned to yield a local copy on the host system. 
                Thus, "poky" can refer to the local copy of the source directory used to develop within
                the Yocto Project.</p></li><li class="listitem"><p><span class="emphasis"><em>Recipe:</em></span> A set of instructions for building packages.  
                A recipe describes where you get source code and which patches to apply.
                Recipes describe dependencies for libraries or for other recipes, and they 
                also contain configuration and compilation options.  
                Recipes contain the logical unit of execution, the software/images to build, and 
                use the <code class="filename">.bb</code> file extension.</p></li><li class="listitem"><p><a id="source-directory"></a><span class="emphasis"><em>Source Directory:</em></span>
                This term refers to the directory structure created as a result of either downloading 
                and unpacking a Yocto Project release tarball or creating a local copy of 
                <code class="filename">poky</code> Git repository <code class="filename">git://git.yoctoproject.org/poky</code>.
                Sometimes you might here the term "poky directory" used to refer to this 
                directory structure.</p><p>The source directory contains BitBake, Documentation, metadata and 
                other files that all support the Yocto Project. 
                Consequently, you must have the source directory in place on your development 
                system in order to do any development using the Yocto Project.</p><p>For tarball expansion, the name of the top-level directory of the source directory  
                is derived from the Yocto Project release tarball.
                For example, downloading and unpacking <code class="filename">poky-1.2+snapshot-8.0.tar.bz2</code>
                results in a source directory whose top-level folder is named 
                <code class="filename">poky-1.2+snapshot-8.0</code>.
                If you create a local copy of the Git repository, then you can name the repository 
                anything you like.
                Throughout much of the documentation, <code class="filename">poky</code> is used as the name of 
                the top-level folder of the local copy of the poky Git repository.
                So, for example, cloning the <code class="filename">poky</code> Git repository results in a 
                local Git repository whose top-level folder is also named <code class="filename">poky</code>.</p><p>It is important to understand the differences between the source directory created
                by unpacking a released tarball as compared to cloning 
                <code class="filename">git://git.yoctoproject.org/poky</code>.
                When you unpack a tarball, you have an exact copy of the files based on the time of 
                release - a fixed release point.
                Any changes you make to your local files in the source directory are on top of the release.
                On the other hand, when you clone the <code class="filename">poky</code> Git repository, you have an
                active development repository.
                In this case, any local changes you make to the source directory can be later applied 
                to active development branches of the upstream <code class="filename">poky</code> Git 
                repository.</p><p>Finally, if you want to track a set of local changes while starting from the same point
                as a release tarball, you can create a local Git branch that 
                reflects the exact copy of the files at the time of their release. 
                You do this using Git tags that are part of the repository.</p><p>For more information on concepts around Git repositories, branches, and tags,
                see the  
                "<a class="link" href="#repositories-tags-and-branches" title="3.6.1. Repositories, Tags, and Branches">Repositories, Tags, and Branches</a>"
                section.</p></li><li class="listitem"><p><span class="emphasis"><em>Tasks:</em></span> Arbitrary groups of software Recipes.  
                You simply use Tasks to hold recipes that, when built, usually accomplish a single task.  
                For example, a task could contain the recipes for a company’s proprietary or value-add software.  
                Or, the task could contain the recipes that enable graphics. 
                A task is really just another recipe.  
                Because task files are recipes, they end with the <code class="filename">.bb</code> filename 
                extension.</p></li><li class="listitem"><p><span class="emphasis"><em>Upstream:</em></span> A reference to source code or repositories
                that are not local to the development system but located in a master area that is controlled
                by the maintainer of the source code.
                For example, in order for a developer to work on a particular piece of code, they need to 
                first get a copy of it from an "upstream" source.</p></li></ul></div><p>
    </p></div><div class="section" title="3.5. Licensing"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="licensing"></a>3.5. Licensing</h2></div></div></div><p>
        Because open source projects are open to the public, they have different licensing structures in place.  
        License evolution for both Open Source and Free Software has an interesting history.  
        If you are interested in this history, you can find basic information here:
    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><a class="ulink" href="http://en.wikipedia.org/wiki/Open-source_license" target="_top">Open source license history</a>
            </p></li><li class="listitem"><p><a class="ulink" href="http://en.wikipedia.org/wiki/Free_software_license" target="_top">Free software license
            history</a></p></li></ul></div><p>
    </p><p>
        In general, the Yocto Project is broadly licensed under the Massachusetts Institute of Technology 
        (MIT) License.  
        MIT licensing permits the reuse of software within proprietary software as long as the 
        license is distributed with that software.  
        MIT is also compatible with the GNU General Public License (GPL).  
        Patches to the Yocto Project follow the upstream licensing scheme.
        You can find information on the MIT license at  
        <a class="ulink" href="http://www.opensource.org/licenses/mit-license.php" target="_top">here</a>.
        You can find information on the GNU GPL <a class="ulink" href="http://www.opensource.org/licenses/LGPL-3.0" target="_top">
        here</a>. 
    </p><p>
        When you build an image using Yocto Project, the build process uses a known list of licenses to 
        ensure compliance.
        You can find this list in the Yocto Project files directory at 
        <code class="filename">meta/files/common-licenses</code>.  
        Once the build completes, the list of all licenses found and used during that build are 
        kept in the 
        <a class="link" href="#build-directory">build directory</a> at 
        <code class="filename">tmp/deploy/images/licenses</code>.
    </p><p>  
        If a module requires a license that is not in the base list, the build process 
        generates a warning during the build.  
        These tools make it easier for a developer to be certain of the licenses with which
        their shipped products must comply.
        However, even with these tools it is still up to the developer to resolve potential licensing issues.
    </p><p>
        The base list of licenses used by the build process is a combination of the Software Package 
        Data Exchange (SPDX) list and the Open Source Initiative (OSI) projects.  
        <a class="ulink" href="http://spdx.org" target="_top">SPDX Group</a> is a working group of the Linux Foundation 
        that maintains a specification 
        for a standard format for communicating the components, licenses, and copyrights 
        associated with a software package.  
        <a class="ulink" href="http://opensource.org" target="_top">OSI</a> is a corporation dedicated to the Open Source 
        Definition and the effort for reviewing and approving licenses that are OSD-conformant.  
    </p><p>
        You can find a list of the combined SPDX and OSI licenses that the Yocto Project uses 
        <a class="ulink" href="http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/files/common-licenses" target="_top">here</a>.
        This wiki page discusses the license infrastructure used by the Yocto Project.
    </p></div><div class="section" title="3.6. Git"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="git"></a>3.6. Git</h2></div></div></div><p>
        The Yocto Project uses Git, which is a free, open source distributed version control system.  
        Git supports distributed development, non-linear development, and can handle large projects.  
        It is best that you have some fundamental understanding of how Git tracks projects and 
        how to work with Git if you are going to use Yocto Project for development. 
        This section provides a quick overview of how Git works and provides you with a summary
        of some essential Git commands.
    </p><p>
        For more information on Git, see
        <a class="ulink" href="http://git-scm.com/documentation" target="_top">http://git-scm.com/documentation</a>.   
        If you need to download Git, go to <a class="ulink" href="http://git-scm.com/download" target="_top">http://git-scm.com/download</a>. 
    </p><div class="section" title="3.6.1. Repositories, Tags, and Branches"><div class="titlepage"><div><div><h3 class="title"><a id="repositories-tags-and-branches"></a>3.6.1. Repositories, Tags, and Branches</h3></div></div></div><p>
            As mentioned earlier in section 
            "<a class="link" href="#yocto-project-repositories" title="3.3. Yocto Project Source Repositories">Yocto Project Source Repositories</a>",
            the Yocto Project maintains source repositories at 
            <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a>.
            If you look at this web-interface of the repositories, each item is a separate
            Git repository.
        </p><p>
            Git repositories use branching techniques that track content change (not files) 
            within a project (e.g. a new feature or updated documentation).  
            Creating a tree-like structure based on project divergence allows for excellent historical 
            information over the life of a project.  
            This methodology also allows for an environment in which you can do lots of 
            local experimentation on a project as you develop changes or new features.  
        </p><p>
            A Git repository represents all development efforts for a given project.
            For example, the Git repository <code class="filename">poky</code> contains all changes
            and developments for Poky over the course of its entire life. 
            That means that all changes that make up all releases are captured.
            The repository maintains a complete history of changes.
        </p><p>
            You can create a local copy of any repository by "cloning" it with the Git
            <code class="filename">clone</code> command.
            When you clone a Git repository, you end up with an identical copy of the 
            repository on your development system.  
            Once you have a local copy of a repository, you can take steps to develop locally.
            For examples on how to clone Git repositories, see the section
            "<a class="link" href="#getting-setup" title="2.2. Getting Set Up">Getting Set Up</a>" earlier in this manual.
        </p><p>
            It is important to understand that Git tracks content change and not files.
            Git uses "branches" to organize different development efforts. 
            For example, the <code class="filename">poky</code> repository has 
            <code class="filename">laverne</code>, <code class="filename">bernard</code>, 
            <code class="filename">edison</code>, <code class="filename">denzil</code> and 
            <code class="filename">master</code> branches among 
            others.
            You can see all the branches by going to  
            <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/poky/" target="_top">http://git.yoctoproject.org/cgit.cgi/poky/</a> and 
            clicking on the 
            <code class="filename"><a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/poky/refs/heads" target="_top">[...]</a></code> 
            link beneath the "Branch" heading.
        </p><p>
            Each of these branches represents a specific area of development.
            The <code class="filename">master</code> branch represents the current or most recent 
            development.
            All other branches represent off-shoots of the <code class="filename">master</code>
            branch. 
        </p><p>
            When you create a local copy of a Git repository, the copy has the same set 
            of branches as the original.
            This means you can use Git to create a local working area (also called a branch)
            that tracks a specific development branch from the source Git repository.  
            in other words, you can define your local Git environment to work on any development
            branch in the repository.
            To help illustrate, here is a set of commands that creates a local copy of the 
            <code class="filename">poky</code> Git repository and then creates and checks out a local
            Git branch that tracks the Yocto Project 1.3 Release (1.2+snapshot) development:
            </p><pre class="literallayout">
     $ cd ~
     $ git clone git://git.yoctoproject.org/poky
     $ cd poky
     $ git checkout -b 1.2+snapshot origin/1.2+snapshot
            </pre><p>
            In this example, the name of the top-level directory of your local Yocto Project 
            Files Git repository is <code class="filename">poky</code>,
            and the name of the local working area (or local branch) you have created and checked
            out is <code class="filename">1.2+snapshot</code>.
            The files in your repository now reflect the same files that are in the 
            <code class="filename">1.2+snapshot</code> development branch of the Yocto Project's 
            <code class="filename">poky</code> repository.
            It is important to understand that when you create and checkout a 
            local working branch based on a branch name, 
            your local environment matches the "tip" of that development branch
            at the time you created your local branch, which could be
            different than the files at the time of a similarly named release.
            In other words, creating and checking out a local branch based on the 
            <code class="filename">1.2+snapshot</code> branch name is not the same as creating and 
            checking out a local branch based on the <code class="filename">1.2+snapshot-1.3</code>
            release.
            Keep reading to see how you create a local snapshot of a Yocto Project Release.
        </p><p>
            Git uses "tags" to mark specific changes in a repository.
            Typically, a tag is used to mark a special point such as the final change
            before a project is released.  
            You can see the tags used with the <code class="filename">poky</code> Git repository
            by going to <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/poky/" target="_top">http://git.yoctoproject.org/cgit.cgi/poky/</a> and 
            clicking on the 
            <code class="filename"><a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/poky/refs/tags" target="_top">[...]</a></code> 
            link beneath the "Tag" heading.
        </p><p>
            Some key tags are <code class="filename">laverne-4.0</code>, <code class="filename">bernard-5.0</code>,
            and <code class="filename">1.2+snapshot-8.0</code>.
            These tags represent Yocto Project releases.
        </p><p>
            When you create a local copy of the Git repository, you also have access to all the 
            tags.
            Similar to branches, you can create and checkout a local working Git branch based 
            on a tag name. 
            When you do this, you get a snapshot of the Git repository that reflects 
            the state of the files when the change was made associated with that tag.
            The most common use is to checkout a working branch that matches a specific 
            Yocto Project release. 
            Here is an example:
            </p><pre class="literallayout">
     $ cd ~
     $ git clone git://git.yoctoproject.org/poky
     $ cd poky
     $ git checkout -b my-1.2+snapshot-8.0 1.2+snapshot-8.0
            </pre><p>
            In this example, the name of the top-level directory of your local Yocto Project 
            Files Git repository is <code class="filename">poky</code>.
            And, the name of the local branch you have created and checked out is
            <code class="filename">my-1.2+snapshot-8.0</code>.
            The files in your repository now exactly match the Yocto Project 1.3
            Release tag (<code class="filename">1.2+snapshot-8.0</code>).
            It is important to understand that when you create and checkout a local 
            working branch based on a tag, your environment matches a specific point 
            in time and not a development branch.
        </p></div><div class="section" title="3.6.2. Basic Commands"><div class="titlepage"><div><div><h3 class="title"><a id="basic-commands"></a>3.6.2. Basic Commands</h3></div></div></div><p>
            Git has an extensive set of commands that lets you manage changes and perform 
            collaboration over the life of a project.  
            Conveniently though, you can manage with a small set of basic operations and workflows 
            once you understand the basic philosophy behind Git.  
            You do not have to be an expert in Git to be functional.  
            A good place to look for instruction on a minimal set of Git commands is 
            <a class="ulink" href="http://git-scm.com/documentation" target="_top">here</a>.   
            If you need to download Git, you can do so 
            <a class="ulink" href="http://git-scm.com/download" target="_top">here</a>. 
        </p><p>
            If you don’t know much about Git, we suggest you educate            
            yourself by visiting the links previously mentioned.
        </p><p>
            The following list briefly describes some basic Git operations as a way to get started.  
            As with any set of commands, this list (in most cases) simply shows the base command and 
            omits the many arguments they support.  
            See the Git documentation for complete descriptions and strategies on how to use these commands:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em><code class="filename">git init</code>:</em></span> Initializes an empty Git repository.  
                    You cannot use Git commands unless you have a <code class="filename">.git</code> repository.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git clone</code>:</em></span> Creates a clone of a repository.  
                    During collaboration, this command allows you to create a local repository that is on 
                    equal footing with a fellow developer’s repository.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git add</code>:</em></span> Adds updated file contents 
                    to the index that 
                    Git uses to track changes.  
                    You must add all files that have changed before you can commit them.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git commit</code>:</em></span> Creates a “commit” that documents 
                    the changes you made.  
                    Commits are used for historical purposes, for determining if a maintainer of a project 
                    will allow the change, and for ultimately pushing the change from your local Git repository 
                    into the project’s upstream (or master) repository.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git status</code>:</em></span> Reports any modified files that 
                    possibly need to be added and committed.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git checkout &lt;branch-name&gt;</code>:</em></span> Changes 
                    your working branch.  
                    This command is analogous to “cd”.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git checkout –b &lt;working-branch&gt;</code>:</em></span> Creates 
                    a working branch on your local machine where you can isolate work.  
                    It is a good idea to use local branches when adding specific features or changes.  
                    This way if you don’t like what you have done you can easily get rid of the work.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git branch</code>:</em></span> Reports existing branches and 
                    tells you which branch in which you are currently working.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git branch -D &lt;branch-name&gt;</code>:</em></span> 
                    Deletes an existing branch.  
                    You need to be in a branch other than the one you are deleting 
                    in order to delete &lt;branch-name&gt;.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git pull</code>:</em></span> Retrieves information 
                    from an upstream Git 
                    repository and places it in your local Git repository.  
                    You use this command to make sure you are synchronized with the repository 
                    from which you are basing changes (.e.g. the master repository).</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git push</code>:</em></span> Sends all your local changes you 
                    have committed to an upstream Git repository (e.g. a contribution repository).  
                    The maintainer of the project draws from these repositories when adding your changes to the 
                    project’s master repository.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git merge</code>:</em></span> Combines or adds changes from one 
                    local branch of your repository with another branch.  
                    When you create a local Git repository, the default branch is named “master”.  
                    A typical workflow is to create a temporary branch for isolated work, make and commit your 
                    changes, switch to your local master branch, merge the changes from the temporary branch into the 
                    local master branch, and then delete the temporary branch.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git cherry-pick</code>:</em></span> Choose and apply specific 
                    commits from one branch into another branch.  
                    There are times when you might not be able to merge all the changes in one branch with 
                    another but need to pick out certain ones.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">gitk</code>:</em></span> Provides a GUI view of the branches 
                    and changes in your local Git repository.  
                    This command is a good way to graphically see where things have diverged in your 
                    local repository.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git log</code>:</em></span> Reports a history of your changes to the 
                    repository.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">git diff</code>:</em></span> Displays line-by-line differences
                    between your local working files and the same files in the upstream Git repository that your 
                    branch currently tracks.</p></li></ul></div><p>
        </p></div></div><div class="section" title="3.7. Workflows"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="workflows"></a>3.7. Workflows</h2></div></div></div><p>
        This section provides some overview on workflows using Git.  
        In particular, the information covers basic practices that describe roles and actions in a 
        collaborative development environment.  
        Again, if you are familiar with this type of development environment, you might want to just 
        skip this section.
    </p><p>
        The Yocto Project files are maintained using Git in a "master" branch whose Git history 
        tracks every change and whose structure provides branches for all diverging functionality.
        Although there is no need to use Git, many open source projects do so.
        For the Yocto Project, a key individual called the "maintainer" is responsible for the "master"
        branch of the Git repository.
        The "master" branch is the “upstream” repository where the final builds of the project occur.  
        The maintainer is responsible for allowing changes in from other developers and for 
        organizing the underlying branch structure to reflect release strategies and so forth.  
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>You can see who is the maintainer for Yocto Project files by examining the 
        <code class="filename">distro_tracking_fields.inc</code> file in the Yocto Project
        <code class="filename">meta/conf/distro/include</code> directory.</div><p>  
    </p><p>
        The project also has contribution repositories known as “contrib” areas.  
        These areas temporarily hold changes to the project that have been submitted or committed 
        by the Yocto Project development team and by community members that contribute to the project.  
        The maintainer determines if the changes are qualified to be moved from the "contrib" areas
        into the "master" branch of the Git repository.
    </p><p>
        Developers (including contributing community members) create and maintain cloned repositories 
        of the upstream "master" branch.  
        These repositories are local to their development platforms and are used to develop changes.  
        When a developer is satisfied with a particular feature or change, they “push” the changes 
        to the appropriate "contrib" repository.
    </p><p>  
        Developers are responsible for keeping their local repository up-to-date with "master".  
        They are also responsible for straightening out any conflicts that might arise within files 
        that are being worked on simultaneously by more than one person.  
        All this work is done locally on the developer’s machine before anything is pushed to a 
        "contrib" area and examined at the maintainer’s level.
    </p><p>
        A somewhat formal method exists by which developers commit changes and push them into the 
        "contrib" area and subsequently request that the maintainer include them into "master"  
        This process is called “submitting a patch” or “submitting a change.”  
    </p><p>
        To summarize the environment:  we have a single point of entry for changes into the project’s 
        "master" branch of the Git repository, which is controlled by the project’s maintainer.  
        And, we have a set of developers who independently develop, test, and submit changes 
        to "contrib" areas for the maintainer to examine.  
        The maintainer then chooses which changes are going to become a permanent part of the project.
    </p><p>
        </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 270px"><td align="left"><img src="figures/git-workflow.png" align="left" height="270" /></td></tr></table><p>
    </p><p>
        While each development environment is unique, there are some best practices or methods 
        that help development run smoothly.  
        The following list describes some of these practices.  
        For more information about Git workflows, see the workflow topics in the 
        <a class="ulink" href="http://book.git-scm.com" target="_top">Git Community Book</a>. 
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Make Small Changes:</em></span> It is best to keep the changes you commit
                small as compared to bundling many disparate changes into a single commit.  
                This practice not only keeps things manageable but also allows the maintainer 
                to more easily include or refuse changes.</p><p>It is also good practice to leave the repository in a state that allows you to 
                still successfully build your project.  In other words, do not commit half of a feature,
                then add the other half in a separate, later commit.  
                Each commit should take you from one buildable project state to another 
                buildable state.</p></li><li class="listitem"><p><span class="emphasis"><em>Use Branches Liberally:</em></span> It is very easy to create, use, and 
                delete local branches in your working Git repository.  
                You can name these branches anything you like.  
                It is helpful to give them names associated with the particular feature or change 
                on which you are working.  
                Once you are done with a feature or change, simply discard the branch.</p></li><li class="listitem"><p><span class="emphasis"><em>Merge Changes:</em></span> The <code class="filename">git merge</code>
                command allows you to take the 
                changes from one branch and fold them into another branch.  
                This process is especially helpful when more than a single developer might be working 
                on different parts of the same feature.  
                Merging changes also automatically identifies any collisions or “conflicts” 
                that might happen as a result of the same lines of code being altered by two different 
                developers.</p></li><li class="listitem"><p><span class="emphasis"><em>Manage Branches:</em></span> Because branches are easy to use, you should 
                use a system where branches indicate varying levels of code readiness.  
                For example, you can have a “work” branch to develop in, a “test” branch where the code or 
                change is tested, a “stage” branch where changes are ready to be committed, and so forth.  
                As your project develops, you can merge code across the branches to reflect ever-increasing 
                stable states of the development.</p></li><li class="listitem"><p><span class="emphasis"><em>Use Push and Pull:</em></span> The push-pull workflow is based on the 
                concept of developers “pushing” local commits to a remote repository, which is 
                usually a contribution repository.  
                This workflow is also based on developers “pulling” known states of the project down into their 
                local development repositories.  
                The workflow easily allows you to pull changes submitted by other developers from the 
                upstream repository into your work area ensuring that you have the most recent software 
                on which to develop.
                The Yocto Project has two scripts named <code class="filename">create-pull-request</code> and 
                <code class="filename">send-pull-request</code> that ship with the release to facilitate this 
                workflow.
                You can find these scripts in the local Yocto Project files Git repository in
                the <code class="filename">scripts</code> directory.</p></li><li class="listitem"><p><span class="emphasis"><em>Patch Workflow:</em></span> This workflow allows you to notify the 
                maintainer through an email that you have a change (or patch) you would like considered 
                for the "master" branch of the Git repository.  
                To send this type of change you format the patch and then send the email using the Git commands 
                <code class="filename">git format-patch</code> and <code class="filename">git send-email</code>. 
                You can find information on how to submit later in this chapter.</p></li></ul></div><p>
    </p></div><div class="section" title="3.8. Tracking Bugs"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="tracking-bugs"></a>3.8. Tracking Bugs</h2></div></div></div><p>
        The Yocto Project uses its own implementation of 
        <a class="ulink" href="http://www.bugzilla.org/about/" target="_top">Bugzilla</a> to track bugs.  
        Implementations of Bugzilla work well for group development because they track bugs and code 
        changes, can be used to communicate changes and problems with developers, can be used to 
        submit and review patches, and can be used to manage quality assurance. 
        The home page for the Yocto Project implementation of Bugzilla is   
        <a class="ulink" href="http://bugzilla.yoctoproject.org" target="_top">http://bugzilla.yoctoproject.org</a>.
    </p><p>
        Sometimes it is helpful to submit, investigate, or track a bug against the Yocto Project itself
        such as when discovering an issue with some component of the build system that acts contrary 
        to the documentation or your expectations.  
        Following is the general procedure for submitting a new bug using the Yocto Project
        Bugzilla.
        You can find more information on defect management, bug tracking, and feature request
        processes all accomplished through the Yocto Project Bugzilla on the wiki page
        <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Bugzilla_Configuration_and_Bug_Tracking" target="_top">here</a>.     
        </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Always use the Yocto Project implementation of Bugzilla to submit
                a bug.</p></li><li class="listitem"><p>When submitting a new bug, be sure to choose the appropriate
                Classification, Product, and Component for which the issue was found.
                Defects for Yocto Project fall into one of four classifications:  Yocto Projects, 
                Infrastructure, Poky, and Yocto Metadata Layers.
                Each of these Classifications break down into multiple Products and, in some 
                cases, multiple Components.</p></li><li class="listitem"><p>Use the bug form to choose the correct Hardware and Architecture
                for which the bug applies.</p></li><li class="listitem"><p>Indicate the Yocto Project version you were using when the issue
                occurred.</p></li><li class="listitem"><p>Be sure to indicate the Severity of the bug.  
                Severity communicates how the bug impacted your work.</p></li><li class="listitem"><p>Provide a brief summary of the issue. 
                Try to limit your summary to just a line or two and be sure to capture the 
                essence of the issue.</p></li><li class="listitem"><p>Provide a detailed description of the issue.  
                You should provide as much detail as you can about the context, behavior, output, 
                and so forth that surround the issue.  
                You can even attach supporting files for output or log by using the "Add an attachment"
                button.</p></li><li class="listitem"><p>Submit the bug by clicking the "Submit Bug" button.</p></li></ol></div><p>
    </p></div><div class="section" title="3.9. How to Submit a Change"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="how-to-submit-a-change"></a>3.9. How to Submit a Change</h2></div></div></div><p>
        Contributions to the Yocto Project and OpenEmbedded are very welcome.
        Because the system is extremely configurable and flexible, we recognize that developers
        will want to extend, configure or optimize it for their specific uses.
        You should send patches to the appropriate mailing list so that they
        can be reviewed and merged by the appropriate maintainer.
        For a list of the Yocto Project and related mailing lists, see the
        "<a class="link" href="#resources-mailinglist" target="_top">Mailing lists</a>" section in 
        the Yocto Project Reference Manual.
    </p><p>
        The following is some guidance on which mailing list to use for what type of change:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>For changes to the core metadata, send your patch to the
                <a class="ulink" href="http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/openembedded-core" target="_top">openembedded-core</a> mailing list.
                For example, a change to anything under the <code class="filename">meta</code> or
                <code class="filename">scripts</code> directories
                should be sent to this mailing list.</p></li><li class="listitem"><p>For changes to BitBake (anything under the <code class="filename">bitbake</code>
                directory), send your patch to the
                <a class="ulink" href="http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/bitbake-devel" target="_top">bitbake-devel</a> mailing list.</p></li><li class="listitem"><p>For changes to <code class="filename">meta-yocto</code>, send your patch to the
                <a class="ulink" href="http://lists.yoctoproject.org/listinfo/poky" target="_top">poky</a> mailing list.</p></li><li class="listitem"><p>For changes to other layers hosted on yoctoproject.org (unless the
                layer's documentation specifies otherwise), tools, and Yocto Project
                documentation, use the
                <a class="ulink" href="http://lists.yoctoproject.org/listinfo/yocto" target="_top">yocto</a> mailing list.</p></li><li class="listitem"><p>For additional recipes that do not fit into the core metadata,
                you should determine which layer the recipe should go into and submit the
                change in the manner recommended by the documentation (e.g. README) supplied
                with the layer. If in doubt, please ask on the
                <a class="ulink" href="http://lists.yoctoproject.org/listinfo/yocto" target="_top">yocto</a> or
                <a class="ulink" href="http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/openembedded-devel" target="_top">openembedded-devel</a>
                mailing lists.</p></li></ul></div><p>      
    </p><p>  
        When you send a patch, be sure to include a "Signed-off-by:"
        line in the same style as required by the Linux kernel. 
        Adding this line signifies that you, the submitter, have agreed to the Developer's Certificate of Origin 1.1
        as follows:
        </p><pre class="literallayout">
     Developer's Certificate of Origin 1.1

     By making a contribution to this project, I certify that:

     (a) The contribution was created in whole or in part by me and I
         have the right to submit it under the open source license
         indicated in the file; or

     (b) The contribution is based upon previous work that, to the best
         of my knowledge, is covered under an appropriate open source
         license and I have the right under that license to submit that
         work with modifications, whether created in whole or in part
         by me, under the same open source license (unless I am
         permitted to submit under a different license), as indicated
         in the file; or

     (c) The contribution was provided directly to me by some other
         person who certified (a), (b) or (c) and I have not modified
         it.

     (d) I understand and agree that this project and the contribution
         are public and that a record of the contribution (including all
         personal information I submit with it, including my sign-off) is
         maintained indefinitely and may be redistributed consistent with
         this project or the open source license(s) involved.
        </pre><p>
    </p><p>
        In a collaborative environment, it is necessary to have some sort of standard 
        or method through which you submit changes.  
        Otherwise, things could get quite chaotic.
        One general practice to follow is to make small, controlled changes.
        Keeping changes small and isolated aids review, makes merging/rebasing easier
        and keeps the change history clean when anyone needs to refer to it in future.
    </p><p>
        When you make a commit, you must follow certain standards established by the
        OpenEmbedded and Yocto Project development teams.
        For each commit, you must provide a single-line summary of the change and you
        should almost always provide a more detailed description of what you did (i.e.
        the body of the commit message).
        The only exceptions for not providing a detailed description would be if your 
        change is a simple, self-explanatory change that needs no description.
        Here are the guidelines for composing a commit message:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Provide a single-line, short summary of the change.
                This summary is typically viewable in the "shortlist" of changes.
                Thus, providing something short and descriptive that gives the reader 
                a summary of the change is useful when viewing a list of many commits.
                This should be prefixed by the recipe name (if changing a recipe), or
                else the short form path to the file being changed.
                </p></li><li class="listitem"><p>For the body of the commit message, provide detailed information
                that describes what you changed, why you made the change, and the approach
                you used. It may also be helpful if you mention how you tested the change.
                Provide as much detail as you can in the body of the commit message.
                </p></li><li class="listitem"><p>If the change addresses a specific bug or issue that is 
                associated with a bug-tracking ID, include a reference to that ID in
                your detailed description.
                For example, the Yocto Project uses a specific convention for bug
                references - any commit that addresses a specific bug should include the
                bug ID in the description (typically at the beginning) as follows:
                </p><pre class="literallayout">
     [YOCTO #&lt;bug-id&gt;]

     &lt;detailed description of change&gt;
                </pre></li></ul></div><p>
    </p><p>
        You can find more guidance on creating well-formed commit messages at this OpenEmbedded 
        wiki page:
        <a class="ulink" href="http://www.openembedded.org/wiki/Commit_Patch_Message_Guidelines" target="_top">http://www.openembedded.org/wiki/Commit_Patch_Message_Guidelines</a>.
    </p><p>
        Following are general instructions for both pushing changes upstream and for submitting 
        changes as patches.
    </p><div class="section" title="3.9.1. Using Scripts to Push a Change Upstream and Request a Pull"><div class="titlepage"><div><div><h3 class="title"><a id="pushing-a-change-upstream"></a>3.9.1. Using Scripts to Push a Change Upstream and Request a Pull</h3></div></div></div><p>
            The basic flow for pushing a change to an upstream "contrib" Git repository is as follows:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Make your changes in your local Git repository.</p></li><li class="listitem"><p>Stage your changes by using the <code class="filename">git add</code>
                    command on each file you changed.</p></li><li class="listitem"><p>Commit the change by using the <code class="filename">git commit</code>
                    command and push it to the "contrib" repository.  
                    Be sure to provide a commit message that follows the project’s commit message standards
                    as described earlier.</p></li><li class="listitem"><p>Notify the maintainer that you have pushed a change by making a pull 
                    request.
                    The Yocto Project provides two scripts that conveniently let you generate and send
                    pull requests to the Yocto Project.
                    These scripts are <code class="filename">create-pull-request</code> and 
                    <code class="filename">send-pull-request</code>.
                    You can find these scripts in the <code class="filename">scripts</code> directory of the 
                    Yocto Project file structure.</p><p>Using these scripts correctly formats the requests without introducing any
                    whitespace or HTML formatting.
                    The maintainer that receives your patches needs to be able to save and apply them 
                    directly from your emails.
                    Using these scripts is the preferred method for sending patches.</p><p>For help on using these scripts, simply provide the 
                    <code class="filename">-h</code> argument as follows:
                    </p><pre class="literallayout">
     $ ~/poky/scripts/create-pull-request -h
     $ ~/poky/scripts/send-pull-request -h
                    </pre></li></ul></div><p>
        </p><p>            
            You can find general Git information on how to push a change upstream in the 
            <a class="ulink" href="http://book.git-scm.com/3_distributed_workflows.html" target="_top">Git Community Book</a>.
        </p></div><div class="section" title="3.9.2. Using Email to Submit a Patch"><div class="titlepage"><div><div><h3 class="title"><a id="submitting-a-patch"></a>3.9.2. Using Email to Submit a Patch</h3></div></div></div><p>
            You can submit patches without using the <code class="filename">create-pull-request</code> and 
            <code class="filename">send-pull-request</code> scripts described in the previous section.
            Keep in mind, the preferred method is to use the scripts, however.
        </p><p>
            Depending on the components changed, you need to submit the email to a specific
            mailing list.
            For some guidance on which mailing list to use, see the list in the 
            "<a class="link" href="#how-to-submit-a-change" title="3.9. How to Submit a Change">How to Submit a Change</a>" section
            earlier in this manual.
            For a description of the available mailing lists, see
            "<a class="link" href="#resources-mailinglist" target="_top">Mailing Lists</a>"
            section in the Yocto Project Reference Manual.
        </p><p>            
            Here is the general procedure on how to submit a patch through email without using the 
            scripts:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Make your changes in your local Git repository.</p></li><li class="listitem"><p>Stage your changes by using the <code class="filename">git add</code>
                    command on each file you changed.</p></li><li class="listitem"><p>Commit the change by using the 
                    <code class="filename">git commit --signoff</code> command.
                    Using the <code class="filename">--signoff</code> option identifies you as the person 
                    making the change and also satisfies the Developer's Certificate of 
                    Origin (DCO) shown earlier.</p><p>When you form a commit you must follow certain standards established by the 
                    Yocto Project development team. 
                    See the earlier section
                    "<a class="link" href="#how-to-submit-a-change" title="3.9. How to Submit a Change">How to Submit a Change</a>" 
                    for Yocto Project commit message standards.</p></li><li class="listitem"><p>Format the commit into an email message.
                    To format commits, use the <code class="filename">git format-patch</code> command.
                    When you provide the command, you must include a revision list or a number of patches
                    as part of the command.
                    For example, these two commands each take the most recent single commit and 
                    format it as an email message in the current directory:  
                    </p><pre class="literallayout">
     $ git format-patch -1
     $ git format-patch HEAD~
                    </pre><p>After the command is run, the current directory contains a 
                    numbered <code class="filename">.patch</code> file for the commit.</p><p>If you provide several commits as part of the command, 
                    the <code class="filename">git format-patch</code> command produces a numbered 
                    series of files in the current directory – one for each commit.
                    If you have more than one patch, you should also use the 
                    <code class="filename">--cover</code> option with the command, which generates a 
                    cover letter as the first "patch" in the series.  
                    You can then edit the cover letter to provide a description for 
                    the series of patches.
                    For information on the <code class="filename">git format-patch</code> command, 
                    see <code class="filename">GIT_FORMAT_PATCH(1)</code> displayed using the  
                    <code class="filename">man git-format-patch</code> command.</p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>If you are or will be a frequent contributor to the Yocto Project
                    or to OpenEmbedded, you might consider requesting a contrib area and the 
                    necessary associated rights.</div></li><li class="listitem"><p>Import the files into your mail client by using the 
                    <code class="filename">git send-email</code> command.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>In order to use <code class="filename">git send-email</code>, you must have the 
                    the proper Git packages installed.
                    For Ubuntu and Fedora the package is <code class="filename">git-email</code>.</div><p>The <code class="filename">git send-email</code> command sends email by using a local
                    or remote Mail Transport Agent (MTA) such as 
                    <code class="filename">msmtp</code>, <code class="filename">sendmail</code>, or through a direct
                    <code class="filename">smtp</code> configuration in your Git <code class="filename">config</code>
                    file.
                    If you are submitting patches through email only, it is very important
                    that you submit them without any whitespace or HTML formatting that 
                    either you or your mailer introduces.
                    The maintainer that receives your patches needs to be able to save and 
                    apply them directly from your emails.
                    A good way to verify that what you are sending will be applicable by the 
                    maintainer is to do a dry run and send them to yourself and then 
                    save and apply them as the maintainer would.</p><p>The <code class="filename">git send-email</code> command is the preferred method
                    for sending your patches since there is no risk of compromising whitespace
                    in the body of the message, which can occur when you use your own mail client.
                    The command also has several options that let you 
                    specify recipients and perform further editing of the email message.
                    For information on how to use the <code class="filename">git send-email</code> command,
                    use the <code class="filename">man git-send-email</code> command.</p></li></ul></div><p>
        </p></div></div></div>

    <div class="chapter" title="Chapter 4. Common Tasks"><div class="titlepage"><div><div><h2 class="title"><a id="extendpoky"></a>Chapter 4. Common Tasks</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#understanding-and-creating-layers">4.1. Understanding and Creating Layers</a></span></dt><dd><dl><dt><span class="section"><a href="#yocto-project-layers">4.1.1. Layers</a></span></dt><dt><span class="section"><a href="#creating-your-own-layer">4.1.2. Creating Your Own Layer</a></span></dt><dt><span class="section"><a href="#enabling-your-layer">4.1.3. Enabling Your Layer</a></span></dt><dt><span class="section"><a href="#using-bbappend-files">4.1.4. Using .bbappend Files</a></span></dt><dt><span class="section"><a href="#prioritizing-your-layer">4.1.5. Prioritizing Your Layer</a></span></dt><dt><span class="section"><a href="#managing-layers">4.1.6. Managing Layers</a></span></dt></dl></dd><dt><span class="section"><a href="#usingpoky-extend-customimage">4.2. Customizing Images</a></span></dt><dd><dl><dt><span class="section"><a href="#usingpoky-extend-customimage-custombb">4.2.1. Customizing Images Using Custom .bb Files</a></span></dt><dt><span class="section"><a href="#usingpoky-extend-customimage-customtasks">4.2.2. Customizing Images Using Custom Tasks</a></span></dt><dt><span class="section"><a href="#usingpoky-extend-customimage-imagefeatures">4.2.3. Customizing Images Using Custom <code class="filename">IMAGE_FEATURES</code> and 
                <code class="filename">EXTRA_IMAGE_FEATURES</code></a></span></dt><dt><span class="section"><a href="#usingpoky-extend-customimage-localconf">4.2.4. Customizing Images Using <code class="filename">local.conf</code></a></span></dt></dl></dd><dt><span class="section"><a href="#usingpoky-extend-addpkg">4.3. Adding a Package</a></span></dt><dd><dl><dt><span class="section"><a href="#usingpoky-extend-addpkg-singlec">4.3.1. Single .c File Package (Hello World!)</a></span></dt><dt><span class="section"><a href="#usingpoky-extend-addpkg-autotools">4.3.2. Autotooled Package</a></span></dt><dt><span class="section"><a href="#usingpoky-extend-addpkg-makefile">4.3.3. Makefile-Based Package</a></span></dt><dt><span class="section"><a href="#splitting-an-application-into-multiple-packages">4.3.4. Splitting an Application into Multiple Packages</a></span></dt><dt><span class="section"><a href="#including-static-library-files">4.3.5. Including Static Library Files</a></span></dt><dt><span class="section"><a href="#usingpoky-extend-addpkg-postinstalls">4.3.6. Post Install Scripts</a></span></dt></dl></dd><dt><span class="section"><a href="#platdev-newmachine">4.4. Adding a New Machine</a></span></dt><dd><dl><dt><span class="section"><a href="#platdev-newmachine-conffile">4.4.1. Adding the Machine Configuration File</a></span></dt><dt><span class="section"><a href="#platdev-newmachine-kernel">4.4.2. Adding a Kernel for the Machine</a></span></dt><dt><span class="section"><a href="#platdev-newmachine-formfactor">4.4.3. Adding a Formfactor Configuration File</a></span></dt></dl></dd><dt><span class="section"><a href="#building-multiple-architecture-libraries-into-one-image">4.5. Combining Multiple Versions of Library Files into One Image</a></span></dt><dd><dl><dt><span class="section"><a href="#preparing-to-use-multilib">4.5.1. Preparing to use Multilib</a></span></dt><dt><span class="section"><a href="#using-multilib">4.5.2. Using Multilib</a></span></dt><dt><span class="section"><a href="#additional-implementation-details">4.5.3. Additional Implementation Details</a></span></dt></dl></dd><dt><span class="section"><a href="#configuring-the-kernel">4.6. Configuring the Kernel</a></span></dt><dd><dl><dt><span class="section"><a href="#using-menuconfig">4.6.1. Using  <code class="filename">menuconfig</code></a></span></dt><dt><span class="section"><a href="#creating-config-fragments">4.6.2. Creating Configuration Fragments</a></span></dt><dt><span class="section"><a href="#fine-tuning-the-kernel-configuration-file">4.6.3. Fine-tuning the Kernel Configuration File</a></span></dt></dl></dd><dt><span class="section"><a href="#usingpoky-changes-updatingimages">4.7. Updating Existing Images</a></span></dt><dt><span class="section"><a href="#usingpoky-changes-prbump">4.8. Incrementing a Package Revision Number</a></span></dt><dt><span class="section"><a href="#usingpoky-configuring-DISTRO_PN_ALIAS">4.9. Handling a Package Name Alias</a></span></dt><dt><span class="section"><a href="#building-software-from-an-external-source">4.10. Building Software from an External Source</a></span></dt><dt><span class="section"><a href="#excluding-recipes-from-the-build">4.11. Excluding Recipes From the Build</a></span></dt><dt><span class="section"><a href="#platdev-appdev-srcrev">4.12. Using an External SCM</a></span></dt><dt><span class="section"><a href="#platdev-gdb-remotedebug">4.13. Debugging With the GNU Project Debugger (GDB) Remotely</a></span></dt><dd><dl><dt><span class="section"><a href="#platdev-gdb-remotedebug-launch-gdbserver">4.13.1. Launching Gdbserver on the Target</a></span></dt><dt><span class="section"><a href="#platdev-gdb-remotedebug-launch-gdb">4.13.2. Launching GDB on the Host Computer</a></span></dt></dl></dd><dt><span class="section"><a href="#platdev-oprofile">4.14. Profiling with OProfile</a></span></dt><dd><dl><dt><span class="section"><a href="#platdev-oprofile-target">4.14.1. Profiling on the Target</a></span></dt><dt><span class="section"><a href="#platdev-oprofile-oprofileui">4.14.2. Using OProfileUI</a></span></dt></dl></dd></dl></div><p>
        This chapter describes standard tasks such as adding new
        software packages, extending or customizing images, and porting work to
        new hardware (adding a new machine). 
        The chapter also describes how to combine multiple 
        versions of library files into a single image, how to handle a package name alias, and
        gives advice about how to make changes to the Yocto Project to achieve the best results.
    </p><div class="section" title="4.1. Understanding and Creating Layers"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="understanding-and-creating-layers"></a>4.1. Understanding and Creating Layers</h2></div></div></div><p>
            The OpenEmbedded build system supports organizing <a class="link" href="#metadata">metadata</a> 
            into multiple layers. 
            Layers allow you to isolate different types of customizations from each other.
            You might find it tempting to keep everything in one layer when working on a single project.
            However, the more modular you organize your metadata, the easier it is to cope with future changes.
        </p><p>
            To illustrate how layers are used to keep things modular, consider machine customizations.
            These types of customizations typically reside in a BSP Layer.
            Furthermore, the machine customizations should be isolated from recipes and metadata that support 
            a new GUI environment, for example. 
            This situation gives you a couple a layers: one for the machine configurations, and one for the 
            GUI environment.
            It is important to understand, however, that the BSP layer can still make machine-specific 
            additions to recipes within the GUI environment layer without polluting the GUI layer itself 
            with those machine-specific changes. 
            You can accomplish this through a recipe that is a BitBake append 
            (<code class="filename">.bbappend</code>) file, which is described later in this section.
        </p><p>
        </p><div class="section" title="4.1.1. Layers"><div class="titlepage"><div><div><h3 class="title"><a id="yocto-project-layers"></a>4.1.1. Layers</h3></div></div></div><p>
                The source directory contains several layers right out of the box.
                You can easily identify a layer in the source directory by its folder name.
                Folders that are layers begin with the string <code class="filename">meta</code>.
                For example, when you set up the <a class="link" href="#source-directory">source directory</a>
                structure, you will see several layers: <code class="filename">meta</code>, <code class="filename">meta-demoapps</code>,
                <code class="filename">meta-skeleton</code>, and <code class="filename">meta-yocto</code>.
                Each of these folders is a layer.
            </p><p>
                Furthermore, if you set up a local copy of the <code class="filename">meta-intel</code> Git repository
                and then explore that folder, you will discover many BSP layers within the 
                <code class="filename">meta-intel</code> layer.
                For more information on BSP layers, see the 
                "<a class="link" href="#bsp-layers" target="_top">BSP Layers</a>"
                section in the Yocto Project Board Support Package (BSP) Developer's Guide.
            </p></div><div class="section" title="4.1.2. Creating Your Own Layer"><div class="titlepage"><div><div><h3 class="title"><a id="creating-your-own-layer"></a>4.1.2. Creating Your Own Layer</h3></div></div></div><p>
                It is very easy to create your own layer to use with the OpenEmbedded build system.
                Follow these general steps to create your layer:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Check Existing Layers:</em></span> Before creating a new layer, 
                        you should be sure someone has not already created a layer containing the metadata 
                        you need.
                        You can see the
                        <a class="ulink" href="http://www.openembedded.org/wiki/LayerIndex" target="_top"><code class="filename">LayerIndex</code></a>
                        for a list of layers from the OpenEmbedded community that can be used in the 
                        Yocto Project.</p></li><li class="listitem"><p><span class="emphasis"><em>Create a Directory:</em></span> Create the directory 
                        for your layer.
                        Traditionally, prepend the name of the folder with the string
                        <code class="filename">meta</code>.
                        For example:
                        </p><pre class="literallayout">
     meta-mylayer
     meta-GUI_xyz
     meta-mymachine
                        </pre></li><li class="listitem"><p><span class="emphasis"><em>Create a Layer Configuration File:</em></span> Inside your new
                       layer folder, you need to create a <code class="filename">conf/layer.conf</code> file.
                       It is easiest to take an existing layer configuration file and copy that to your 
                       layer's <code class="filename">conf</code> directory and then modify the file as needed.</p><p>The <code class="filename">meta-yocto/conf/layer.conf</code> file demonstrates the 
                       required syntax:
                       </p><pre class="literallayout">
     # We have a conf and classes directory, add to BBPATH
     BBPATH := "${LAYERDIR}:${BBPATH}"

     # We have recipes-* directories, add to BBFILES
     BBFILES := "${BBFILES} ${LAYERDIR}/recipes-*/*/*.bb \
                 ${LAYERDIR}/recipes-*/*/*.bbappend"

     BBFILE_COLLECTIONS += "yocto"
     BBFILE_PATTERN_yocto := "^${LAYERDIR}/"
     BBFILE_PRIORITY_yocto = "5" 
                        </pre><p>In the previous example, the recipes for the layers are added to 
                        <code class="filename"><a class="link" href="#var-BBFILES" target="_top">BBFILES</a></code>. 
                        The 
                        <code class="filename"><a class="link" href="#var-BBFILE_COLLECTIONS" target="_top">BBFILE_COLLECTIONS</a></code>
                        variable is then appended with the layer name. 
                        The 
                        <code class="filename"><a class="link" href="#var-BBFILE_PATTERN" target="_top">BBFILE_PATTERN</a></code> 
                        variable is set to a regular expression and is used to match files
                        from <code class="filename">BBFILES</code> into a particular layer.
                        In this case, immediate expansion of 
                        <code class="filename"><a class="link" href="#var-LAYERDIR" target="_top">LAYERDIR</a></code> 
                        sets <code class="filename">BBFILE_PATTERN</code> to the layer's path.
                        The 
                        <code class="filename"><a class="link" href="#var-BBFILE_PRIORITY" target="_top">BBFILE_PRIORITY</a></code> 
                        variable then assigns a priority to the layer. 
                        Applying priorities is useful in situations where the same package might appear in multiple
                        layers and allows you to choose what layer should take precedence.</p><p>Note the use of the 
                        <code class="filename"><a class="link" href="#var-LAYERDIR" target="_top">LAYERDIR</a></code> 
                        variable with the immediate expansion operator.
                        The <code class="filename">LAYERDIR</code> variable expands to the directory of the current layer and
                        requires the immediate expansion operator so that BitBake does not wait to expand the variable 
                        when it's parsing a different directory.</p><p>Through the use of the <code class="filename">BBPATH</code> variable,
                        BitBake locates <code class="filename">.bbclass</code> files, configuration
                        files, and files that are included with <code class="filename">include</code> 
                        and <code class="filename">require</code> statements. 
                        For these cases, BitBake uses the first file with the matching name found in 
                        <code class="filename">BBPATH</code>.
                        This is similar to the way the <code class="filename">PATH</code> variable is used for binaries. 
                        We recommend, therefore, that you use unique <code class="filename">.bbclass</code>
                        and configuration file names in your custom layer.</p></li><li class="listitem"><p><span class="emphasis"><em>Add Content:</em></span> Depending on the type of layer, 
                        add the content.
                        If the layer adds support for a machine, add the machine configuration in 
                        a <code class="filename">conf/machine/</code> file within the layer.
                        If the layer adds distro policy, add the distro configuration in a
                        <code class="filename">conf/distro/</code> file with the layer.
                        If the layer introduces new recipes, put the recipes you need in 
                        <code class="filename">recipes-*</code> subdirectories within the layer.</p></li></ol></div><p>
            </p><p>
                To create layers that are easier to maintain, you should consider the following:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Avoid "overlaying" entire recipes from other layers in your 
                        configuration.
                        In other words, don't copy an entire recipe into your layer and then modify it.
                        Use <code class="filename">.bbappend</code> files to override the parts of the 
                        recipe you need to modify.</p></li><li class="listitem"><p>Avoid duplicating include files.
                        Use <code class="filename">.bbappend</code> files for each recipe that uses an include 
                        file.
                        Or, if you are introducing a new recipe that requires the included file, use the 
                        path relative to the original layer directory to refer to the file.
                        For example, use <code class="filename">require recipes-core/somepackage/somefile.inc</code>
                        instead of <code class="filename">require somefile.inc</code>. 
                        If you're finding you have to overlay the include file, it could indicate a 
                        deficiency in the include file in the layer to which it originally belongs.
                        If this is the case, you need to address that deficiency instead of overlaying
                        the include file.
                        For example, consider how Qt 4 database support plugins are configured.
                        The source directory does not have 
                        MySQL or PostgreSQL, however OpenEmbedded's
                        layer <code class="filename">meta-oe</code> does.
                        Consequently, <code class="filename">meta-oe</code> uses <code class="filename">.bbappend</code>
                        files to modify the <code class="filename">QT_SQL_DRIVER_FLAGS</code> variable to enable 
                        the appropriate plugins. 
                        This variable was added to the <code class="filename">qt4.inc</code> include file in 
                        the source directory specifically to allow the <code class="filename">meta-oe</code> layer
                        to be able to control which plugins are built.</p></li></ul></div><p> 
            </p><p>
                We also recommend the following:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Store custom layers in a Git repository that uses the 
                        <code class="filename">meta-&lt;layer_name&gt;</code> format.</p></li><li class="listitem"><p>Clone the repository alongside other <code class="filename">meta</code>
                        directories in the 
                        <a class="link" href="#source-directory">source directory</a>.</p></li></ul></div><p>
                 Following these recommendations keeps your source directory and 
                 its configuration entirely inside the Yocto Project's core base.
            </p></div><div class="section" title="4.1.3. Enabling Your Layer"><div class="titlepage"><div><div><h3 class="title"><a id="enabling-your-layer"></a>4.1.3. Enabling Your Layer</h3></div></div></div><p>
                Before the OpenEmbedded build system can use your new layer, you need to enable it.
                To enable your layer, simply add your layer's path to the 
                <code class="filename"><a class="link" href="#var-BBLAYERS" target="_top">BBLAYERS</a></code> 
                variable in your <code class="filename">conf/bblayers.conf</code> file, which is found in the 
                <a class="link" href="#build-directory">build directory</a>. 
                The following example shows how to enable a layer named <code class="filename">meta-mylayer</code>:
                </p><pre class="literallayout">
     LCONF_VERSION = "1"

     BBFILES ?= ""
     BBLAYERS = " \
       /path/to/poky/meta \
       /path/to/poky/meta-yocto \
       /path/to/poky/meta-mylayer \
       "
                </pre><p>
            </p><p>
                BitBake parses each <code class="filename">conf/layer.conf</code> file as specified in the 
                <code class="filename">BBLAYERS</code> variable within the <code class="filename">conf/bblayers.conf</code>
                file.
                During the processing of each <code class="filename">conf/layer.conf</code> file, BitBake adds the 
                recipes, classes and configurations contained within the particular layer to the source
                directory.
            </p></div><div class="section" title="4.1.4. Using .bbappend Files"><div class="titlepage"><div><div><h3 class="title"><a id="using-bbappend-files"></a>4.1.4. Using .bbappend Files</h3></div></div></div><p>
                Recipes used to append metadata to other recipes are called BitBake append files.
                BitBake append files use the <code class="filename">.bbappend</code> file type suffix, while  
                underlying recipes to which metadata is being appended use the 
                <code class="filename">.bb</code> file type suffix.
            </p><p>
                A <code class="filename">.bbappend</code> file allows your layer to make additions or 
                changes to the content of another layer's recipe without having to copy the other 
                recipe into your layer.
                Your <code class="filename">.bbappend</code> file resides in your layer, while the underlying 
                <code class="filename">.bb</code> recipe file to which you are appending metadata
                resides in a different layer.
            </p><p>
                Append files files must have the same name as the underlying recipe.
                For example, the append file <code class="filename">someapp_1.3.bbappend</code> must 
                apply to <code class="filename">someapp_1.3.bb</code>.
                This means the original recipe and append file names are version number specific.
                If the underlying recipe is renamed to update to a newer version, the 
                corresponding <code class="filename">.bbappend</code> file must be renamed as well.
                During the build process, BitBake displays an error on starting if it detects a 
                <code class="filename">.bbappend</code> file that does not have an underlying recipe 
                with a matching name.
            </p><p>
                Being able to append information to an existing recipe not only avoids duplication, 
                but also automatically applies recipe changes in a different layer to your layer.
                If you were copying recipes, you would have to manually merge changes as they occur.
            </p><p>
                As an example, consider the main formfactor recipe and a corresponding formfactor 
                append file both from the 
                <a class="link" href="#source-directory">source directory</a>.
                Here is the main formfactor recipe, which is named <code class="filename">formfactor_0.0.bb</code> and  
                located in the meta layer at <code class="filename">meta/recipes-bsp/formfactor</code>:
                </p><pre class="literallayout">
     DESCRIPTION = "Device formfactor information"
     SECTION = "base"
     LICENSE = "MIT"
     LIC_FILES_CHKSUM = "file://${COREBASE}/LICENSE;md5=3f40d7994397109285ec7b81fdeb3b58 \
                         file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"
     PR = "r20"

     SRC_URI = "file://config file://machconfig"
     S = "${WORKDIR}"

     PACKAGE_ARCH = "${MACHINE_ARCH}"
     INHIBIT_DEFAULT_DEPS = "1"

     do_install() {
     	# Only install file if it has a contents
             install -d ${D}${sysconfdir}/formfactor/
             install -m 0644 ${S}/config ${D}${sysconfdir}/formfactor/
     	if [ -s "${S}/machconfig" ]; then
     	        install -m 0644 ${S}/machconfig ${D}${sysconfdir}/formfactor/
     	fi
     }
                </pre><p>
                Here is the append file, which is named <code class="filename">formfactor_0.0.bbappend</code> and is from the 
                Crown Bay BSP Layer named <code class="filename">meta-intel/meta-crownbay</code>.
                The file is in <code class="filename">recipes-bsp/formfactor</code>:
                </p><pre class="literallayout">
     FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
 
     PRINC = "1"
                </pre><p>
                This example adds or overrides files in 
                <a class="link" href="#var-SRC_URI" target="_top"><code class="filename">SRC_URI</code></a>
                within a <code class="filename">.bbappend</code> by extending the path BitBake uses to search for files. 
                The most reliable way to do this is by prepending the 
                <code class="filename">FILESEXTRAPATHS</code> variable.
                For example, if you have your files in a directory that is named the same as your package 
                (<a class="link" href="#var-PN" target="_top"><code class="filename">PN</code></a>),
                you can add this directory by adding the following to your <code class="filename">.bbappend</code> file:
                </p><pre class="literallayout">
     FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
                </pre><p>
                Using the immediate expansion assignment operator <code class="filename">:=</code> is important because 
                of the reference to <code class="filename">THISDIR</code>.
                The trailing colon character is important as it ensures that items in the list remain 
                colon-separated.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>BitBake automatically defines the <code class="filename">THISDIR</code> variable.
                    You should never set this variable yourself.
                    Using <code class="filename">_prepend</code> ensures your path will be searched prior to other 
                    paths in the final list.
                </div><p>
            </p><p>
                For another example on how to use a <code class="filename">.bbappend</code> file, see the 
                "<a class="link" href="#changing-recipes-kernel" title="A.5.2.4. Changing  recipes-kernel">Changing <code class="filename">recipes-kernel</code></a>"
                section.
            </p></div><div class="section" title="4.1.5. Prioritizing Your Layer"><div class="titlepage"><div><div><h3 class="title"><a id="prioritizing-your-layer"></a>4.1.5. Prioritizing Your Layer</h3></div></div></div><p>
                Each layer is assigned a priority value.
                Priority values control which layer takes precedence if there are recipe files with 
                the same name in multiple layers.
                For these cases, the recipe file from the layer with a higher priority number taking precedence.
                Priority values also affect the order in which multiple <code class="filename">.bbappend</code> files 
                for the same recipe are applied. 
                You can either specify the priority manually, or allow the build system to calculate it
                based on the layer's dependencies.
            </p><p>
                To specify the layer's priority manually, use the 
                <a class="link" href="#var-BBFILE_PRIORITY" target="_top"><code class="filename">BBFILE_PRIORITY</code></a>
                variable.
                For example:
                </p><pre class="literallayout">
     BBFILE_PRIORITY := "1"
                </pre><p>
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>It is possible for a recipe with a lower version number 
                <a class="link" href="#var-PV" target="_top"><code class="filename">PV</code></a>
                in a layer that has a higher priority to take precedence.</p><p>Also, the layer priority does not currently affect the precedence order of 
                <code class="filename">.conf</code> or <code class="filename">.bbclass</code> files.
                Future versions of BitBake might address this.</p></div></div><div class="section" title="4.1.6. Managing Layers"><div class="titlepage"><div><div><h3 class="title"><a id="managing-layers"></a>4.1.6. Managing Layers</h3></div></div></div><p>
                You can use the BitBake layer management tool to provide a view into the structure of 
                recipes across a multi-layer project.
                Being able to generate output that reports on configured layers with their paths and 
                priorities and on <code class="filename">.bbappend</code> files and their applicable recipes
                can help to reveal potential problems.
            </p><p>
                Use the following form when running the layer management tool.
                </p><pre class="literallayout">
     $ bitbake-layers &lt;command&gt; [arguments]
                </pre><p>
                The following list describes the available commands:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><span class="emphasis"><em>help:</em></span></code>
                        Displays general help or help on a specified command.</p></li><li class="listitem"><p><code class="filename"><span class="emphasis"><em>show-layers:</em></span></code>
                        Show the current configured layers.</p></li><li class="listitem"><p><code class="filename"><span class="emphasis"><em>show-recipes:</em></span></code>
                        Lists available recipes and the layers that provide them.  
                        </p></li><li class="listitem"><p><code class="filename"><span class="emphasis"><em>show-overlayed:</em></span></code>
                        Lists overlayed recipes.  
                        A recipe is overlayed when a recipe with the same name exists in another layer 
                        that has a higher layer priority.
                        </p></li><li class="listitem"><p><code class="filename"><span class="emphasis"><em>show-appends:</em></span></code>
                        Lists <code class="filename">.bbappend</code> files and the recipe files to which
                        they apply.</p></li><li class="listitem"><p><code class="filename"><span class="emphasis"><em>flatten:</em></span></code>
                        Flattens the layer configuration into a separate output directory.
                        Flattening your layer configuration builds a "flattened" directory that contains
                        the contents of all layers, with any overlayed recipes removed and any
                        <code class="filename">.bbappend</code> files appended to the corresponding recipes.
                        You might have to perform some manual cleanup of the flattened layer as follows:
                        </p><div class="itemizedlist"><ul class="itemizedlist" type="circle"><li class="listitem"><p>Non-recipe files (such as patches) are overwritten.
                                The flatten command shows a warning for these files.</p></li><li class="listitem"><p>Anything beyond the normal layer setup has been added to 
                                the <code class="filename">layer.conf</code> file.
                                Only the lowest priority layer's <code class="filename">layer.conf</code> is used.
                                </p></li><li class="listitem"><p>Overridden and appended items from <code class="filename">.bbappend</code>
                                files need to be cleaned up.
                                The contents of each <code class="filename">.bbappend</code> end up in the 
                                flattened recipe.
                                However, if there are appended or changed variable values, you need to tidy 
                                these up yourself.
                                Consider the following example.
                                Here, the <code class="filename">bitbake-layers</code> command adds the line
                                <code class="filename">#### bbappended ...</code> so that you know where the following
                                lines originate:
                                </p><pre class="literallayout">
     ...
     DESCRIPTION = "A useful utility"
     ...
     EXTRA_OECONF = "--enable-something"
     ...

     #### bbappended from meta-anotherlayer ####

     DESCRIPTION = "Customized utility"
     EXTRA_OECONF += "--enable-somethingelse"
                                </pre><p>
                                Ideally, you would tidy up these utilities as follows:
                                </p><pre class="literallayout">
     ...
     DESCRIPTION = "Customized utility"
     ...
     EXTRA_OECONF = "--enable-something --enable-somethingelse"
     ...
                                </pre></li></ul></div></li></ul></div><p>
            </p></div></div><div class="section" title="4.2. Customizing Images"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-extend-customimage"></a>4.2. Customizing Images</h2></div></div></div><p>
            You can customize images to satisfy particular requirements. 
            This section describes several methods and provides guidelines for each.
        </p><div class="section" title="4.2.1. Customizing Images Using Custom .bb Files"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-extend-customimage-custombb"></a>4.2.1. Customizing Images Using Custom .bb Files</h3></div></div></div><p>
                One way to get additional software into an image is to create a custom image. 
                The following example shows the form for the two lines you need:
                </p><pre class="literallayout">
     IMAGE_INSTALL = "task-core-x11-base package1 package2"

     inherit core-image
                </pre><p>
            </p><p>
                By creating a custom image, a developer has total control
                over the contents of the image. 
                It is important to use the correct names of packages in the 
                <code class="filename"><a class="link" href="#var-IMAGE_INSTALL" target="_top">IMAGE_INSTALL</a></code> 
                variable. 
                You must use the OpenEmbedded notation and not the Debian notation for the names 
                (e.g. <code class="filename">eglibc-dev</code> instead of <code class="filename">libc6-dev</code>).
            </p><p>
                The other method for creating a custom image is to base it on an existing image. 
                For example, if you want to create an image based on <code class="filename">core-image-sato</code>
                but add the additional package <code class="filename">strace</code> to the image, 
                copy the <code class="filename">meta/recipes-sato/images/core-image-sato.bb</code> to a 
                new <code class="filename">.bb</code> and add the following line to the end of the copy:
                </p><pre class="literallayout">
     IMAGE_INSTALL += "strace"
                </pre><p>
            </p></div><div class="section" title="4.2.2. Customizing Images Using Custom Tasks"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-extend-customimage-customtasks"></a>4.2.2. Customizing Images Using Custom Tasks</h3></div></div></div><p>
                For complex custom images, the best approach is to create a custom task package
                that is used to build the image or images. 
                A good example of a tasks package is 
                <code class="filename">meta/recipes-core/tasks/task-core-boot.bb</code>
                The 
                <code class="filename"><a class="link" href="#var-PACKAGES" target="_top">PACKAGES</a></code> 
                variable lists the task packages to build along with the complementary
                <code class="filename">-dbg</code> and <code class="filename">-dev</code> packages. 
                For each package added, you can use 
                <code class="filename"><a class="link" href="#var-RDEPENDS" target="_top">RDEPENDS</a></code>
                and 
                <code class="filename"><a class="link" href="#var-RRECOMMENDS" target="_top">RRECOMMENDS</a></code> 
                entries to provide a list of packages the parent task package should contain. 
                Following is an example:
                </p><pre class="literallayout">
     DESCRIPTION = "My Custom Tasks"

     PACKAGES = "\
         task-custom-apps \
         task-custom-apps-dbg \
         task-custom-apps-dev \
         task-custom-tools \
         task-custom-tools-dbg \
         task-custom-tools-dev \
         "

     RDEPENDS_task-custom-apps = "\
         dropbear \
         portmap \
         psplash"

     RDEPENDS_task-custom-tools = "\
         oprofile \
         oprofileui-server \
         lttng-control \
         lttng-viewer"

     RRECOMMENDS_task-custom-tools = "\
         kernel-module-oprofile"
                </pre><p>
            </p><p>
                In the previous example, two task packages are created with their dependencies and their
                recommended package dependencies listed: <code class="filename">task-custom-apps</code>, and 
                <code class="filename">task-custom-tools</code>. 
                To build an image using these task packages, you need to add 
                <code class="filename">task-custom-apps</code> and/or 
                <code class="filename">task-custom-tools</code> to 
                <code class="filename"><a class="link" href="#var-IMAGE_INSTALL" target="_top">IMAGE_INSTALL</a></code>.
                For other forms of image dependencies see the other areas of this section.
            </p></div><div class="section" title="4.2.3. Customizing Images Using Custom IMAGE_FEATURES and EXTRA_IMAGE_FEATURES"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-extend-customimage-imagefeatures"></a>4.2.3. Customizing Images Using Custom <code class="filename">IMAGE_FEATURES</code> and 
                <code class="filename">EXTRA_IMAGE_FEATURES</code></h3></div></div></div><p>
                Ultimately users might want to add extra image features to the set by using the 
                <code class="filename"><a class="link" href="#var-IMAGE_FEATURES" target="_top">IMAGE_FEATURES</a></code>
                variable. 
                To create these features, the best reference is 
                <code class="filename">meta/classes/core-image.bbclass</code>, which shows how to achieve this. 
                In summary, the file looks at the contents of the 
                <code class="filename">IMAGE_FEATURES</code>
                variable and then maps that into a set of tasks or packages. 
                Based on this information the 
                <code class="filename"><a class="link" href="#var-IMAGE_INSTALL" target="_top"> IMAGE_INSTALL</a></code> 
                variable is generated automatically. 
                Users can add extra features by extending the class or creating a custom class for use 
                with specialized image <code class="filename">.bb</code> files.
                You can also add more features by configuring the 
                <code class="filename"><a class="link" href="#var-EXTRA_IMAGE_FEATURES" target="_top">EXTRA_IMAGE_FEATURES</a></code>
                variable in the <code class="filename">local.conf</code> file found in the source directory
                located in the build directory.
            </p><p>
                The Yocto Project ships with two SSH servers you can use in your images: 
                Dropbear and OpenSSH. 
                Dropbear is a minimal SSH server appropriate for resource-constrained environments,
                while OpenSSH is a well-known standard SSH server implementation.
                By default, the <code class="filename">core-image-sato</code> image is configured to use Dropbear.
                The <code class="filename">core-image-basic</code> and <code class="filename">core-image-lsb</code>
                images both include OpenSSH.
                The <code class="filename">core-image-minimal</code> image does not contain an SSH server.
                To change these defaults, edit the <code class="filename">IMAGE_FEATURES</code> variable
                so that it sets the image you are working with to include 
                <code class="filename">ssh-server-dropbear</code> or <code class="filename">ssh-server-openssh</code>.
            </p></div><div class="section" title="4.2.4. Customizing Images Using local.conf"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-extend-customimage-localconf"></a>4.2.4. Customizing Images Using <code class="filename">local.conf</code></h3></div></div></div><p>
                It is possible to customize image contents by using variables from your
                local configuration in your <code class="filename">conf/local.conf</code> file. 
                Because it is limited to local use, this method generally only allows you to 
                add packages and is not as flexible as creating your own customized image.
                When you add packages using local variables this way, you need to realize that 
                these variable changes affect all images at the same time and might not be
                what you require.
            </p><p>
                The simplest way to add extra packages to all images is by using the 
                <code class="filename"><a class="link" href="#var-IMAGE_INSTALL" target="_top">IMAGE_INSTALL</a></code>
                variable with the <code class="filename">_append</code> operator:
                </p><pre class="literallayout">
     IMAGE_INSTALL_append = " strace"
                </pre><p>
                Use of the syntax is important.
                Specifically, the space between the quote and the package name, which is
                <code class="filename">strace</code> in this example.
                This space is required since the <code class="filename">_append</code>
                operator does not add the space.
            </p><p>
                Furthermore, you must use <code class="filename">_append</code> instead of the <code class="filename">+=</code> 
                operator if you want to avoid ordering issues. 
                The reason for this is because doing so unconditionally appends to the variable and 
                avoids ordering problems due to the variable being set in image recipes and 
                <code class="filename">.bbclass</code> files with operators like <code class="filename">?=</code>.
                Using <code class="filename">_append</code> ensures the operation takes affect.
            </p><p>
                As shown in its simplest use, <code class="filename">IMAGE_INSTALL_append</code> affects
                all images.
                It is possible to extend the syntax so that the variable applies to a specific image only.
                Here is an example:
                </p><pre class="literallayout">
     IMAGE_INSTALL_append_pn-core-image-minimal = " strace"
                </pre><p>
                This example adds <code class="filename">strace</code> to <code class="filename">core-image-minimal</code>
                only.
            </p><p>
                You can add packages using a similar approach through the  
                <code class="filename"><a class="link" href="#var-CORE_IMAGE_EXTRA_INSTALL" target="_top">CORE_IMAGE_EXTRA_INSTALL</a></code> 
                variable.
                If you use this variable, only <code class="filename">core-image-*</code> images are affected.
            </p></div></div><div class="section" title="4.3. Adding a Package"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-extend-addpkg"></a>4.3. Adding a Package</h2></div></div></div><p>
            To add a package you need to write a recipe for it. 
            Writing a recipe means creating a <code class="filename">.bb</code> file that sets some
            variables.
            For information on variables that are useful for recipes and for information about recipe naming
            issues, see the 
            "<a class="link" href="#ref-varlocality-recipe-required" target="_top">Required</a>" 
            section of the Yocto Project Reference Manual.
        </p><p>
            Before writing a recipe from scratch, it is often useful to check
            whether someone else has written one already. 
            OpenEmbedded is a good place to look as it has a wider scope and range of packages.
            Because the Yocto Project aims to be compatible with OpenEmbedded, most recipes 
            you find there should work for you.
        </p><p>
            For new packages, the simplest way to add a recipe is to base it on a similar
            pre-existing recipe. 
            The sections that follow provide some examples that show how to add standard 
            types of packages.
        </p><div class="section" title="4.3.1. Single .c File Package (Hello World!)"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-extend-addpkg-singlec"></a>4.3.1. Single .c File Package (Hello World!)</h3></div></div></div><p>
                Building an application from a single file that is stored locally (e.g. under 
                <code class="filename">files/</code>) requires a recipe that has the file listed in 
                the 
                <code class="filename"><a class="link" href="#var-SRC_URI" target="_top">SRC_URI</a></code>
                variable. 
                Additionally, you need to manually write the <code class="filename">do_compile</code> and
                <code class="filename">do_install</code> tasks.
                The <code class="filename"><a class="link" href="#var-S" target="_top">S</a></code> 
                variable defines the 
                directory containing the source code, which is set to 
                <code class="filename"><a class="link" href="#var-WORKDIR" target="_top">
                WORKDIR</a></code> in this case - the directory BitBake uses for the build.
                </p><pre class="literallayout">
     DESCRIPTION = "Simple helloworld application"
     SECTION = "examples"
     LICENSE = "MIT"
     LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"
     PR = "r0"

     SRC_URI = "file://helloworld.c"

     S = "${WORKDIR}"

     do_compile() {
     	${CC} helloworld.c -o helloworld
     }

     do_install() {
     	install -d ${D}${bindir}
     	install -m 0755 helloworld ${D}${bindir}
     }
                </pre><p>
            </p><p>
                By default, the <code class="filename">helloworld</code>, <code class="filename">helloworld-dbg</code>,
                and <code class="filename">helloworld-dev</code> packages are built. 
                For information on how to customize the packaging process, see the
                "<a class="link" href="#splitting-an-application-into-multiple-packages" title="4.3.4. Splitting an Application into Multiple Packages">Splitting an Application
                into Multiple Packages</a>" section.
            </p></div><div class="section" title="4.3.2. Autotooled Package"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-extend-addpkg-autotools"></a>4.3.2. Autotooled Package</h3></div></div></div><p>
                Applications that use Autotools such as <code class="filename">autoconf</code> and 
                <code class="filename">automake</code> require a recipe that has a source archive listed in 
                <code class="filename"><a class="link" href="#var-SRC_URI" target="_top">SRC_URI</a></code> and 
                also inherits Autotools, which instructs BitBake to use the
                <code class="filename">autotools.bbclass</code> file, which contains the definitions of all the steps
                needed to build an Autotool-based application.
                The result of the build is automatically packaged. 
                And, if the application uses NLS for localization, packages with local information are 
                generated (one package per language). 
                Following is one example: (<code class="filename">hello_2.3.bb</code>)
                </p><pre class="literallayout">
     DESCRIPTION = "GNU Helloworld application"
     SECTION = "examples"
     LICENSE = "GPLv2+"
     LIC_FILES_CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"
     PR = "r0"

     SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

     inherit autotools gettext
                 </pre><p>
            </p><p>
                The variable 
                <code class="filename"><a class="link" href="#var-LIC_FILES_CHKSUM" target="_top">LIC_FILES_CHKSUM</a></code> 
                is used to track source license changes as described in the
                "<a class="link" href="#usingpoky-configuring-LIC_FILES_CHKSUM" target="_top">Track License Changes</a>" section. 
                You can quickly create Autotool-based recipes in a manner similar to the previous example.
            </p></div><div class="section" title="4.3.3. Makefile-Based Package"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-extend-addpkg-makefile"></a>4.3.3. Makefile-Based Package</h3></div></div></div><p>
                Applications that use GNU <code class="filename">make</code> also require a recipe that has
                the source archive listed in 
                <code class="filename"><a class="link" href="#var-SRC_URI" target="_top">SRC_URI</a></code>. 
                You do not need to add a <code class="filename">do_compile</code> step since by default BitBake 
                starts the <code class="filename">make</code> command to compile the application. 
                If you need additional <code class="filename">make</code> options you should store them in the 
                <code class="filename"><a class="link" href="#var-EXTRA_OEMAKE" target="_top">EXTRA_OEMAKE</a></code>
                variable.
                BitBake passes these options into the <code class="filename">make</code> GNU invocation. 
                Note that a <code class="filename">do_install</code> task is still required.
                Otherwise BitBake runs an empty <code class="filename">do_install</code> task by default. 
            </p><p>
                Some applications might require extra parameters to be passed to the compiler.
                For example, the application might need an additional header path. 
                You can accomplish this by adding to the 
                <code class="filename"><a class="link" href="#var-CFLAGS" target="_top">CFLAGS</a></code> variable.
                The following example shows this:
                </p><pre class="literallayout">
     CFLAGS_prepend = "-I ${S}/include "
                </pre><p>
            </p><p>
            In the following example, <code class="filename">mtd-utils</code> is a makefile-based package:
                </p><pre class="literallayout">
     DESCRIPTION = "Tools for managing memory technology devices."
     SECTION = "base"
     DEPENDS = "zlib lzo e2fsprogs util-linux"
     HOMEPAGE = "http://www.linux-mtd.infradead.org/"
     LICENSE = "GPLv2+"
     LIC_FILES_CHKSUM = "file://COPYING;md5=0636e73ff0215e8d672dc4c32c317bb3 \
                    file://include/common.h;beginline=1;endline=17;md5=ba05b07912a44ea2bf81ce409380049c"

     SRC_URI = "git://git.infradead.org/mtd-utils.git;protocol=git;tag=995cfe51b0a3cf32f381c140bf72b21bf91cef1b \
	     	file://add-exclusion-to-mkfs-jffs2-git-2.patch"

     S = "${WORKDIR}/git/"

     PR = "r1"

     EXTRA_OEMAKE = "'CC=${CC}' 'RANLIB=${RANLIB}' 'AR=${AR}' \
        'CFLAGS=${CFLAGS} -I${S}/include -DWITHOUT_XATTR' 'BUILDDIR=${S}'"

     do_install () {
	     oe_runmake install DESTDIR=${D} SBINDIR=${sbindir} MANDIR=${mandir} \
            INCLUDEDIR=${includedir}
	     install -d ${D}${includedir}/mtd/
	     for f in ${S}/include/mtd/*.h; do
	     	install -m 0644 $f ${D}${includedir}/mtd/
	     done
     }

     PARALLEL_MAKE = ""

     BBCLASSEXTEND = "native"
                </pre><p>
            </p><p>
                If your sources are available as a tarball instead of a Git repository, you
                will need to provide the URL to the tarball as well as an 
                <code class="filename">md5</code> or <code class="filename">sha256</code> sum of
                the download. 
                Here is an example:
                </p><pre class="literallayout">
     SRC_URI="ftp://ftp.infradead.org/pub/mtd-utils/mtd-utils-1.4.9.tar.bz2"
     SRC_URI[md5sum]="82b8e714b90674896570968f70ca778b"
                </pre><p>
                You can generate the <code class="filename">md5</code> or <code class="filename">sha256</code> sums 
                by using the <code class="filename">md5sum</code> or <code class="filename">sha256sum</code> commands
                with the target file as the only argument. 
                Here is an example:
                </p><pre class="literallayout">
     $ md5sum mtd-utils-1.4.9.tar.bz2 
     82b8e714b90674896570968f70ca778b mtd-utils-1.4.9.tar.bz2
                </pre><p>
            </p></div><div class="section" title="4.3.4. Splitting an Application into Multiple Packages"><div class="titlepage"><div><div><h3 class="title"><a id="splitting-an-application-into-multiple-packages"></a>4.3.4. Splitting an Application into Multiple Packages</h3></div></div></div><p>                        
                You can use the variables 
                <code class="filename"><a class="link" href="#var-PACKAGES" target="_top">PACKAGES</a></code> and 
                <code class="filename"><a class="link" href="#var-FILES" target="_top">FILES</a></code> 
                to split an application into multiple packages.
            </p><p>
                Following is an example that uses the <code class="filename">libXpm</code> recipe. 
                By default, this recipe generates a single package that contains the library along 
                with a few binaries.  
                You can modify the recipe to split the binaries into separate packages:
                </p><pre class="literallayout">
     require xorg-lib-common.inc

     DESCRIPTION = "X11 Pixmap library"
     LICENSE = "X-BSD"
     LIC_FILES_CHKSUM = "file://COPYING;md5=3e07763d16963c3af12db271a31abaa5"
     DEPENDS += "libxext libsm libxt"
     PR = "r3"
     PE = "1"

     XORG_PN = "libXpm"

     PACKAGES =+ "sxpm cxpm"
     FILES_cxpm = "${bindir}/cxpm"
     FILES_sxpm = "${bindir}/sxpm"
                </pre><p>
            </p><p>
                In the previous example, we want to ship the <code class="filename">sxpm</code>
                and <code class="filename">cxpm</code> binaries in separate packages. 
                Since <code class="filename">bindir</code> would be packaged into the main 
                <code class="filename"><a class="link" href="#var-PN" target="_top">PN</a></code> 
                package by default, we prepend the 
                <code class="filename"><a class="link" href="#var-PACKAGES" target="_top">PACKAGES</a>
                </code> variable so additional package names are added to the start of list. 
                This results in the extra 
                <code class="filename"><a class="link" href="#var-FILES" target="_top">FILES</a>_*</code>
                variables then containing information that define which files and
                directories go into which packages. 
                Files included by earlier packages are skipped by latter packages.
                Thus, the main 
                <code class="filename"><a class="link" href="#var-PN" target="_top">PN</a></code> package 
                does not include the above listed files.
            </p></div><div class="section" title="4.3.5. Including Static Library Files"><div class="titlepage"><div><div><h3 class="title"><a id="including-static-library-files"></a>4.3.5. Including Static Library Files</h3></div></div></div><p>                        
                If you are building a library and the library offers static linking, you can control
                which static library files (<code class="filename">*.a</code> files) get included in the 
                built library.  
            </p><p>
                The <code class="filename">PACKAGES</code> and <code class="filename">FILES_*</code> variables in the 
                <code class="filename">meta/conf/bitbake.conf</code> configuration file define how files installed
                by the <code class="filename">do_install</code> task are packaged.
                By default, the <code class="filename">PACKAGES</code> variable contains 
                <code class="filename">${PN}-staticdev</code>, which includes all static library files.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    Previously released versions of the Yocto Project defined the static library files 
                    through <code class="filename">${PN}-dev</code>.
                </div><p>
                Following, is part of the BitBake configuration file. 
                You can see where the static library files are defined:
                </p><pre class="literallayout">
     PACKAGES = "${PN}-dbg ${PN} ${PN}-doc ${PN}-dev ${PN}-staticdev ${PN}-locale"
     PACKAGES_DYNAMIC = "${PN}-locale-*"
     FILES = ""

     FILES_${PN} = "${bindir}/* ${sbindir}/* ${libexecdir}/* ${libdir}/lib*${SOLIBS} \
                 ${sysconfdir} ${sharedstatedir} ${localstatedir} \
                 ${base_bindir}/* ${base_sbindir}/* \
                 ${base_libdir}/*${SOLIBS} \
                 ${datadir}/${BPN} ${libdir}/${BPN}/* \
                 ${datadir}/pixmaps ${datadir}/applications \
                 ${datadir}/idl ${datadir}/omf ${datadir}/sounds \
                 ${libdir}/bonobo/servers"

     FILES_${PN}-doc = "${docdir} ${mandir} ${infodir} ${datadir}/gtk-doc \
                 ${datadir}/gnome/help"
     SECTION_${PN}-doc = "doc"
     
     FILES_${PN}-dev = "${includedir} ${libdir}/lib*${SOLIBSDEV} ${libdir}/*.la \
                     ${libdir}/*.o ${libdir}/pkgconfig ${datadir}/pkgconfig \
                     ${datadir}/aclocal ${base_libdir}/*.o"
     SECTION_${PN}-dev = "devel"
     ALLOW_EMPTY_${PN}-dev = "1"
     RDEPENDS_${PN}-dev = "${PN} (= ${EXTENDPKGV})"
     
     FILES_${PN}-staticdev = "${libdir}/*.a ${base_libdir}/*.a"
     SECTION_${PN}-staticdev = "devel"
     RDEPENDS_${PN}-staticdev = "${PN}-dev (= ${EXTENDPKGV})"
                </pre><p>
            </p></div><div class="section" title="4.3.6. Post Install Scripts"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-extend-addpkg-postinstalls"></a>4.3.6. Post Install Scripts</h3></div></div></div><p>
                To add a post-installation script to a package, add a <code class="filename">pkg_postinst_PACKAGENAME()
                </code> function to the <code class="filename">.bb</code> file and use 
                <code class="filename">PACKAGENAME</code> as the name of the package you want to attach to the 
                <code class="filename">postinst</code> script.
                Normally 
                <code class="filename"><a class="link" href="#var-PN" target="_top">PN</a></code>
                can be used, which automatically expands to <code class="filename">PACKAGENAME</code>.
                A post-installation function has the following structure:
                </p><pre class="literallayout">
     pkg_postinst_PACKAGENAME () {
     #!/bin/sh -e
     # Commands to carry out
     }
                </pre><p>
            </p><p>
                The script defined in the post-installation function is called when the 
                root filesystem is created. 
                If the script succeeds, the package is marked as installed. 
                If the script fails, the package is marked as unpacked and the script is
                executed when the image boots again.
            </p><p>
                Sometimes it is necessary for the execution of a post-installation
                script to be delayed until the first boot.  
                For example, the script might need to be executed on the device itself. 
                To delay script execution until boot time, use the following structure in the 
                post-installation script:
                </p><pre class="literallayout">
     pkg_postinst_PACKAGENAME () {
     #!/bin/sh -e
     if [ x"$D" = "x" ]; then
          # Actions to carry out on the device go here
     else
          exit 1
     fi
     }
                </pre><p>
            </p><p>
                The previous example delays execution until the image boots again because the 
                <code class="filename"><a class="link" href="#var-D" target="_top">D</a></code> 
                variable points
                to the directory containing the image when the root filesystem is created at build time but
                is unset when executed on the first boot. 
            </p></div></div><div class="section" title="4.4. Adding a New Machine"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="platdev-newmachine"></a>4.4. Adding a New Machine</h2></div></div></div><p>
            Adding a new machine to the Yocto Project is a straightforward process. 
            This section provides information that gives you an idea of the changes you must make.
            The information covers adding machines similar to those the Yocto Project already supports. 
            Although well within the capabilities of the Yocto Project, adding a totally new architecture 
            might require 
            changes to <code class="filename">gcc/eglibc</code> and to the site information, which is 
            beyond the scope of this manual.
        </p><p>
            For a complete example that shows how to add a new machine, 
            see the 
            "<a class="link" href="#dev-manual-bsp-appendix" target="_top">BSP Development Example</a>" 
            in Appendix A.
        </p><div class="section" title="4.4.1. Adding the Machine Configuration File"><div class="titlepage"><div><div><h3 class="title"><a id="platdev-newmachine-conffile"></a>4.4.1. Adding the Machine Configuration File</h3></div></div></div><p>
                To add a machine configuration you need to add a <code class="filename">.conf</code> file
                with details of the device being added to the <code class="filename">conf/machine/</code> file.
                The name of the file determines the name the OpenEmbedded build system
                uses to reference the new machine.
            </p><p>
                The most important variables to set in this file are as follows:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-TARGET_ARCH" target="_top">
                        TARGET_ARCH</a></code> (e.g. "arm")</p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-PREFERRED_PROVIDER" target="_top">
                        PREFERRED_PROVIDER</a></code>_virtual/kernel (see below)</p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-MACHINE_FEATURES" target="_top">
                        MACHINE_FEATURES</a></code> (e.g. "apm screen wifi")</p></li></ul></div><p>
            </p><p> 
                You might also need these variables:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-SERIAL_CONSOLE" target="_top">
                        SERIAL_CONSOLE</a></code> (e.g. "115200 ttyS0")</p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-KERNEL_IMAGETYPE" target="_top">
                        KERNEL_IMAGETYPE</a></code> (e.g. "zImage")</p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-IMAGE_FSTYPES" target="_top">
                        IMAGE_FSTYPES</a></code> (e.g. "tar.gz jffs2")</p></li></ul></div><p>
            </p><p> 
                You can find full details on these variables in the reference section. 
                You can leverage many existing machine <code class="filename">.conf</code> files from 
                <code class="filename">meta/conf/machine/</code>.
            </p></div><div class="section" title="4.4.2. Adding a Kernel for the Machine"><div class="titlepage"><div><div><h3 class="title"><a id="platdev-newmachine-kernel"></a>4.4.2. Adding a Kernel for the Machine</h3></div></div></div><p>
                The OpenEmbedded build system needs to be able to build a kernel for the machine. 
                You need to either create a new kernel recipe for this machine, or extend an 
                existing recipe. 
                You can find several kernel examples in the 
                source directory at <code class="filename">meta/recipes-kernel/linux</code>
                that you can use as references.
            </p><p>
                If you are creating a new recipe, normal recipe-writing rules apply for setting 
                up a 
                <code class="filename"><a class="link" href="#var-SRC_URI" target="_top">SRC_URI</a></code>. 
                Thus, you need to specify any necessary patches and set 
                <code class="filename"><a class="link" href="#var-S" target="_top">S</a></code> to point at the source code. 
                You need to create a <code class="filename">configure</code> task that configures the 
                unpacked kernel with a defconfig.
                You can do this by using a <code class="filename">make defconfig</code> command or,
                more commonly, by copying in a suitable <code class="filename">defconfig</code> file and and then running 
                <code class="filename">make oldconfig</code>. 
                By making use of <code class="filename">inherit kernel</code> and potentially some of the 
                <code class="filename">linux-*.inc</code> files, most other functionality is 
                centralized and the the defaults of the class normally work well.
            </p><p>
                If you are extending an existing kernel, it is usually a matter of adding a 
                suitable defconfig file.
                The file needs to be added into a location similar to defconfig files
                used for other machines in a given kernel. 
                A possible way to do this is by listing the file in the 
                <code class="filename">SRC_URI</code> and adding the machine to the expression in 
                <code class="filename"><a class="link" href="#var-COMPATIBLE_MACHINE" target="_top">COMPATIBLE_MACHINE</a></code>:
                </p><pre class="literallayout">
     COMPATIBLE_MACHINE = '(qemux86|qemumips)'
                </pre><p>
            </p></div><div class="section" title="4.4.3. Adding a Formfactor Configuration File"><div class="titlepage"><div><div><h3 class="title"><a id="platdev-newmachine-formfactor"></a>4.4.3. Adding a Formfactor Configuration File</h3></div></div></div><p>
                A formfactor configuration file provides information about the 
                target hardware for which the image is being built and information that 
                the build system cannot obtain from other sources such as the kernel.  
                Some examples of information contained in a formfactor configuration file include 
                framebuffer orientation, whether or not the system has a keyboard, 
                the positioning of the keyboard in relation to the screen, and 
                the screen resolution.
            </p><p>
                The build system uses reasonable defaults in most cases, but if customization is 
                necessary you need to create a <code class="filename">machconfig</code> file 
                in the <code class="filename">meta/recipes-bsp/formfactor/files</code>
                directory.
                This directory contains directories for specific machines such as 
                <code class="filename">qemuarm</code> and <code class="filename">qemux86</code>.
                For information about the settings available and the defaults, see the 
                <code class="filename">meta/recipes-bsp/formfactor/files/config</code> file found in the
                same area. 
                Following is an example for qemuarm:
                </p><pre class="literallayout">
     HAVE_TOUCHSCREEN=1
     HAVE_KEYBOARD=1

     DISPLAY_CAN_ROTATE=0
     DISPLAY_ORIENTATION=0
     #DISPLAY_WIDTH_PIXELS=640
     #DISPLAY_HEIGHT_PIXELS=480
     #DISPLAY_BPP=16
     DISPLAY_DPI=150
     DISPLAY_SUBPIXEL_ORDER=vrgb
                </pre><p>
            </p></div></div><div class="section" title="4.5. Combining Multiple Versions of Library Files into One Image"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="building-multiple-architecture-libraries-into-one-image"></a>4.5. Combining Multiple Versions of Library Files into One Image</h2></div></div></div><p>
            The build system offers the ability to build libraries with different
            target optimizations or architecture formats and combine these together
            into one system image. 
            You can link different binaries in the image 
            against the different libraries as needed for specific use cases.
            This feature is called "Multilib."
        </p><p>
            An example would be where you have most of a system compiled in 32-bit
            mode using 32-bit libraries, but you have something large, like a database
            engine, that needs to be a 64-bit application and use 64-bit libraries.
            Multilib allows you to get the best of both 32-bit and 64-bit libraries.
        </p><p>
            While the Multilib feature is most commonly used for 32 and 64-bit differences,
            the approach the build system uses facilitates different target optimizations. 
            You could compile some binaries to use one set of libraries and other binaries
            to use other different sets of libraries.
            The libraries could differ in architecture, compiler options, or other 
            optimizations.
        </p><p>
            This section overviews the Multilib process only. 
            For more details on how to implement Multilib, see the 
            <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Multilib" target="_top">Multilib</a> wiki 
            page.
        </p><div class="section" title="4.5.1. Preparing to use Multilib"><div class="titlepage"><div><div><h3 class="title"><a id="preparing-to-use-multilib"></a>4.5.1. Preparing to use Multilib</h3></div></div></div><p>
                User-specific requirements drive the Multilib feature,
                Consequently, there is no one "out-of-the-box" configuration that likely
                exists to meet your needs.
            </p><p>
                In order to enable Multilib, you first need to ensure your recipe is
                extended to support multiple libraries. 
                Many standard recipes are already extended and support multiple libraries.
                You can check in the <code class="filename">meta/conf/multilib.conf</code>
                configuration file in the source directory to see how this is 
                done using the <code class="filename">BBCLASSEXTEND</code> variable.
                Eventually, all recipes will be covered and this list will be unneeded.
            </p><p>
                For the most part, the Multilib class extension works automatically to
                extend the package name from <code class="filename">${PN}</code> to
                <code class="filename">${MLPREFIX}${PN}</code>, where <code class="filename">MLPREFIX</code>
                is the particular multilib (e.g. "lib32-" or "lib64-"). 
                Standard variables such as <code class="filename">DEPENDS</code>, 
                <code class="filename">RDEPENDS</code>, <code class="filename">RPROVIDES</code>, 
                <code class="filename">RRECOMMENDS</code>, <code class="filename">PACKAGES</code>, and 
                <code class="filename">PACKAGES_DYNAMIC</code> are automatically extended by the system.
                If you are extending any manual code in the recipe, you can use the 
                <code class="filename">${MLPREFIX}</code> variable to ensure those names are extended 
                correctly. 
                This automatic extension code resides in <code class="filename">multilib.bbclass</code>.
            </p></div><div class="section" title="4.5.2. Using Multilib"><div class="titlepage"><div><div><h3 class="title"><a id="using-multilib"></a>4.5.2. Using Multilib</h3></div></div></div><p>
                After you have set up the recipes, you need to define the actual
                combination of multiple libraries you want to build. 
                You accomplish this through your <code class="filename">local.conf</code>
                configuration file in the 
                <a class="link" href="#build-directory">build directory</a>. 
                An example configuration would be as follows:
                </p><pre class="literallayout">
     MACHINE = "qemux86-64"
     require conf/multilib.conf
     MULTILIBS = "multilib:lib32"
     DEFAULTTUNE_virtclass-multilib-lib32 = "x86"
     IMAGE_INSTALL = "lib32-connman"
                </pre><p>
                This example enables an
                additional library named <code class="filename">lib32</code> alongside the 
                normal target packages.
                When combining these "lib32" alternatives, the example uses "x86" for tuning.
                For information on this particular tuning, see
                <code class="filename">meta/conf/machine/include/ia32/arch-ia32.inc</code>.
            </p><p>
                The example then includes <code class="filename">lib32-connman</code>
                in all the images, which illustrates one method of including a 
                multiple library dependency. 
                You can use a normal image build to include this dependency,
                for example:
                </p><pre class="literallayout">
     $ bitbake core-image-sato
                </pre><p>
                You can also build Multilib packages specifically with a command like this:
                </p><pre class="literallayout">
     $  bitbake lib32-connman
                </pre><p>
            </p></div><div class="section" title="4.5.3. Additional Implementation Details"><div class="titlepage"><div><div><h3 class="title"><a id="additional-implementation-details"></a>4.5.3. Additional Implementation Details</h3></div></div></div><p>
                Different packaging systems have different levels of native Multilib
                support. 
                For the RPM Package Management System, the following implementation details 
                exist:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>A unique architecture is defined for the Multilib packages,
                        along with creating a unique deploy folder under 
                        <code class="filename">tmp/deploy/rpm</code> in the 
                        <a class="link" href="#build-directory">build directory</a>. 
                        For example, consider <code class="filename">lib32</code> in a 
                        <code class="filename">qemux86-64</code> image. 
                        The possible architectures in the system are "all", "qemux86_64",
                        "lib32_qemux86_64", and "lib32_x86".</p></li><li class="listitem"><p>The <code class="filename">${MLPREFIX}</code> variable is stripped from 
                        <code class="filename">${PN}</code> during RPM packaging.
                        The naming for a normal RPM package and a Multilib RPM package in a
                        <code class="filename">qemux86-64</code> system resolves to something similar to
                        <code class="filename">bash-4.1-r2.x86_64.rpm</code> and 
                        <code class="filename">bash-4.1.r2.lib32_x86.rpm</code>, respectively.
                        </p></li><li class="listitem"><p>When installing a Multilib image, the RPM backend first 
                        installs the base image and then installs the Multilib libraries.
                        </p></li><li class="listitem"><p>The build system relies on RPM to resolve the identical files in the 
                        two (or more) Multilib packages.</p></li></ul></div><p>
            </p><p>
                For the IPK Package Management System, the following implementation details exist:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The <code class="filename">${MLPREFIX}</code> is not stripped from 
                        <code class="filename">${PN}</code> during IPK packaging.
                        The naming for a normal RPM package and a Multilib IPK package in a
                        <code class="filename">qemux86-64</code> system resolves to something like 
                        <code class="filename">bash_4.1-r2.x86_64.ipk</code> and
                        <code class="filename">lib32-bash_4.1-rw_x86.ipk</code>, respectively.
                        </p></li><li class="listitem"><p>The IPK deploy folder is not modified with 
                        <code class="filename">${MLPREFIX}</code> because packages with and without 
                        the Multilib feature can exist in the same folder due to the 
                        <code class="filename">${PN}</code> differences.</p></li><li class="listitem"><p>IPK defines a sanity check for Multilib installation 
                        using certain rules for file comparison, overridden, etc.
                        </p></li></ul></div><p>
            </p></div></div><div class="section" title="4.6. Configuring the Kernel"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="configuring-the-kernel"></a>4.6. Configuring the Kernel</h2></div></div></div><p>
            Configuring the Yocto Project kernel consists of making sure the <code class="filename">.config</code>
            file has all the right information in it for the image you are building.
            You can use the <code class="filename">menuconfig</code> tool and configuration fragments to 
            make sure your <code class="filename">.config</code> file is just how you need it. 
            This section describes how to use <code class="filename">menuconfig</code>, create and use 
            configuration fragments, and how to interactively tweak your <code class="filename">.config</code>
            file to create the leanest kernel configuration file possible.
        </p><p>
            For concepts on kernel configuration, see the
            "<a class="link" href="#kernel-configuration" target="_top">Kernel Configuration</a>"
            section in the Yocto Project Kernel Architecture and Use Manual.
        </p><div class="section" title="4.6.1. Using  menuconfig"><div class="titlepage"><div><div><h3 class="title"><a id="using-menuconfig"></a>4.6.1. Using  <code class="filename">menuconfig</code></h3></div></div></div><p>
                The easiest way to define kernel configurations is to set them through the
                <code class="filename">menuconfig</code> tool.
                For general information on <code class="filename">menuconfig</code>, see
                <a class="ulink" href="http://en.wikipedia.org/wiki/Menuconfig" target="_top">http://en.wikipedia.org/wiki/Menuconfig</a>.
            </p><p>
                To use the <code class="filename">menuconfig</code> tool in the Yocto Project development
                environment, you must build the tool using BitBake.
                The following commands build and invoke <code class="filename">menuconfig</code> assuming the 
                source directory top-level folder is <code class="filename">~/poky</code>:
                </p><pre class="literallayout">
     $ cd ~/poky
     $ source oe-init-build-env
     $ bitbake linux-yocto -c menuconfig
                </pre><p>
                Once <code class="filename">menuconfig</code> comes up, its standard interface allows you to 
                examine and configure all the kernel configuration parameters.
                Once you have made your changes, simply exit the tool and save your changes to 
                create an updated version of the <code class="filename">.config</code> configuration file.
            </p><p>
                For an example that shows how to change a specific kernel option
                using <code class="filename">menuconfig</code>, see the 
                "<a class="link" href="#changing-the-config-smp-configuration-using-menuconfig" title="B.2.3. Changing the  CONFIG_SMP Configuration Using  menuconfig">Changing
                the <code class="filename">CONFIG_SMP</code> Configuration Using <code class="filename">menuconfig</code></a>" 
                section.
            </p></div><div class="section" title="4.6.2. Creating Configuration Fragments"><div class="titlepage"><div><div><h3 class="title"><a id="creating-config-fragments"></a>4.6.2. Creating Configuration Fragments</h3></div></div></div><p>
                Configuration fragments are simply kernel options that appear in a file
                placed where the OpenEmbedded build system can find and apply them.
                Syntactically, the configuration statement is identical to what would appear
                in the <code class="filename">.config</code> file, which is in the 
                <a class="link" href="#build-directory">build directory</a> in 
                <code class="filename">tmp/work/&lt;arch&gt;-poky-linux/linux-yocto-&lt;release-specific-string&gt;/linux-&lt;arch&gt;-&lt;build-type&gt;</code>.
            </p><p>
                It is simple to create a configuration fragment.  
                For example, issuing the following from the shell creates a configuration fragment
                file named <code class="filename">my_smp.cfg</code> that enables multi-processor support
                within the kernel:
                </p><pre class="literallayout">
     $ echo "CONFIG_SMP=y" &gt;&gt; my_smp.cfg
                </pre><p>
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    All configuration files must use the <code class="filename">.cfg</code> extension in order
                    for the OpenEmbedded build system to recognize them as a configuration fragment.
                </div><p>
            </p><p>
                Where do you put your configuration files?
                You can place these configuration files in the same area pointed to by  
                <code class="filename">SRC_URI</code>.
                The OpenEmbedded build system will pick up the configuration and add it to the 
                kernel's configuration.
                For example, suppose you had a set of configuration options in a file called 
                <code class="filename">myconfig.cfg</code>.  
                If you put that file inside a directory named <code class="filename">/linux-yocto</code> 
                that resides in the same directory as the kernel's append file and then add 
                a <code class="filename">SRC_URI</code> statement such as the following to the kernel's append file, 
                those configuration options will be picked up and applied when the kernel is built.
                </p><pre class="literallayout">
     SRC_URI += "file://myconfig.cfg"
                </pre><p>
            </p><p>
                As mentioned earlier, you can group related configurations into multiple files and 
                name them all in the <code class="filename">SRC_URI</code> statement as well.
                For example, you could group separate configurations specifically for Ethernet and graphics
                into their own files and add those by using a <code class="filename">SRC_URI</code> statement like the 
                following in your append file:
                </p><pre class="literallayout">
     SRC_URI += "file://myconfig.cfg \
            file://eth.cfg \
            file://gfx.cfg"
                </pre><p>
            </p></div><div class="section" title="4.6.3. Fine-tuning the Kernel Configuration File"><div class="titlepage"><div><div><h3 class="title"><a id="fine-tuning-the-kernel-configuration-file"></a>4.6.3. Fine-tuning the Kernel Configuration File</h3></div></div></div><p>
                You can make sure the <code class="filename">.config</code> is as lean or efficient as 
                possible by reading the output of the kernel configuration fragment audit,
                noting any issues, making changes to correct the issues, and then repeating.
            </p><p>
                As part of the kernel build process, the 
                <code class="filename">kernel_configcheck</code> task runs.
                This task validates the kernel configuration by checking the final 
                <code class="filename">.config</code> file against the input files.
                During the check, the task produces warning messages for the following 
                issues:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Requested options that did not make the final 
                        <code class="filename">.config</code> file.</p></li><li class="listitem"><p>Configuration items that appear twice in the same 
                        configuration fragment.</p></li><li class="listitem"><p>Configuration items tagged as 'required' were overridden.
                        </p></li><li class="listitem"><p>A board overrides a non-board specific option.</p></li><li class="listitem"><p>Listed options not valid for the kernel being processed. 
                        In other words, the option does not appear anywhere.</p></li></ul></div><p>
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    The <code class="filename">kernel_configcheck</code> task can also optionally report
                    if an option is overridden during processing.
                </div><p>
            </p><p>
                For each output warning, a message points to the file
                that contains a list of the options and a pointer to the config
                fragment that defines them.
                Collectively, the files are the key to streamlining the configuration.
            </p><p>
                To streamline the configuration, do the following:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Start with a full configuration that you know
                        works - it builds and boots successfully.
                        This configuration file will be your baseline.</p></li><li class="listitem"><p>Separately run the <code class="filename">configme</code> and 
                        <code class="filename">kernel_configcheck</code> tasks.</p></li><li class="listitem"><p>Take the resulting list of files from the 
                        <code class="filename">kernel_configcheck</code> task warnings and do the following:
                        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Drop values that are redefined in the fragment but do not
                                change the final <code class="filename">.config</code> file.</p></li><li class="listitem"><p>Analyze and potentially drop values from the 
                                <code class="filename">.config</code> file that override required 
                                configurations.</p></li><li class="listitem"><p>Analyze and potentially remove non-board specific options.
                                </p></li><li class="listitem"><p>Remove repeated and invalid options.</p></li></ul></div></li><li class="listitem"><p>After you have worked through the output of the kernel configuration 
                        audit, you can re-run the <code class="filename">configme</code> 
                        and <code class="filename">kernel_configcheck</code> tasks to see the results of your 
                        changes. 
                        If you have more issues, you can deal with them as described in the 
                        previous step.</p></li></ol></div><p> 
            </p><p>
                Iteratively working through steps two through four eventually yields 
                a minimal, streamlined configuration file.
                Once you have the best <code class="filename">.config</code>, you can build the Linux
                Yocto kernel.
            </p></div></div><div class="section" title="4.7. Updating Existing Images"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-changes-updatingimages"></a>4.7. Updating Existing Images</h2></div></div></div><p>
            Often, rather than re-flashing a new image, you might wish to install updated 
            packages into an existing running system. 
            You can do this by first sharing the <code class="filename">tmp/deploy/ipk/</code> directory
            through a web server and then by changing <code class="filename">/etc/opkg/base-feeds.conf</code> 
            to point at the shared server.
            Following is an example:
            </p><pre class="literallayout">
     $ src/gz all http://www.mysite.com/somedir/deploy/ipk/all
     $ src/gz armv7a http://www.mysite.com/somedir/deploy/ipk/armv7a
     $ src/gz beagleboard http://www.mysite.com/somedir/deploy/ipk/beagleboard
            </pre><p>
        </p></div><div class="section" title="4.8. Incrementing a Package Revision Number"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-changes-prbump"></a>4.8. Incrementing a Package Revision Number</h2></div></div></div><p>
            If a committed change results in changing the package output,
            then the value of the 
            <code class="filename"><a class="link" href="#var-PR" target="_top">PR</a></code> 
            variable needs to be increased 
            (or "bumped") as part of that commit. 
            This means that for new recipes you must be sure to add the <code class="filename">PR</code>
            variable and set its initial value equal to "r0".  
            Failing to define <code class="filename">PR</code> makes it easy to miss when you bump a package.
            Note that you can only use integer values following the "r" in the 
            <code class="filename">PR</code> variable.
        </p><p>
            If you are sharing a common <code class="filename">.inc</code> file with multiple recipes, 
            you can also use the 
            <code class="filename"><a class="link" href="#var-INC_PR" target="_top">INC_PR</a></code> 
            variable to ensure that 
            the recipes sharing the <code class="filename">.inc</code> file are rebuilt when the 
            <code class="filename">.inc</code> file itself is changed. 
            The <code class="filename">.inc</code> file must set <code class="filename">INC_PR</code>
            (initially to "r0"), and all recipes referring to it should set <code class="filename">PR</code>
            to "$(INC_PR).0" initially, incrementing the last number when the recipe is changed.
            If the <code class="filename">.inc</code> file is changed then its 
            <code class="filename">INC_PR</code> should be incremented.
        </p><p> 
            When upgrading the version of a package, assuming the 
            <code class="filename"><a class="link" href="#var-PV" target="_top">PV</a></code> 
            changes, the <code class="filename">PR</code> variable should be reset to "r0"
            (or "$(INC_PR).0" if you are using <code class="filename">INC_PR</code>).
        </p><p>
            Usually, version increases occur only to packages.
            However, if for some reason <code class="filename">PV</code> changes but does not 
            increase, you can increase the 
            <code class="filename"><a class="link" href="#var-PE" target="_top">PE</a></code> 
            variable (Package Epoch).
            The <code class="filename">PE</code> variable defaults to "0".
        </p><p>
            Version numbering strives to follow the 
            <a class="ulink" href="http://www.debian.org/doc/debian-policy/ch-controlfields.html" target="_top">
            Debian Version Field Policy Guidelines</a>.
            These guidelines define how versions are compared and what "increasing" a version means.
        </p><p>
            There are two reasons for following the previously mentioned guidelines.
            First, to ensure that when a developer updates and rebuilds, they get all the changes to
            the repository and do not have to remember to rebuild any sections.
            Second, to ensure that target users are able to upgrade their
            devices using package manager commands such as <code class="filename">opkg upgrade</code> 
            (or similar commands for dpkg/apt or rpm-based systems). 
        </p><p>
            The goal is to ensure the Yocto Project has packages that can be upgraded in all cases.
        </p></div><div class="section" title="4.9. Handling a Package Name Alias"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-configuring-DISTRO_PN_ALIAS"></a>4.9. Handling a Package Name Alias</h2></div></div></div><p>
            Sometimes a package name you are using might exist under an alias or as a similarly named
            package in a different distribution.
            The OpenEmbedded build system implements a <code class="filename">distro_check</code>
            task that automatically connects to major distributions
            and checks for these situations. 
            If the package exists under a different name in a different distribution, you get a 
            <code class="filename">distro_check</code> mismatch.  
            You can resolve this problem by defining a per-distro recipe name alias using the 
            <code class="filename"><a class="link" href="#var-DISTRO_PN_ALIAS" target="_top">DISTRO_PN_ALIAS</a></code> 
            variable.
        </p><p>
            Following is an example that shows how you specify the <code class="filename">DISTRO_PN_ALIAS</code>
            variable:
            </p><pre class="literallayout">
     DISTRO_PN_ALIAS_pn-PACKAGENAME = "distro1=package_name_alias1 \
                                       distro2=package_name_alias2 \
                                       distro3=package_name_alias3 \
                                       ..."
            </pre><p>
        </p><p>
            If you have more than one distribution alias, separate them with a space.
            Note that the build system currently automatically checks the 
            Fedora, OpenSuSE, Debian, Ubuntu, 
            and Mandriva distributions for source package recipes without having to specify them 
            using the <code class="filename">DISTRO_PN_ALIAS</code> variable.
            For example, the following command generates a report that lists the Linux distributions
            that include the sources for each of the recipes.
            </p><pre class="literallayout">
     $ bitbake world -f -c distro_check
            </pre><p>
            The results are stored in the <code class="filename">build/tmp/log/distro_check-${DATETIME}.results</code> 
            file found in the source directory.
        </p></div><div class="section" title="4.10. Building Software from an External Source"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="building-software-from-an-external-source"></a>4.10. Building Software from an External Source</h2></div></div></div><p>
            By default, the OpenEmbedded build system does its work from within the 
            <a class="link" href="#build-directory">build directory</a>.  
            The build process involves fetching the source files, unpacking them, and then patching them
            if necessary before the build takes place.
        </p><p>
            Situations exist where you might want to build software from source files that are external to 
            and thus outside of the <a class="link" href="#source-directory">source directory</a>.
            For example, suppose you have a project that includes a new BSP with a heavily customized 
            kernel, a very minimal image, and some new user-space recipes.
            And, you want to minimize the exposure to the build system to the 
            development team so that they can focus on their project and maintain everyone's workflow
            as much as possible.
            In this case, you want a kernel source directory on the development machine where the 
            development occurs.
            You want the recipe's 
            <a class="link" href="#var-SRC_URI" target="_top"><code class="filename">SRC_URI</code></a>
            variable to point to the external directory and use it as is, not copy it.  
        </p><p>
            To build from software that comes from an external source, all you need to do is
            change your recipe so that it inherits the 
            <a class="link" href="#ref-classes-externalsrc" target="_top"><code class="filename">externalsrc.bbclass</code></a> 
            class and then sets the 
            <a class="link" href="#var-S" target="_top"><code class="filename">S</code></a>
            variable to point to your external source code.
            Here are the statements to put in your recipe:
            </p><pre class="literallayout">
     inherit externalsrc
     S = "/some/path/to/your/package/source"
            </pre><p>
        </p><p>
            It is important to know that the <code class="filename">externalsrc.bbclass</code> assumes that the 
            source directory <code class="filename">S</code> and the build directory 
            <a class="link" href="#var-B" target="_top"><code class="filename">B</code></a>
            are different even though by default these directories are the same.
            This assumption is important because it supports building different variants of the recipe
            by using the 
            <a class="link" href="#var-BBCLASSEXTEND" target="_top"><code class="filename">BBCLASSEXTEND</code></a>
            variable.
            You could allow the build directory to be the same as the source directory but you would 
            not be able to build more than one variant of the recipe.
            Consequently, if you are building multiple variants of the recipe, you need to establish a 
            build directory that is different than the source directory.
        </p></div><div class="section" title="4.11. Excluding Recipes From the Build"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="excluding-recipes-from-the-build"></a>4.11. Excluding Recipes From the Build</h2></div></div></div><p>
            You might find that there are groups of recipes you want to filter 
            out of the build process.
            For example, recipes you know you will never use or want should not 
            be part of the build.
            Removing these recipes from parsing speeds up parts of the build.
        </p><p>
            It is possible to filter or mask out <code class="filename">.bb</code> and 
            <code class="filename">.bbappend</code> files. 
            You can do this by providing an expression with the 
            <code class="filename"><a class="link" href="#var-BBMASK" target="_top">BBMASK</a></code> 
            variable. 
            Here is an example:
            </p><pre class="literallayout">
     BBMASK = ".*/meta-mymachine/recipes-maybe/"
            </pre><p>
            Here, all <code class="filename">.bb</code> and <code class="filename">.bbappend</code> files
            in the directory that match the expression are ignored during the build
            process.
        </p></div><div class="section" title="4.12. Using an External SCM"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="platdev-appdev-srcrev"></a>4.12. Using an External SCM</h2></div></div></div><p>
            If you're working on a recipe that pulls from an external Source Code Manager (SCM), it 
            is possible to have the OpenEmbedded build system notice new changes added to the 
            SCM and then build the package that depends on them using the latest version. 
            This only works for SCMs from which it is possible to get a sensible revision number for changes.
            Currently, you can do this with Apache Subversion (SVN), Git, and Bazaar (BZR) repositories.
        </p><p>
            To enable this behavior, simply add the following to the <code class="filename">local.conf</code>
            configuration file found in the 
            <a class="link" href="#build-directory" target="_top">build directory</a>:
            </p><pre class="literallayout">
     SRCREV_pn-&lt;PN&gt; = "${AUTOREV}"
            </pre><p>
            where <code class="filename">PN</code> 
            is the name of the package for which you want to enable automatic source 
            revision updating.
        </p></div><div class="section" title="4.13. Debugging With the GNU Project Debugger (GDB) Remotely"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="platdev-gdb-remotedebug"></a>4.13. Debugging With the GNU Project Debugger (GDB) Remotely</h2></div></div></div><p>
            GDB allows you to examine running programs, which in turn help you to understand and fix problems. 
            It also allows you to perform post-mortem style analysis of program crashes. 
            GDB is available as a package within the Yocto Project and by default is 
            installed in sdk images.
            See the "<a class="link" href="#ref-images" target="_top">Images</a>" chapter 
            in the Yocto Project Reference Manual for a description of these images. 
            You can find information on GDB at <a class="ulink" href="http://sourceware.org/gdb/" target="_top">http://sourceware.org/gdb/</a>.
        </p><div class="tip" title="Tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Tip</h3>
            For best results, install <code class="filename">-dbg</code> packages for the applications 
            you are going to debug.
            Doing so makes available extra debug symbols that give you more meaningful output.
        </div><p>
            Sometimes, due to memory or disk space constraints, it is not possible
            to use GDB directly on the remote target to debug applications. 
            These constraints arise because GDB needs to load the debugging information and the 
            binaries of the process being debugged. 
            Additionally, GDB needs to perform many computations to locate information such as function 
            names, variable names and values, stack traces and so forth - even before starting the 
            debugging process. 
            These extra computations place more load on the target system and can alter the
            characteristics of the program being debugged.
        </p><p>
            To help get past the previously mentioned constraints, you can use Gdbserver.
            Gdbserver runs on the remote target and does not load any debugging information 
            from the debugged process.
            Instead, a GDB instance processes the debugging information that is run on a 
            remote computer - the host GDB. 
            The host GDB then sends control commands to Gdbserver to make it stop or start the debugged 
            program, as well as read or write memory regions of that debugged program. 
            All the debugging information loaded and processed as well    
            as all the heavy debugging is done by the host GDB.
            Offloading these processes gives the Gdbserver running on the target a chance to remain 
            small and fast.
        </p><p>
            Because the host GDB is responsible for loading the debugging information and 
            for doing the necessary processing to make actual debugging happen, the 
            user has to make sure the host can access the unstripped binaries complete
            with their debugging information and also be sure the target is compiled with no optimizations. 
            The host GDB must also have local access to all the libraries used by the 
            debugged program. 
            Because Gdbserver does not need any local debugging information, the binaries on
            the remote target can remain stripped. 
            However, the binaries must also be compiled without optimization 
            so they match the host's binaries.
        </p><p>
            To remain consistent with GDB documentation and terminology, the binary being debugged 
            on the remote target machine is referred to as the "inferior" binary.
            For documentation on GDB see the  
            <a class="ulink" href="http://sourceware.org/gdb/documentation/" target="_top">GDB site</a>.
        </p><div class="section" title="4.13.1. Launching Gdbserver on the Target"><div class="titlepage"><div><div><h3 class="title"><a id="platdev-gdb-remotedebug-launch-gdbserver"></a>4.13.1. Launching Gdbserver on the Target</h3></div></div></div><p>
                First, make sure Gdbserver is installed on the target. 
                If it is not, install the package <code class="filename">gdbserver</code>, which needs the 
                <code class="filename">libthread-db1</code> package.
            </p><p>
                As an example, to launch Gdbserver on the target and make it ready to "debug" a 
                program located at <code class="filename">/path/to/inferior</code>, connect
                to the target and launch:
                </p><pre class="literallayout">
     $ gdbserver localhost:2345 /path/to/inferior
                </pre><p>
                Gdbserver should now be listening on port 2345 for debugging
                commands coming from a remote GDB process that is running on the host computer.
                Communication between Gdbserver and the host GDB are done using TCP. 
                To use other communication protocols, please refer to the  
                <a class="ulink" href="http://www.gnu.org/software/gdb/" target="_top">Gdbserver documentation</a>.
            </p></div><div class="section" title="4.13.2. Launching GDB on the Host Computer"><div class="titlepage"><div><div><h3 class="title"><a id="platdev-gdb-remotedebug-launch-gdb"></a>4.13.2. Launching GDB on the Host Computer</h3></div></div></div><p>
                Running GDB on the host computer takes a number of stages.
                This section describes those stages.
            </p><div class="section" title="4.13.2.1. Building the Cross-GDB Package"><div class="titlepage"><div><div><h4 class="title"><a id="platdev-gdb-remotedebug-launch-gdb-buildcross"></a>4.13.2.1. Building the Cross-GDB Package</h4></div></div></div><p>
                    A suitable GDB cross-binary is required that runs on your host computer but
                    also knows about the the ABI of the remote target. 
                    You can get this binary from the meta-toolchain.
                    Here is an example:
                    </p><pre class="literallayout"> 
     /usr/local/poky/eabi-glibc/arm/bin/arm-poky-linux-gnueabi-gdb
                    </pre><p> 
                    where <code class="filename">arm</code> is the target architecture and 
                    <code class="filename">linux-gnueabi</code> the target ABI.
                </p><p>
                    Alternatively, you can use BitBake to build the <code class="filename">gdb-cross</code> binary. 
                    Here is an example:
                    </p><pre class="literallayout">
     $ bitbake gdb-cross
                    </pre><p>
                    Once the binary is built, you can find it here: 
                    </p><pre class="literallayout">
     tmp/sysroots/&lt;host-arch&gt;/usr/bin/&lt;target-abi&gt;-gdb 
                    </pre><p>
                </p></div><div class="section" title="4.13.2.2. Making the Inferior Binaries Available"><div class="titlepage"><div><div><h4 class="title"><a id="platdev-gdb-remotedebug-launch-gdb-inferiorbins"></a>4.13.2.2. Making the Inferior Binaries Available</h4></div></div></div><p>
                    The inferior binary (complete with all debugging symbols) as well as any
                    libraries (and their debugging symbols) on which the inferior binary depends
                    need to be available.
                    There are a number of ways you can make these available.
                </p><p>
                    Perhaps the easiest way is to have an 'sdk' image that corresponds to the plain
                    image installed on the device. 
                    In the case of <code class="filename">core-image-sato</code>, 
                    <code class="filename">core-image-sato-sdk</code> would contain suitable symbols. 
                    Because the sdk images already have the debugging symbols installed, it is just a 
                    question of expanding the archive to some location and then informing GDB. 
                </p><p>
                    Alternatively, the OpenEmbedded build system can build a custom directory of files 
                    for a specific 
                    debugging purpose by reusing its <code class="filename">tmp/rootfs</code> directory.
                    This directory contains the contents of the last built image. 
                    This process assumes two things:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The image running on the target was the last image to 
                        be built.</p></li><li class="listitem"><p>The package (<code class="filename">foo</code> in the following 
                        example) that contains the inferior binary to be debugged has been built 
                        without optimization and has debugging information available.</p></li></ul></div><p>
                </p><p>
                    The following steps show how to build the custom directory of files:
                    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Install the package (<code class="filename">foo</code> in this case) to 
                            <code class="filename">tmp/rootfs</code>:
                            </p><pre class="literallayout">
     $ tmp/sysroots/i686-linux/usr/bin/opkg-cl -f \
     tmp/work/&lt;target-abi&gt;/core-image-sato-1.0-r0/temp/opkg.conf -o \
     tmp/rootfs/ update
                            </pre></li><li class="listitem"><p>Install the debugging information:
                            </p><pre class="literallayout">
     $ tmp/sysroots/i686-linux/usr/bin/opkg-cl -f \
     tmp/work/&lt;target-abi&gt;/core-image-sato-1.0-r0/temp/opkg.conf \
     -o tmp/rootfs install foo

     $ tmp/sysroots/i686-linux/usr/bin/opkg-cl -f \
     tmp/work/&lt;target-abi&gt;/core-image-sato-1.0-r0/temp/opkg.conf \
     -o tmp/rootfs install foo-dbg
                            </pre></li></ol></div><p>
                </p></div><div class="section" title="4.13.2.3. Launch the Host GDB"><div class="titlepage"><div><div><h4 class="title"><a id="platdev-gdb-remotedebug-launch-gdb-launchhost"></a>4.13.2.3. Launch the Host GDB</h4></div></div></div><p>
                    To launch the host GDB, you run the <code class="filename">cross-gdb</code> binary and provide 
                    the inferior binary as part of the command line.  
                    For example, the following command form continues with the example used in 
                    the previous section.  
                    This command form loads the <code class="filename">foo</code> binary
                    as well as the debugging information:
                    </p><pre class="literallayout">
     $ &lt;target-abi&gt;-gdb rootfs/usr/bin/foo
                    </pre><p>
                    Once the GDB prompt appears, you must instruct GDB to load all the libraries
                    of the inferior binary from <code class="filename">tmp/rootfs</code> as follows:
                    </p><pre class="literallayout">
     $ set solib-absolute-prefix /path/to/tmp/rootfs
                    </pre><p>
                    The pathname <code class="filename">/path/to/tmp/rootfs</code> must either be
                    the absolute path to <code class="filename">tmp/rootfs</code> or the location at which 
                    binaries with debugging information reside.
                </p><p>
                    At this point you can have GDB connect to the Gdbserver that is running 
                    on the remote target by using the following command form:
                    </p><pre class="literallayout">
     $ target remote remote-target-ip-address:2345
                    </pre><p>
                    The <code class="filename">remote-target-ip-address</code> is the IP address of the
                    remote target where the Gdbserver is running. 
                    Port 2345 is the port on which the GDBSERVER is running.
                </p></div><div class="section" title="4.13.2.4. Using the Debugger"><div class="titlepage"><div><div><h4 class="title"><a id="platdev-gdb-remotedebug-launch-gdb-using"></a>4.13.2.4. Using the Debugger</h4></div></div></div><p>
                    You can now proceed with debugging as normal - as if you were debugging
                    on the local machine.
                    For example, to instruct GDB to break in the "main" function and then 
                    continue with execution of the inferior binary use the following commands
                    from within GDB:
                    </p><pre class="literallayout">
     (gdb) break main
     (gdb) continue
                    </pre><p>
                </p><p>
                    For more information about using GDB, see the project's online documentation at 
                    <a class="ulink" href="http://sourceware.org/gdb/download/onlinedocs/" target="_top">http://sourceware.org/gdb/download/onlinedocs/</a>.
                </p></div></div></div><div class="section" title="4.14. Profiling with OProfile"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="platdev-oprofile"></a>4.14. Profiling with OProfile</h2></div></div></div><p>
            <a class="ulink" href="http://oprofile.sourceforge.net/" target="_top">OProfile</a> is a 
            statistical profiler well suited for finding performance 
            bottlenecks in both userspace software and in the kernel. 
            This profiler provides answers to questions like "Which functions does my application spend 
            the most time in when doing X?" 
            Because the OpenEmbedded build system is well integrated with OProfile, it makes profiling 
            applications on target hardware straightforward.
        </p><p>
            To use OProfile, you need an image that has OProfile installed. 
            The easiest way to do this is with <code class="filename">tools-profile</code> in the
            <code class="filename"><a class="link" href="#var-IMAGE_FEATURES" target="_top">IMAGE_FEATURES</a></code> variable. 
            You also need debugging symbols to be available on the system where the analysis
            takes place. 
            You can gain access to the symbols by using <code class="filename">dbg-pkgs</code> in the
            <code class="filename">IMAGE_FEATURES</code> variable or by
            installing the appropriate <code class="filename">-dbg</code> packages. 
        </p><p>
            For successful call graph analysis, the binaries must preserve the frame 
            pointer register and should also be compiled with the 
            <code class="filename">-fno-omit-framepointer</code> flag. 
            You can achieve this by setting the 
            <code class="filename"><a class="link" href="#var-SELECTED_OPTIMIZATION" target="_top">SELECTED_OPTIMIZATION</a></code>
            variable to 
            <code class="filename">-fexpensive-optimizations -fno-omit-framepointer -frename-registers -O2</code>. 
            You can also achieve it by setting the
            <code class="filename"><a class="link" href="#var-DEBUG_BUILD" target="_top">DEBUG_BUILD</a></code> 
            variable to "1" in the <code class="filename">local.conf</code> configuration file.
            If you use the <code class="filename">DEBUG_BUILD</code> variable you will also add extra debug information 
            that can make the debug packages large.
        </p><div class="section" title="4.14.1. Profiling on the Target"><div class="titlepage"><div><div><h3 class="title"><a id="platdev-oprofile-target"></a>4.14.1. Profiling on the Target</h3></div></div></div><p>
                Using OProfile you can perform all the profiling work on the target device. 
                A simple OProfile session might look like the following:
            </p><p>
                </p><pre class="literallayout">
     # opcontrol --reset
     # opcontrol --start --separate=lib --no-vmlinux -c 5
              .
              .
        [do whatever is being profiled]
              .
              .
     # opcontrol --stop
     $ opreport -cl
                </pre><p>
            </p><p>
                In this example, the <code class="filename">reset</code> command clears any previously profiled data.
                The next command starts OProfile.
                The options used when starting the profiler separate dynamic library data 
                within applications, disable kernel profiling, and enable callgraphing up to
                five levels deep.    
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    To profile the kernel, you would specify the 
                    <code class="filename">--vmlinux=/path/to/vmlinux</code> option.
                    The <code class="filename">vmlinux</code> file is usually in the source directory in the 
                    <code class="filename">/boot/</code> directory and must match the running kernel.
                </div><p>
            </p><p> 
                After you perform your profiling tasks, the next command stops the profiler. 
                After that, you can view results with the <code class="filename">opreport</code> command with options
                to see the separate library symbols and callgraph information.
            </p><p>
                Callgraphing logs information about time spent in functions and about a function's
                calling function (parent) and called functions (children).
                The higher the callgraphing depth, the more accurate the results.  
                However, higher depths also increase the logging overhead.
                Consequently, you should take care when setting the callgraphing depth. 
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    On ARM, binaries need to have the frame pointer enabled for callgraphing to work.
                    To accomplish this use the <code class="filename">-fno-omit-framepointer</code> option 
                    with <code class="filename">gcc</code>.
                </div><p>
            </p><p>
                For more information on using OProfile, see the OProfile 
                online documentation at 
                <a class="ulink" href="http://oprofile.sourceforge.net/docs/" target="_top">http://oprofile.sourceforge.net/docs/</a>.
            </p></div><div class="section" title="4.14.2. Using OProfileUI"><div class="titlepage"><div><div><h3 class="title"><a id="platdev-oprofile-oprofileui"></a>4.14.2. Using OProfileUI</h3></div></div></div><p>
                A graphical user interface for OProfile is also available. 
                You can download and build this interface from the Yocto Project at
                <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/oprofileui/" target="_top">http://git.yoctoproject.org/cgit.cgi/oprofileui/</a>. 
                If the "tools-profile" image feature is selected, all necessary binaries
                are installed onto the target device for OProfileUI interaction.
            </p><p>
                Even though the source directory usually includes all needed patches on the target device, you 
                might find you need other OProfile patches for recent OProfileUI features.
                If so, see the <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/oprofileui/tree/README" target="_top">
                OProfileUI README</a> for the most recent information.
            </p><div class="section" title="4.14.2.1. Online Mode"><div class="titlepage"><div><div><h4 class="title"><a id="platdev-oprofile-oprofileui-online"></a>4.14.2.1. Online Mode</h4></div></div></div><p>
                    Using OProfile in online mode assumes a working network connection with the target 
                    hardware. 
                    With this connection, you just need to run "oprofile-server" on the device. 
                    By default, OProfile listens on port 4224. 
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                        You can change the port using the <code class="filename">--port</code> command-line 
                        option.
                    </div><p>
                </p><p>
                    The client program is called <code class="filename">oprofile-viewer</code> and its UI is relatively 
                    straightforward.
                    You access key functionality through the buttons on the toolbar, which
                    are duplicated in the menus.
                    Here are the buttons:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Connect:</em></span> Connects to the remote host.
                            You can also supply the IP address or hostname.</p></li><li class="listitem"><p><span class="emphasis"><em>Disconnect:</em></span> Disconnects from the target.
                            </p></li><li class="listitem"><p><span class="emphasis"><em>Start:</em></span> Starts profiling on the device.
                            </p></li><li class="listitem"><p><span class="emphasis"><em>Stop:</em></span> Stops profiling on the device and 
                            downloads the data to the local host. 
                            Stopping the profiler generates the profile and displays it in the viewer.
                            </p></li><li class="listitem"><p><span class="emphasis"><em>Download:</em></span> Downloads the data from the 
                            target and generates the profile, which appears in the viewer.</p></li><li class="listitem"><p><span class="emphasis"><em>Reset:</em></span> Resets the sample data on the device. 
                            Resetting the data removes sample information collected from previous
                            sampling runs. 
                            Be sure you reset the data if you do not want to include old sample information.
                            </p></li><li class="listitem"><p><span class="emphasis"><em>Save:</em></span> Saves the data downloaded from the
                            target to another directory for later examination.</p></li><li class="listitem"><p><span class="emphasis"><em>Open:</em></span> Loads previously saved data.
                            </p></li></ul></div><p>
                </p><p>
                    The client downloads the complete 'profile archive' from
                    the target to the host for processing. 
                    This archive is a directory that contains the sample data, the object files, 
                    and the debug information for the object files. 
                    The archive is then converted using the <code class="filename">oparchconv</code> script, which is 
                    included in this distribution.
                    The script uses <code class="filename">opimport</code> to convert the archive from
                    the target to something that can be processed on the host.
                </p><p>
                    Downloaded archives reside in the build directory in 
                    <code class="filename">/tmp</code> and are cleared up when they are no longer in use.
                </p><p>
                    If you wish to perform kernel profiling, you need to be sure 
                    a <code class="filename">vmlinux</code> file that matches the running kernel is available. 
                    In the source directory, that file is usually located in 
                    <code class="filename">/boot/vmlinux-KERNELVERSION</code>, where 
                    <code class="filename">KERNEL-version</code> is the version of the kernel. 
                    The OpenEmbedded build system generates separate <code class="filename">vmlinux</code> 
                    packages for each kernel it builds.
                    Thus, it should just be a question of making sure a matching package is 
                    installed (e.g. <code class="filename">opkg install kernel-vmlinux</code>. 
                    The files are automatically installed into development and profiling images 
                    alongside OProfile. 
                    A configuration option exists within the OProfileUI settings page that you can use to 
                    enter the location of the <code class="filename">vmlinux</code> file. 
                </p><p>
                    Waiting for debug symbols to transfer from the device can be slow, and it
                    is not always necessary to actually have them on the device for OProfile use. 
                    All that is needed is a copy of the filesystem with the debug symbols present 
                    on the viewer system. 
                    The "<a class="link" href="#platdev-gdb-remotedebug-launch-gdb" title="4.13.2. Launching GDB on the Host Computer">Launching GDB on the Host Computer</a>"
                    section covers how to create such a directory with 
                    the source directory and how to use the OProfileUI Settings dialog to specify the location.
                    If you specify the directory, it will be used when the file checksums 
                    match those on the system you are profiling.
                </p></div><div class="section" title="4.14.2.2. Offline Mode"><div class="titlepage"><div><div><h4 class="title"><a id="platdev-oprofile-oprofileui-offline"></a>4.14.2.2. Offline Mode</h4></div></div></div><p>
                    If network access to the target is unavailable, you can generate
                    an archive for processing in <code class="filename">oprofile-viewer</code> as follows:
                    </p><pre class="literallayout">
     # opcontrol --reset
     # opcontrol --start --separate=lib --no-vmlinux -c 5
            .
            .
     [do whatever is being profiled]
            .
            .
     # opcontrol --stop
     # oparchive -o my_archive
                    </pre><p>
                </p><p>
                    In the above example, <code class="filename">my_archive</code> is the name of the 
                    archive directory where you would like the profile archive to be kept. 
                    After the directory is created, you can copy it to another host and load it
                    using <code class="filename">oprofile-viewer</code> open functionality.
                    If necessary, the archive is converted.
                </p></div></div></div></div>

    <div class="chapter" title="Chapter 5. Common Development Models"><div class="titlepage"><div><div><h2 class="title"><a id="dev-manual-model"></a>Chapter 5. Common Development Models</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#system-development-model">5.1. System Development Workflow</a></span></dt><dd><dl><dt><span class="section"><a href="#developing-a-board-support-package-bsp">5.1.1. Developing a Board Support Package (BSP)</a></span></dt><dt><span class="section"><a href="#modifying-the-kernel">5.1.2. Modifying the Kernel</a></span></dt></dl></dd><dt><span class="section"><a href="#application-development-workflow">5.2. Application Development Workflow</a></span></dt><dd><dl><dt><span class="section"><a href="#workflow-using-the-adt-and-eclipse">5.2.1. Workflow Using the ADT and <span class="trademark">Eclipse</span></a></span></dt><dt><span class="section"><a href="#adt-eclipse">5.2.2. Working Within Eclipse</a></span></dt><dt><span class="section"><a href="#workflow-using-stand-alone-cross-development-toolchains">5.2.3. Workflow Using Stand-alone Cross-development Toolchains</a></span></dt></dl></dd><dt><span class="section"><a href="#modifying-temporary-source-code">5.3. Modifying Temporary Source Code</a></span></dt><dd><dl><dt><span class="section"><a href="#finding-the-temporary-source-code">5.3.1. Finding the Temporary Source Code</a></span></dt><dt><span class="section"><a href="#using-a-quilt-workflow">5.3.2. Using a Quilt Workflow</a></span></dt><dt><span class="section"><a href="#using-a-git-workflow">5.3.3. Using a Git Workflow</a></span></dt></dl></dd><dt><span class="section"><a href="#image-development-using-hob">5.4. Image Development Using Hob</a></span></dt><dt><span class="section"><a href="#platdev-appdev-devshell">5.5. Using a Development Shell</a></span></dt></dl></div><p>
    Many development models exist for which you can use the Yocto Project. 
    This chapter overviews the following methods:
    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>System Development:</em></span>
             System Development covers Board Support Package (BSP) development and kernel 
             modification or configuration.
             If you want to examine specific examples of the system development models, 
             see the "<a class="link" href="#dev-manual-bsp-appendix" title="Appendix A. BSP Development Example">BSP Development Example</a>" 
             appendix and the 
             "<a class="link" href="#dev-manual-kernel-appendix" title="Appendix B. Kernel Modification Example">Kernel Modification Example</a>" appendix.
             </p></li><li class="listitem"><p><span class="emphasis"><em>User Application Development:</em></span>
             User Application Development covers development of applications that you intend 
             to run on some target hardware.
             For a user-space application development example that uses the 
             <span class="trademark">Eclipse</span>™ IDE,
             see the 
             Yocto Project Application Developer's Guide.
             </p></li><li class="listitem"><p><span class="emphasis"><em>Temporary Source Code Modification:</em></span>
             Direct modification of temporary source code is a convenient development model
             to quickly iterate and develop towards a solution.
             Once the solution has been implemented, you should of course take steps to 
             get the changes upstream and applied in the affected recipes.</p></li><li class="listitem"><p><span class="emphasis"><em>Image Development using Hob:</em></span>
             You can use the <a class="ulink" href="http://www.yoctoproject.org/projects/hob" target="_top">Hob</a> to build 
             custom operating system images within the build environment.
             Hob provides an efficient interface to the OpenEmbedded build system.</p></li><li class="listitem"><p><span class="emphasis"><em>Using a Development Shell:</em></span>
             You can use a <code class="filename">devshell</code> to efficiently debug commands or simply 
             edit packages.
             Working inside a development shell is a quick way to set up the OpenEmbedded build 
             environment to work on parts of a project.</p></li></ul></div><p>
</p><div class="section" title="5.1. System Development Workflow"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="system-development-model"></a>5.1. System Development Workflow</h2></div></div></div><p>
        System development involves modification or creation of an image that you want to run on 
        a specific hardware target.  
        Usually, when you want to create an image that runs on embedded hardware, the image does 
        not require the same number of features that a full-fledged Linux distribution provides.
        Thus, you can create a much smaller image that is designed to use only the hardware
        features for your particular hardware.
    </p><p>
        To help you understand how system development works in the Yocto Project, this section 
        covers two types of image development:  BSP creation and kernel modification or 
        configuration.
    </p><div class="section" title="5.1.1. Developing a Board Support Package (BSP)"><div class="titlepage"><div><div><h3 class="title"><a id="developing-a-board-support-package-bsp"></a>5.1.1. Developing a Board Support Package (BSP)</h3></div></div></div><p>
            A BSP is a packageof recipes that, when applied, during a build results in 
            an image that you can run on a particular board.  
            Thus, the package, when compiled into the new image, supports the operation of the board.  
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
            For a brief list of terms used when describing the development process in the Yocto Project, 
            see the "<a class="link" href="#yocto-project-terms" title="3.4. Yocto Project Terms">Yocto Project Terms</a>" section.
        </div><p>
            The remainder of this section presents the basic steps used to create a BSP 
            based on an existing BSP that ships with the Yocto Project.
            You can reference the "<a class="link" href="#dev-manual-bsp-appendix" title="Appendix A. BSP Development Example">BSP Development Example</a>"
            appendix for a detailed example that uses the Crown Bay BSP as a base BSP from which to start.
        </p><p>
            The following illustration and list summarize the BSP creation general workflow.
        </p><p>
            </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 630px"><td align="center"><img src="figures/bsp-dev-flow.png" align="middle" width="540" /></td></tr></table><p>
        </p><p>
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Set up your host development system to support 
                    development using the Yocto Project</em></span>:  See the
                    "<a class="link" href="#the-linux-distro" target="_top">The Linux Distributions</a>" 
                    and the 
                    "<a class="link" href="#packages" target="_top">The Packages</a>" sections both
                    in the Yocto Project Quick Start for requirements.</p></li><li class="listitem"><p><span class="emphasis"><em>Establish a local copy of the project files on your 
                    system</em></span>:  You need this <a class="link" href="#source-directory">source 
                    directory</a> available on your host system. 
                    Having these files on your system gives you access to the build
                    process and to the tools you need.
                    For information on how to set up the source directory, see the
                    "<a class="link" href="#getting-setup" title="2.2. Getting Set Up">Getting Setup</a>" section.</p></li><li class="listitem"><p><span class="emphasis"><em>Establish a local copy of the base BSP files</em></span>:  Having    
                    the BSP files on your system gives you access to the build
                    process and to the tools you need for creating a BSP.
                    For information on how to get these files, see the
                    "<a class="link" href="#getting-setup" title="2.2. Getting Set Up">Getting Setup</a>" section.</p></li><li class="listitem"><p><span class="emphasis"><em>Choose a BSP that is supported by the Yocto Project 
                    as your base BSP</em></span>:  
                    The Yocto Project ships with several BSPs that support various hardware.  
                    It is best to base your new BSP on an existing BSP rather than create all the 
                    recipes and configuration files from scratch.  
                    While it is possible to create everything from scratch, basing your new BSP 
                    on something that is close is much easier.  
                    Or, at a minimum, leveraging off an existing BSP
                    gives you some structure with which to start.</p><p>At this point you need to understand your target hardware well enough to determine which 
                    existing BSP it most closely matches.  
                    Things to consider are your hardware’s on-board features, such as CPU type and graphics support.  
                    You should look at the README files for supported BSPs to get an idea of which one 
                    you could use.  
                    A generic <span class="trademark">Intel</span>® 
                    <span class="trademark">Atom</span>™-based BSP to consider is the 
                    Crown Bay that does not support the <span class="trademark">Intel</span>® 
                    Embedded Media Graphics Driver (EMGD).  
                    The remainder of this example uses that base BSP.</p><p>To see the supported BSPs, go to the 
                    <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">Download</a> page on the Yocto Project
                    website and click on “BSP Downloads.”</p></li><li class="listitem"><p><span class="emphasis"><em>Create your own BSP layer</em></span>:  Layers are ideal for 
                    isolating and storing work for a given piece of hardware.  
                    A layer is really just a location or area in which you place the recipes for your BSP.
                    In fact, a BSP is, in itself, a special type of layer.   
                    </p><p>
                    Another example that illustrates a layer is an application.  
                    Suppose you are creating an application that has library or other dependencies in 
                    order for it to compile and run.  
                    The layer, in this case, would be where all the recipes that define those dependencies 
                    are kept.  
                    The key point for a layer is that it is an isolated area that contains 
                    all the relevant information for the project that the OpenEmbedded build 
                    system knows about.
                    For more information on layers, see the 
                    "<a class="link" href="#understanding-and-creating-layers" title="4.1. Understanding and Creating Layers">Understanding and Creating Layers</a>"
                    section.
                    For more information on BSP layers, see the
                    "<a class="link" href="#bsp-layers" target="_top">BSP Layers</a>" section in the 
                    Yocto Project Board Support Package (BSP) Developer's Guide.</p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>Four BSPs exist that are part of the 
                    Yocto Project release: <code class="filename">atom-pc</code>, <code class="filename">beagleboard</code>,
                    <code class="filename">mpc8315e</code>, and <code class="filename">routerstationpro</code>.  
                    The recipes and configurations for these four BSPs are located and dispersed 
                    within the <a class="link" href="#source-directory">source directory</a>.
                    On the other hand, BSP layers for Crown Bay, Emenlow, Jasper Forest, 
                    N450, Cedar Trail, Fish River, Fish River Island II, Romley, sys940x, tlk, 
                    and Sugar Bay exist in their own separate layers within the larger 
                    <code class="filename">meta-intel</code> layer.</div><p>When you set up a layer for a new BSP, you should follow a standard layout.  
                    This layout is described in the section
                    "<a class="link" href="#bsp-filelayout" target="_top">Example Filesystem Layout</a>"
                    section of the Board Support Package (BSP) Development Guide.  
                    In the standard layout, you will notice a suggested structure for recipes and  
                    configuration information.  
                    You can see the standard layout for the Crown Bay BSP in this example by examining the 
                    directory structure of the <code class="filename">meta-crownbay</code> layer inside the 
                    source directory.</p></li><li class="listitem"><p><span class="emphasis"><em>Make configuration changes to your new BSP 
                    layer</em></span>:  The standard BSP layer structure organizes the files you need 
                    to edit in <code class="filename">conf</code> and several <code class="filename">recipes-*</code>
                    directories within the BSP layer.
                    Configuration changes identify where your new layer is on the local system
                    and identify which kernel you are going to use.
                    </p></li><li class="listitem"><p><span class="emphasis"><em>Make recipe changes to your new BSP layer</em></span>:  Recipe 
                    changes include altering recipes (<code class="filename">.bb</code> files), removing 
                    recipes you don't use, and adding new recipes that you need to support your hardware.
                    </p></li><li class="listitem"><p><span class="emphasis"><em>Prepare for the build</em></span>:  Once you have made all the 
                    changes to your BSP layer, there remains a few things 
                    you need to do for the OpenEmbedded build system in order for it to create your image.  
                    You need to get the build environment ready by sourcing an environment setup script 
                    and you need to be sure two key configuration files are configured appropriately.</p><p>The entire process for building an image is overviewed in the section
                    "<a class="link" href="#building-image" target="_top">Building an Image</a>" section 
                    of the Yocto Project Quick Start.    
                    You might want to reference this information.</p></li><li class="listitem"><p><span class="emphasis"><em>Build the image</em></span>:  The OpenEmbedded build system 
                    uses the BitBake tool to build images based on the type of image you want to create.  
                    You can find more information on BitBake 
                    <a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">here</a>.</p><p>The build process supports several types of images to satisfy different needs.  
                    See the 
                    "<a class="link" href="#ref-images" target="_top">Images</a>" chapter 
                    in the Yocto Project Reference Manual for information on 
                    supported images.</p></li></ol></div><p>
        </p><p>
            You can view a video presentation on "Building Custom Embedded Images with Yocto"
            at <a class="ulink" href="http://free-electrons.com/blog/elc-2011-videos" target="_top">Free Electrons</a>.  
            You can also find supplemental information in  
            <a class="ulink" href="http://www.yoctoproject.org/docs/1.3/bsp-guide/bsp-guide.html" target="_top">
            The Board Support Package (BSP) Development Guide</a>.
            Finally, there is wiki page write up of the example also located 
            <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Transcript:_creating_one_generic_Atom_BSP_from_another" target="_top">
            here</a> that you might find helpful.
       </p></div><div class="section" title="5.1.2. Modifying the Kernel"><div class="titlepage"><div><div><h3 class="title"><a id="modifying-the-kernel"></a>5.1.2. <a id="kernel-spot"></a>Modifying the Kernel</h3></div></div></div><p>
            Kernel modification involves changing the Yocto Project kernel, which could involve changing
            configuration options as well as adding new kernel recipes.  
            Configuration changes can be added in the form of configuration fragments, while recipe
            modification comes through the kernel's <code class="filename">recipes-kernel</code> area
            in a kernel layer you create.
        </p><p>
            The remainder of this section presents a high-level overview of the Yocto Project
            kernel architecture and the steps to modify the kernel.
            For a complete discussion of the kernel, see the
            Yocto Project Kernel Architecture and Use Manual.
            You can reference the appendix 
            "<a class="link" href="#dev-manual-kernel-appendix" title="Appendix B. Kernel Modification Example">Kernel Modification Example</a>"
            for a detailed example that changes the configuration of a kernel.
        </p><div class="section" title="5.1.2.1. Kernel Overview"><div class="titlepage"><div><div><h4 class="title"><a id="kernel-overview"></a>5.1.2.1. Kernel Overview</h4></div></div></div><p>
                Traditionally, when one thinks of a patched kernel, they think of a base kernel
                source tree and a fixed structure that contains kernel patches.
                The Yocto Project, however, employs mechanisms, that in a sense, result in a kernel source
                generator.
                By the end of this section, this analogy will become clearer.
            </p><p>
                You can find a web interface to the Yocto Project kernel source repositories at
                <a class="ulink" href="http://git.yoctoproject.org" target="_top">http://git.yoctoproject.org</a>.
                If you look at the interface, you will see to the left a grouping of 
                Git repositories titled "Yocto Linux Kernel."  
                Within this group, you will find several kernels supported by 
                the Yocto Project:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em><code class="filename">linux-yocto-2.6.34</code></em></span> - The 
                    stable Yocto Project kernel that is based on the Linux 2.6.34 released kernel.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">linux-yocto-2.6.37</code></em></span> - The
                    stable Yocto Project kernel that is based on the Linux 2.6.37 released kernel.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">linux-yocto-3.0</code></em></span> - The stable
                    Yocto Project kernel that is based on the Linux 3.0 released kernel.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">linux-yocto-3.0-1.1.x</code></em></span> - The 
                    stable Yocto Project kernel to use with the Yocto Project Release 1.1.x. This kernel 
                    is based on the Linux 3.0 released kernel.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">linux-yocto-3.2</code></em></span> - The 
                    stable Yocto Project kernel to use with the Yocto Project Release 1.2. This kernel 
                    is based on the Linux 3.2 released kernel.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">linux-yocto-dev</code></em></span> - A development
                    kernel based on the latest upstream release candidate available.</p></li></ul></div><p>
            </p><p>
                The kernels are maintained using the Git revision control system
                that structures them using the familiar "tree", "branch", and "leaf" scheme.
                Branches represent diversions from general code to more specific code, while leaves
                represent the end-points for a complete and unique kernel whose source files 
                when gathered from the root of the tree to the leaf accumulate to create the files
                necessary for a specific piece of hardware and its features.
                The following figure displays this concept:
            </p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 540px"><td align="center"><img src="figures/kernel-overview-1.png" align="middle" /></td></tr></table><p>
            </p><p> 

            </p><p>
                Within the figure, the "Kernel.org Branch Point" represents the point in the tree
                where a supported base kernel is modified from the Linux kernel.
                For example, this could be the branch point for the <code class="filename">linux-yocto-3.0</code>
                kernel.
                Thus, everything further to the right in the structure is based on the 
                <code class="filename">linux-yocto-3.0</code> kernel.
                Branch points to right in the figure represent where the 
                <code class="filename">linux-yocto-3.0</code> kernel is modified for specific hardware 
                or types of kernels, such as real-time kernels.
                Each leaf thus represents the end-point for a kernel designed to run on a specific
                targeted device.
            </p><p>

            </p><p>
                The overall result is a Git-maintained repository from which all the supported
                kernel types can be derived for all the supported devices.
                A big advantage to this scheme is the sharing of common features by keeping them in 
                "larger" branches within the tree.  
                This practice eliminates redundant storage of similar features shared among kernels.
            </p><p>

            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                Keep in mind the figure does not take into account all the supported Yocto
                Project kernel types, but rather shows a single generic kernel just for conceptual purposes.
                Also keep in mind that this structure represents the Yocto Project source repositories 
                that are either pulled from during the build or established on the host development system
                prior to the build by either cloning a particular kernel's Git repository or by 
                downloading and unpacking a tarball.
            </div><p>

            </p><p>
                Storage of all the available kernel source code is one thing, while representing the 
                code on your host development system is another.  
                Conceptually, you can think of the kernel source repositories as all the 
                source files necessary for all the supported kernels. 
                As a developer, you are just interested in the source files for the kernel on 
                on which you are working.
                And, furthermore, you need them available on your host system.
            </p><p>

            </p><p>
                You make kernel source code available on your host development system by using 
                Git to create a bare clone of the Yocto Project kernel Git repository 
                in which you are interested.
                Then, you use Git again to clone a copy of that bare clone.  
                This copy represents the directory structure on your host system that is particular
                to the kernel you want.  
                These are the files you actually modify to change the kernel.
                See the <a class="link" href="#local-kernel-files">Yocto Project Kernel</a> item earlier
                in this manual for an example of how to set up the kernel source directory
                structure on your host system.
            </p><p>

            </p><p>
                This next figure illustrates how the kernel source files might be arranged on 
                your host system.
            </p><p>

            </p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 360px"><td align="center"><img src="figures/kernel-overview-3-denzil.png" align="middle" /></td></tr></table><p>
            </p><p> 

            </p><p>
                In the previous figure, the file structure on the left represents the bare clone 
                set up to track the Yocto Project kernel Git repository. 
                The structure on the right represents the copy of the bare clone. 
                When you make modifcations to the kernel source code, this is the area in which 
                you work.
                Once you make corrections, you must use Git to push the committed changes to the 
                bare clone.
                The example in <a class="xref" href="#modifying-the-kernel-source-code" title="B.1. Modifying the Kernel Source Code">Section B.1, “Modifying the Kernel Source Code”</a> provides a detailed example.
            </p><p>

            </p><p>
                What happens during the build?  
                When you build the kernel on your development system all files needed for the build
                are taken from the source repositories pointed to by the 
                <code class="filename">SRC_URI</code> variable and gathered in a temporary work area
                where they are subsequently used to create the unique kernel.
                Thus, in a sense, the process constructs a local source tree specific to your 
                kernel to generate the new kernel image - a source generator if you will.
            </p><p>
                The following figure shows the temporary file structure
                created on your host system when the build occurs. 
                This build directory contains all the source files used during the build.
            </p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 450px"><td align="center"><img src="figures/kernel-overview-2.png" align="middle" /></td></tr></table><p>
            </p><p>
                Again, for a complete discussion of the Yocto Project kernel's architecture and its 
                branching strategy, see the
                Yocto Project Kernel Architecture and Use Manual.
                You can also reference the
                "<a class="link" href="#modifying-the-kernel-source-code" title="B.1. Modifying the Kernel Source Code">Modifying the Kernel Source Code</a>"
                section for a detailed example that modifies the kernel.
            </p></div><div class="section" title="5.1.2.2. Kernel Modification Workflow"><div class="titlepage"><div><div><h4 class="title"><a id="kernel-modification-workflow"></a>5.1.2.2. Kernel Modification Workflow</h4></div></div></div><p>
                This illustration and the following list summarizes the kernel modification general workflow.
            </p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 675px"><td align="center"><img src="figures/kernel-dev-flow.png" align="middle" width="540" /></td></tr></table><p>
            </p><p>
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Set up your host development system to support 
                        development using the Yocto Project</em></span>:  See  
                        "<a class="link" href="#the-linux-distro" target="_top">The Linux Distributions</a>" and  
                        "<a class="link" href="#packages" target="_top">The Packages</a>" sections both
                        in the Yocto Project Quick Start for requirements.</p></li><li class="listitem"><p><span class="emphasis"><em>Establish a local copy of project files on your 
                        system</em></span>:  Having the <a class="link" href="#source-directory">source
                        directory</a> on your system gives you access to the build process and tools 
                        you need.
                        For information on how to get these files, see the bulleted item
                        "<a class="link" href="#local-yp-release">Yocto Project Release</a>" earlier in this manual.
                        </p></li><li class="listitem"><p><span class="emphasis"><em>Set up a local copy of the <code class="filename">poky-extras</code> Git 
                        repository</em></span>:  This local repository is the area for your configuration 
                        fragments, new kernel recipes, and the kernel <code class="filename">.bbappend</code>
                        file used during the build. 
                        It is good practice to set this repository up inside your local 
                        source directory.
                        For information on how to get these files, see the bulleted item
                        "<a class="link" href="#poky-extras-repo">The <code class="filename">poky-extras</code> Git Repository</a>"
                        earlier in this manual.
                        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>While it is certainly possible to modify the kernel without involving
                            a local Git repository, the suggested workflow for kernel modification
                            using the Yocto Project does use a Git repository.</div></li><li class="listitem"><p><span class="emphasis"><em>Establish a local copy of the Yocto Project kernel files on your 
                        system</em></span>:  In order to make modifications to the kernel you need two things:
                        a bare clone of the Yocto Project kernel you are modifying and  
                        a copy of that bare clone. 
                        The bare clone is required by the build process and is the area to which you 
                        push your kernel source changes (pulling does not work with bare clones). 
                        The copy of the bare clone is a local Git repository that contains all the kernel's 
                        source files. 
                        You make your changes to the files in this copy of the bare clone.
                        For information on how to set these two items up, see the bulleted item
                        "<a class="link" href="#local-kernel-files">Yocto Project Kernel</a>" 
                        earlier in this manual.</p></li><li class="listitem"><p><span class="emphasis"><em>Make changes to the kernel source code if 
                        applicable</em></span>:  Modifying the kernel does not always mean directly
                        changing source files. 
                        However, if you have to do this, you make the changes in the local 
                        Git repository you set up to hold the source files (i.e. the copy of the 
                        bare clone).
                        Once the changes are made, you need to use Git commands to commit the changes
                        and then push them to the bare clone.</p></li><li class="listitem"><p><span class="emphasis"><em>Make kernel configuration changes
                        if applicable</em></span>:  
                        If your situation calls for changing the kernel's configuration, you can 
                        use <code class="filename">menuconfig</code>
                        to enable and disable kernel configurations.  
                        Using <code class="filename">menuconfig</code> allows you to interactively develop and test the 
                        configuration changes you are making to the kernel.
                        When saved, changes using <code class="filename">menuconfig</code> update the kernel's
                        <code class="filename">.config</code>.
                        Try to resist the temptation of directly editing the <code class="filename">.config</code> 
                        file found in the 
                        <a class="link" href="#build-directory">build directory</a> at 
                        <code class="filename">tmp/sysroots/&lt;machine-name&gt;/kernel</code>.
                        Doing so, can produce unexpected results when the OpenEmbedded build system 
                        regenerates the configuration file.</p><p>Once you are satisfied with the configuration changes made using 
                        <code class="filename">menuconfig</code>, you can directly examine the 
                        <code class="filename">.config</code> file against a saved original and gather those
                        changes into a config fragment to be referenced from within the kernel's   
                        <code class="filename">.bbappend</code> file.</p></li><li class="listitem"><p><span class="emphasis"><em>Add or extend kernel recipes if applicable</em></span>:  
                        The standard 
                        layer structure organizes recipe files inside the 
                        <code class="filename">meta-kernel-dev</code> layer that is within the local
                        <code class="filename">poky-extras</code> Git repository.
                        If you need to add new kernel recipes, you add them within this layer. 
                        Also within this area, you will find the <code class="filename">.bbappend</code> 
                        file that appends information to the kernel's recipe file used during the 
                        build.
                        </p></li><li class="listitem"><p><span class="emphasis"><em>Prepare for the build</em></span>:  Once you have made all the 
                        changes to your kernel (configurations, source code changes, recipe additions, 
                        or recipe changes), there remains a few things 
                        you need to do in order for the build system to create your image.  
                        If you have not done so, you need to get the build environment ready by sourcing 
                        the environment setup script described earlier.
                        You also need to be sure two key configuration files 
                        (<code class="filename">local.conf</code> and <code class="filename">bblayers.conf</code>)
                        are configured appropriately.</p><p>The entire process for building an image is overviewed in the 
                        "<a class="link" href="#building-image" target="_top">Building an Image</a>" 
                        section of the Yocto Project Quick Start.    
                        You might want to reference this information.
                        Also, you should look at the detailed examples found in the appendices at 
                        at the end of this manual.</p></li><li class="listitem"><p><span class="emphasis"><em>Build the image</em></span>:  The OpenEmbedded 
                        build system uses the BitBake 
                        tool to build images based on the type of image you want to create.  
                        You can find more information on BitBake 
                        <a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">here</a>.</p><p>The build process supports several types of images to satisfy different needs.  
                        See the "<a class="link" href="#ref-images" target="_top">Images</a>" chapter in 
                        the Yocto Project Reference Manual for information on supported images.</p></li><li class="listitem"><p><span class="emphasis"><em>Make your configuration changes available
                        in the kernel layer</em></span>:  Up to this point, all the configuration changes to the 
                        kernel have been done and tested iteratively.  
                        Once they are tested and ready to go, you can move them into the kernel layer, 
                        which allows you to distribute the layer.</p></li><li class="listitem"><p><span class="emphasis"><em>If applicable, share your in-tree changes</em></span>:  
                        If the changes you made
                        are suited for all Yocto Project kernel users, you might want to send them on 
                        for inclusion into the upstream kernel's Git repository. 
                        If the changes are accepted, the Yocto Project Maintainer pulls them into 
                        the master branch of the kernel tree. 
                        Doing so makes them available to everyone using the kernel.</p></li></ol></div><p>
            </p></div></div></div><div class="section" title="5.2. Application Development Workflow"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="application-development-workflow"></a>5.2. Application Development Workflow</h2></div></div></div><p>
        Application development involves creating an application that you want 
        to run on your target hardware, which is running a kernel image created using the 
        OpenEmbedded build system.
        The Yocto Project provides an Application Development Toolkit (ADT) and 
        stand-alone cross-development toolchains that 
        facilitate quick development and integration of your application into its run-time environment. 
        Using the ADT and toolchains, you can compile and link your application. 
        You can then deploy your application to the actual hardware or to the QEMU emulator for testing.
        If you are familiar with the popular Eclipse IDE, you can use an Eclipse Yocto Plug-in to 
        allow you to develop, deploy, and test your application all from within Eclipse.
    </p><p>
        While we strongly suggest using the ADT to develop your application, this option might not 
        be best for you.  
        If this is the case, you can still use pieces of the Yocto Project for your development process. 
        However, because the process can vary greatly, this manual does not provide detail on the process.
    </p><div class="section" title="5.2.1. Workflow Using the ADT and Eclipse™"><div class="titlepage"><div><div><h3 class="title"><a id="workflow-using-the-adt-and-eclipse"></a>5.2.1. Workflow Using the ADT and <span class="trademark">Eclipse</span></h3></div></div></div><p>
            To help you understand how application development works using the ADT, this section 
            provides an overview of the general development process and a detailed example of the process 
            as it is used from within the Eclipse IDE.
        </p><p>
            The following illustration and list summarize the application development general workflow.
        </p><p>
            </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="630"><tr style="height: 720px"><td align="center"><img src="figures/app-dev-flow.png" align="middle" /></td></tr></table><p>
        </p><p>
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Prepare the Host System for the Yocto Project</em></span>:  
                    See  
                    "<a class="link" href="#the-linux-distro" target="_top">The Linux Distributions</a>" and  
                    "<a class="link" href="#packages" target="_top">The Packages</a>" sections both
                    in the Yocto Project Quick Start for requirements.</p></li><li class="listitem"><p><span class="emphasis"><em>Secure the Yocto Project Kernel Target Image</em></span>:  
                    You must have a target kernel image that has been built using the OpenEmbeded
                    build system.</p><p>Depending on whether the Yocto Project has a pre-built image that matches your target
                    architecture and where you are going to run the image while you develop your application
                    (QEMU or real hardware), the area from which you get the image differs.
                        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Download the image from  
                                <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines" target="_top">  
                                <code class="filename">machines</code></a> if your target architecture is supported
                                and you are going to develop and test your application on actual hardware. 
                                </p></li><li class="listitem"><p>Download the image from the 
                                <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines/qemu" target="_top">  
                                <code class="filename">machines/qemu</code></a> if your target architecture is supported
                                and you are going to develop and test your application using the QEMU 
                                emulator.</p></li><li class="listitem"><p>Build your image if you cannot find a pre-built image that matches
                                your target architecture.
                                If your target architecture is similar to a supported architecture, you can 
                                modify the kernel image before you build it.
                                See the 
                                "<a class="link" href="#kernel-modification-workflow" title="5.1.2.2. Kernel Modification Workflow">Kernel Modification Workflow</a>"
                                section earlier in this manual for information on how to create a modified 
                                Yocto Project kernel.</p></li></ul></div><p>For information on pre-built kernel image naming schemes for images 
                    that can run on the QEMU emulator, see the
                    "<a class="link" href="#downloading-the-pre-built-linux-kernel" target="_top">Downloading the Pre-Built Linux Kernel</a>"
                    section in the Yocto Project Quick Start.</p></li><li class="listitem"><p><span class="emphasis"><em>Install the ADT</em></span>:  
                    The ADT provides a target-specific cross-development toolchain, the root filesystem,
                    the QEMU emulator, and other tools that can help you develop your application.
                    While it is possible to get these pieces separately, the ADT Installer provides an 
                    easy method.
                    You can get these pieces by running an ADT installer script, which is configurable.
                    For information on how to install the ADT, see the
                    "<a class="link" href="#using-the-adt-installer" target="_top">Using the ADT Installer</a>"
                    section 
                    in the Yocto Project Application Developer's Guide.</p></li><li class="listitem"><p><span class="emphasis"><em>If Applicable, Secure the Target Root Filesystem</em></span>:  
                    If you choose not to install the ADT using the ADT Installer,
                    you need to find and download the 
                    appropriate root filesystems.
                    You can find these tarballs in the same areas used for the kernel images.
                    Depending on the type of image you are running, the root filesystem you need differs. 
                    For example, if you are developing an application that runs on an image that 
                    supports Sato, you need to get root filesystem that supports Sato.
                    </p></li><li class="listitem"><p><span class="emphasis"><em>Create and Build your Application</em></span>:  
                    At this point, you need to have source files for your application.
                    Once you have the files, you can use the Eclipse IDE to import them and build the 
                    project. 
                    If you are not using Eclipse, you need to use the cross-development tools you have 
                    installed to create the image.</p></li><li class="listitem"><p><span class="emphasis"><em>Deploy the Image with the Application</em></span>:  
                    If you are using the Eclipse IDE, you can deploy your image to the hardware or to 
                    QEMU through the project's preferences.  
                    If you are not using the Eclipse IDE, then you need to deploy the application using 
                    other methods to the hardware.
                    Or, if you are using QEMU, you need to use that tool and load your image in for testing. 
                    </p></li><li class="listitem"><p><span class="emphasis"><em>Test and Debug the Application</em></span>:  
                    Once your application is deployed, you need to test it.
                    Within the Eclipse IDE, you can use the debubbing environment along with the 
                    set of user-space tools installed along with the ADT to debug your application. 
                    Of course, the same user-space tools are available separately if you choose
                    not to use the Eclipse IDE.</p></li></ol></div><p>
        </p></div><div class="section" title="5.2.2. Working Within Eclipse"><div class="titlepage"><div><div><h3 class="title"><a id="adt-eclipse"></a>5.2.2. Working Within Eclipse</h3></div></div></div><p>
            The Eclipse IDE is a popular development environment and it fully supports 
            development using the Yocto Project.
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>This release of the Yocto Project supports both the Juno and Indigo versions
                of the Eclipse IDE.
                Thus, the following information provides setup information for both versions.
            </div><p>
        </p><p>  
            When you install and configure the Eclipse Yocto Project Plug-in into 
            the Eclipse IDE, you maximize your Yocto Project experience.  
            Installing and configuring the Plug-in results in an environment that 
            has extensions specifically designed to let you more easily develop software.  
            These extensions allow for cross-compilation, deployment, and execution of 
            your output into a QEMU emulation session.  
            You can also perform cross-debugging and profiling.  
            The environment also supports a suite of tools that allows you to perform 
            remote profiling, tracing, collection of power data, collection of 
            latency data, and collection of performance data.
        </p><p>
            This section describes how to install and configure the Eclipse IDE 
            Yocto Plug-in and how to use it to develop your application.
        </p><div class="section" title="5.2.2.1. Setting Up the Eclipse IDE"><div class="titlepage"><div><div><h4 class="title"><a id="setting-up-the-eclipse-ide"></a>5.2.2.1. Setting Up the Eclipse IDE</h4></div></div></div><p>
                To develop within the Eclipse IDE, you need to do the following:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Install the optimal version of the Eclipse IDE.</p></li><li class="listitem"><p>Configure the Eclipse IDE.</p></li><li class="listitem"><p>Install the Eclipse Yocto Plug-in.</p></li><li class="listitem"><p>Configure the Eclipse Yocto Plug-in.</p></li></ol></div><p>
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    Do not install Eclipse from your distribution's package repository.
                    Be sure to install Eclipse from the official Eclipse download site as directed
                    in the next section.
                </div><p>
            </p><div class="section" title="5.2.2.1.1. Installing the Eclipse IDE"><div class="titlepage"><div><div><h5 class="title"><a id="installing-eclipse-ide"></a>5.2.2.1.1. Installing the Eclipse IDE</h5></div></div></div><p>
                    It is recommended that you have the Juno 4.2 version of the 
                    Eclipse IDE installed on your development system.  
                    However, if you currently have the Indigo 3.7.2 version installed and you do 
                    not want to upgrade the IDE, you can configure Indigo to work with the 
                    Yocto Project.
                    See the
                    "<a class="link" href="#configuring-the-eclipse-ide-indigo" title="5.2.2.1.3. Configuring the Eclipse IDE (Indigo)">Configuring the Eclipse IDE (Indigo)</a>"
                    section.
                </p><p>
                    If you don’t have the Juno 4.2 Eclipse IDE installed, you can find the tarball at 
                    <a class="ulink" href="http://www.eclipse.org/downloads" target="_top">http://www.eclipse.org/downloads</a>.  
                    From that site, choose the Eclipse Classic version particular to your development
                    host.  
                    This version contains the Eclipse Platform, the Java Development 
                    Tools (JDT), and the Plug-in Development Environment.
                </p><p>
                    Once you have downloaded the tarball, extract it into a clean 
                    directory.
                    For example, the following commands unpack and install the Eclipse IDE
                    tarball found in the <code class="filename">Downloads</code> area 
                    into a clean directory using the default name <code class="filename">eclipse</code>:
                    </p><pre class="literallayout">
     $ cd ~
     $ tar -xzvf ~/Downloads/eclipse-SDK-4.2-linux-gtk-x86_64.tar.gz
                    </pre><p>
                </p><p>
                    If you have the Indigo 3.7.2 Eclipse IDE already installed and you want to use that
                    version, one issue exists that you need to be aware of regarding the Java 
                    Virtual machine’s garbage collection (GC) process.  
                    The GC process does not clean up the permanent generation 
                    space (PermGen).  
                    This space stores metadata descriptions of classes.  
                    The default value is set too small and it could trigger an 
                    out-of-memory error such as the following:
                    </p><pre class="literallayout">
     Java.lang.OutOfMemoryError: PermGen space
                    </pre><p>
                </p><p>
                    This error causes the application to hang.
                </p><p>
                    To fix this issue, you can use the <code class="filename">--vmargs</code>
                    option when you start the Indigo 3.7.2 Eclipse IDE 
                    to increase the size of the permanent generation space:
                    </p><pre class="literallayout">
     eclipse --vmargs --XX:PermSize=256M
                    </pre><p>
                </p></div><div class="section" title="5.2.2.1.2. Configuring the Eclipse IDE (Juno)"><div class="titlepage"><div><div><h5 class="title"><a id="configuring-the-eclipse-ide-juno"></a>5.2.2.1.2. Configuring the Eclipse IDE (Juno)</h5></div></div></div><p>
                    This section presents the steps needed to configure the Juno 4.2 Eclipse IDE.
                    If you are using Indigo 3.7.2, see the 
                    "<a class="link" href="#configuring-the-eclipse-ide-indigo" title="5.2.2.1.3. Configuring the Eclipse IDE (Indigo)">Configuring the Eclipse IDE (Indigo)</a>".
                </p><p>
                    Before installing and configuring the Eclipse Yocto Plug-in, you need to configure
                    the Juno 4.2 Eclipse IDE.  
                    Follow these general steps:
                    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Start the Eclipse IDE.</p></li><li class="listitem"><p>Make sure you are in your Workbench and select 
                            "Install New Software" from the "Help" pull-down menu.
                            </p></li><li class="listitem"><p>Select <code class="filename">Juno - http://download.eclipse.org/releases/juno</code>
                            from the "Work with:" pull-down menu.</p></li><li class="listitem"><p>Expand the box next to "Linux Tools" and select the 
                            "LTTng - Linux Tracing Toolkit" boxes.</p></li><li class="listitem"><p>Expand the box next to "Mobile and Device Development" and select the 
                            following boxes:
                            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename">C/C++ Remote Launch</code></p></li><li class="listitem"><p><code class="filename">Remote System Explorer End-user Runtime</code></p></li><li class="listitem"><p><code class="filename">Remote System Explorer User Actions</code></p></li><li class="listitem"><p><code class="filename">Target Management Terminal</code></p></li><li class="listitem"><p><code class="filename">TCF Remote System Explorer add-in</code></p></li><li class="listitem"><p><code class="filename">TCF Target Explorer</code></p></li></ul></div></li><li class="listitem"><p>Expand the box next to <code class="filename">Programming Languages</code>
                            and select the <code class="filename">Autotools Support for CDT</code>
                            and <code class="filename">C/C++ Development Tools</code> boxes.</p></li><li class="listitem"><p>Complete the installation and restart the Eclipse IDE.</p></li></ol></div><p>
                </p></div><div class="section" title="5.2.2.1.3. Configuring the Eclipse IDE (Indigo)"><div class="titlepage"><div><div><h5 class="title"><a id="configuring-the-eclipse-ide-indigo"></a>5.2.2.1.3. Configuring the Eclipse IDE (Indigo)</h5></div></div></div><p>
                    This section presents the steps needed to configure the Indigo 3.7.2 Eclipse IDE.
                    If you are using Juno 4.2, see the 
                    "<a class="link" href="#configuring-the-eclipse-ide-juno" title="5.2.2.1.2. Configuring the Eclipse IDE (Juno)">Configuring the Eclipse IDE (Juno)</a>".
                </p><p>
                    Before installing and configuring the Eclipse Yocto Plug-in, you need to configure
                    the Indigo 3.7.2 Eclipse IDE.  
                    Follow these general steps:
                    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Start the Eclipse IDE.</p></li><li class="listitem"><p>Make sure you are in your Workbench and select 
                            "Install New Software" from the "Help" pull-down menu.
                            </p></li><li class="listitem"><p>Select <code class="filename">indigo - http://download.eclipse.org/releases/indigo</code>
                            from the "Work with:" pull-down menu.</p></li><li class="listitem"><p>Expand the box next to <code class="filename">Programming Languages</code>
                            and select the <code class="filename">Autotools Support for CDT (incubation)</code>
                            and <code class="filename">C/C++ Development Tools</code> boxes.</p></li><li class="listitem"><p>Expand the box next to "Linux Tools" and select the 
                            "LTTng - Linux Tracing Toolkit(incubation)" boxes.</p></li><li class="listitem"><p>Complete the installation and restart the Eclipse IDE.</p></li><li class="listitem"><p>After the Eclipse IDE restarts and from the Workbench, select 
                            "Install New Software" from the "Help" pull-down menu.</p></li><li class="listitem"><p>Click the 
                            "Available Software Sites" link.</p></li><li class="listitem"><p>Check the box next to 
                            <code class="filename">http://download.eclipse.org/tm/updates/3.3</code>
                            and click "OK".</p></li><li class="listitem"><p>Select <code class="filename">http://download.eclipse.org/tm/updates/3.3</code>
                            from the "Work with:" pull-down menu.</p></li><li class="listitem"><p>Check the box next to <code class="filename">TM and RSE Main Features</code>.
                            </p></li><li class="listitem"><p>Expand the box next to <code class="filename">TM and RSE Optional Add-ons</code>
                            and select every item except <code class="filename">RSE Unit Tests</code> and 
                            <code class="filename">RSE WinCE Services (incubation)</code>.</p></li><li class="listitem"><p>Complete the installation and restart the Eclipse IDE.</p></li><li class="listitem"><p>If necessary, select 
                            "Install New Software" from the "Help" pull-down menu so you can click the 
                            "Available Software Sites" link again.</p></li><li class="listitem"><p>After clicking "Available Software Sites", check the box next to 
                            <code class="filename">http://download.eclipse.org/tools/cdt/releases/indigo</code>
                           and click "OK".</p></li><li class="listitem"><p>Select <code class="filename">http://download.eclipse.orgtools/cdt/releases/indigo</code>
                            from the "Work with:" pull-down menu.</p></li><li class="listitem"><p>Check the box next to <code class="filename">CDT Main Features</code>.
                            </p></li><li class="listitem"><p>Expand the box next to <code class="filename">CDT Optional Features</code>
                            and select <code class="filename">C/C++ Remote Launch</code> and 
                            <code class="filename">Target Communication Framework (incubation)</code>.</p></li><li class="listitem"><p>Complete the installation and restart the Eclipse IDE.</p></li></ol></div><p>
                </p></div><div class="section" title="5.2.2.1.4. Installing or Accessing the Eclipse Yocto Plug-in"><div class="titlepage"><div><div><h5 class="title"><a id="installing-the-eclipse-yocto-plug-in"></a>5.2.2.1.4. Installing or Accessing the Eclipse Yocto Plug-in</h5></div></div></div><p>
                    You can install the Eclipse Yocto Plug-in into the Eclipse IDE
                    one of two ways:  use the Yocto Project's Eclipse Update site to install the pre-built plug-in,
                    or build and install the plug-in from the latest source code.
                    If you don't want to permanently install the plug-in but just want to try it out
                    within the Eclipse environment, you can import the plug-in project from the 
                    Yocto Project source repositories.
                </p><div class="section" title="5.2.2.1.4.1. Installing the Pre-built Plug-in from the Yocto Project Eclipse Update Site"><div class="titlepage"><div><div><h6 class="title"><a id="new-software"></a>5.2.2.1.4.1. Installing the Pre-built Plug-in from the Yocto Project Eclipse Update Site</h6></div></div></div><p>
                        To install the Eclipse Yocto Plug-in from the update site, 
                        follow these steps:
                        </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Start up the Eclipse IDE.</p></li><li class="listitem"><p>In Eclipse, select "Install New Software" from the "Help" menu.</p></li><li class="listitem"><p>Click "Add..." in the "Work with:" area.</p></li><li class="listitem"><p>Enter 
                                <code class="filename">http://downloads.yoctoproject.org/releases/eclipse-plugin/1.3</code> 
                                in the URL field and provide a meaningful name in the "Name" field.</p></li><li class="listitem"><p>Click "OK" to have the entry added to the "Work with:" 
                                drop-down list.</p></li><li class="listitem"><p>Select the entry for the plug-in from the "Work with:" drop-down 
                                list.</p></li><li class="listitem"><p>Check the box next to <code class="filename">Development tools and SDKs for Yocto Linux</code>.
                                </p></li><li class="listitem"><p>Complete the remaining software installation steps and 
                                then restart the Eclipse IDE to finish the installation of the plug-in.
                                </p></li></ol></div><p>
                    </p></div><div class="section" title="5.2.2.1.4.2. Installing the Plug-in Using the Latest Source Code"><div class="titlepage"><div><div><h6 class="title"><a id="zip-file-method"></a>5.2.2.1.4.2. Installing the Plug-in Using the Latest Source Code</h6></div></div></div><p>
                        To install the Eclipse Yocto Plug-in from the latest source code, follow these steps:
                        </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Open a shell and create a Git repository with:
                                </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/eclipse-poky yocto-eclipse
                                </pre><p>
                                For this example, the repository is named     
                                <code class="filename">~/yocto-eclipse</code>.</p></li><li class="listitem"><p>Locate the <code class="filename">build.sh</code> script in the 
                                Git repository you created in the previous step.
                                The script is located in the <code class="filename">scripts</code>.</p></li><li class="listitem"><p>Be sure to set and export the <code class="filename">ECLIPSE_HOME</code> environment
                                variable to the top-level directory in which you installed the Indigo  
                                version of Eclipse.
                                For example, if your Eclipse directory is <code class="filename">$HOME/eclipse</code>, 
                                use the following:
                                </p><pre class="literallayout">
     $ export ECLIPSE_HOME=$HOME/eclipse
                                </pre></li><li class="listitem"><p>Run the <code class="filename">build.sh</code> script and provide the 
                                name of the Git branch along with the Yocto Project release you are 
                                using.
                                Here is an example that uses the <code class="filename">master</code> Git repository
                                and the <code class="filename">1.1M4</code> release:
                                </p><pre class="literallayout">
     $ scripts/build.sh master 1.1M4 
                                </pre><p>
                                After running the script, the file
                                <code class="filename">org.yocto.sdk-&lt;release&gt;-&lt;date&gt;-archive.zip</code>
                                is in the current directory.</p></li><li class="listitem"><p>If necessary, start the Eclipse IDE and be sure you are in the 
                                Workbench.</p></li><li class="listitem"><p>Select "Install New Software" from the "Help" pull-down menu.
                                </p></li><li class="listitem"><p>Click "Add".</p></li><li class="listitem"><p>Provide anything you want in the "Name" field.</p></li><li class="listitem"><p>Click "Archive" and browse to the ZIP file you built 
                                in step four.  
                               This ZIP file should not be "unzipped", and must be the 
                                <code class="filename">*archive.zip</code> file created by running the 
                                <code class="filename">build.sh</code> script.</p></li><li class="listitem"><p>Check the box next to the new entry in the installation window and complete
                        the installation.</p></li><li class="listitem"><p>Restart the Eclipse IDE if necessary.</p></li></ol></div><p>
                    </p><p>
                        At this point you should be able to configure the Eclipse Yocto Plug-in as described in the
                        "<a class="link" href="#configuring-the-eclipse-yocto-plug-in" title="5.2.2.1.5. Configuring the Eclipse Yocto Plug-in">Configuring the Eclipse Yocto Plug-in</a>"
                        section.</p></div><div class="section" title="5.2.2.1.4.3. Importing the Plug-in Project into the Eclipse Environment"><div class="titlepage"><div><div><h6 class="title"><a id="yocto-project-source"></a>5.2.2.1.4.3. Importing the Plug-in Project into the Eclipse Environment</h6></div></div></div><p>
                        Importing the Eclipse Yocto Plug-in project from the Yocto Project source repositories
                        is useful when you want to try out the latest plug-in from the tip of plug-in's 
                        development tree.
                        It is important to understand when you import the plug-in you are not installing 
                        it into the Eclipse application.
                        Rather, you are importing the project and just using it.
                        To import the plug-in project, follow these steps:
                        </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Open a shell and create a Git repository with:
                                </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/eclipse-poky yocto-eclipse
                                </pre><p>
                                For this example, the repository is named 
                                <code class="filename">~/yocto-eclipse</code>.</p></li><li class="listitem"><p>In Eclipse, select "Import" from the "File" menu.</p></li><li class="listitem"><p>Expand the "General" box and select "existing projects into workspace"
                                and then click "Next".</p></li><li class="listitem"><p>Select the root directory and browse to 
                                <code class="filename">~/yocto-eclipse/plugins</code>.</p></li><li class="listitem"><p>Three plug-ins exist: "org.yocto.bc.ui", "org.yocto.sdk.ide", and
                                "org.yocto.sdk.remotetools". 
                                Select and import all of them.</p></li></ol></div><p>
                    </p><p>
                        The left navigation pane in the Eclipse application shows the default projects. 
                        Right-click on one of these projects and run it as an Eclipse application.
                        This brings up a second instance of Eclipse IDE that has the Yocto Plug-in.
                    </p></div></div><div class="section" title="5.2.2.1.5. Configuring the Eclipse Yocto Plug-in"><div class="titlepage"><div><div><h5 class="title"><a id="configuring-the-eclipse-yocto-plug-in"></a>5.2.2.1.5. Configuring the Eclipse Yocto Plug-in</h5></div></div></div><p>
                    Configuring the Eclipse Yocto Plug-in involves setting the Cross 
                    Compiler options and the Target options.  
                    The configurations you choose become the default settings for all projects.  
                    You do have opportunities to change them later when 
                    you configure the project (see the following section).  
                </p><p>
                    To start, you need to do the following from within the Eclipse IDE:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Choose <code class="filename">Windows -&gt; Preferences</code> to display 
                            the <code class="filename">Preferences</code> Dialog</p></li><li class="listitem"><p>Click <code class="filename">Yocto Project ADT</code></p></li></ul></div><p>
                </p><div class="section" title="5.2.2.1.5.1. Configuring the Cross-Compiler Options"><div class="titlepage"><div><div><h6 class="title"><a id="configuring-the-cross-compiler-options"></a>5.2.2.1.5.1. Configuring the Cross-Compiler Options</h6></div></div></div><p>
                        To configure the Cross Compiler Options, you must select the type of toolchain,
                        point to the toolchain, specify the sysroot location, and select the target architecture.
                        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Selecting the Toolchain Type:</em></span>
                                Choose between <code class="filename">Standalone pre-built toolchain</code>
                                and <code class="filename">Build system derived toolchain</code> for Cross 
                                Compiler Options.
                                    </p><div class="itemizedlist"><ul class="itemizedlist" type="circle"><li class="listitem"><p><span class="emphasis"><em>
                                            <code class="filename">Standalone Pre-built Toolchain:</code></em></span> 
                                            Select this mode when you are using a stand-alone cross-toolchain.
                                            For example, suppose you are an application developer and do not 
                                            need to build a target image.
                                            Instead, you just want to use an architecture-specific toolchain on an 
                                            existing kernel and target root filesystem.
                                            </p></li><li class="listitem"><p><span class="emphasis"><em>
                                            <code class="filename">Build System Derived Toolchain:</code></em></span> 
                                            Select this mode if the cross-toolchain has been installed and built 
                                            as part of the build directory.  
                                            When you select <code class="filename">Build system derived toolchain</code>,
                                            you are using the toolchain bundled 
                                            inside the build directory.
                                            </p></li></ul></div><p>
                                </p></li><li class="listitem"><p><span class="emphasis"><em>Point to the Toolchain:</em></span>
                                If you are using a stand-alone pre-built toolchain, you should be pointing to the
                                <code class="filename">/opt/poky/1.3</code> directory.
                                This is the location for toolchains installed by the ADT Installer or by hand.
                                Sections "<a class="link" href="#configuring-and-running-the-adt-installer-script" target="_top">Configuring 
                                and Running the ADT Installer Script</a>" and 
                                "<a class="link" href="#using-an-existing-toolchain-tarball" target="_top">Using a Cross-Toolchain Tarball</a>" 
                                in the Yocto Project Application Developer's Guide 
                                describe two ways to install a stand-alone cross-toolchain in the 
                                <code class="filename">/opt/poky</code> directory.
                                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>It is possible to install a stand-alone cross-toolchain in a directory
                                other than <code class="filename">/opt/poky</code>.
                                However, doing so is discouraged.</div><p>If you are using a system-derived toolchain, the path you provide 
                                for the <code class="filename">Toolchain Root Location</code>
                                field is the build directory.
                                See the "<a class="link" href="#using-the-toolchain-from-within-the-build-tree" target="_top">Using 
                                BitBake and the build directory</a>" section in the Yocto Project Application
                                Developer's Guide for information on how to install the toolchain into the build 
directory.</p></li><li class="listitem"><p><span class="emphasis"><em>Specify the Sysroot Location:</em></span>
                                This location is where the root filesystem for the 
                                target hardware is created on the development system by the ADT Installer.
                                The QEMU user-space tools, the 
                                NFS boot process, and the cross-toolchain all use the sysroot location.
                                </p></li><li class="listitem"><p><span class="emphasis"><em>Select the Target Architecture:</em></span>
                                The target architecture is the type of hardware you are 
                                going to use or emulate.
                                Use the pull-down <code class="filename">Target Architecture</code> menu to make
                                your selection.
                                The pull-down menu should have the supported architectures.  
                                If the architecture you need is not listed in the menu, you 
                                will need to build the image.
                                See the "<a class="link" href="#building-image" target="_top">Building an Image</a>" section 
                                of the Yocto Project Quick Start for more information.</p></li></ul></div><p>
                    </p></div><div class="section" title="5.2.2.1.5.2. Configuring the Target Options"><div class="titlepage"><div><div><h6 class="title"><a id="configuring-the-target-options"></a>5.2.2.1.5.2. Configuring the Target Options</h6></div></div></div><p>
                        You can choose to emulate hardware using the QEMU emulator, or you 
                        can choose to run your image on actual hardware.
                        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em><code class="filename">QEMU:</code></em></span> Select this option if 
                                you will be using the QEMU emulator.  
                                If you are using the emulator, you also need to locate the kernel 
                                and specify any custom options.</p><p>If you selected <code class="filename">Build system derived toolchain</code>, 
                                the target kernel you built will be located in the 
                                build directory in <code class="filename">tmp/deploy/images</code> directory.   
                                If you selected <code class="filename">Standalone pre-built toolchain</code>, the 
                                pre-built image you downloaded is located 
                                in the directory you specified when you downloaded the image.</p><p>Most custom options are for advanced QEMU users to further 
                                customize their QEMU instance.  
                                These options are specified between paired angled brackets.  
                                Some options must be specified outside the brackets.
                               In particular, the options <code class="filename">serial</code>, 
                                <code class="filename">nographic</code>, and <code class="filename">kvm</code> must all 
                                be outside the brackets.  
                                Use the <code class="filename">man qemu</code> command to get help on all the options
                                and their use.  
                                The following is an example:
                               </p><pre class="literallayout">
    serial ‘&lt;-m 256 -full-screen&gt;</pre><p>
                                Regardless of the mode, Sysroot is already defined as part of the 
                                Cross Compiler Options configuration in the 
                                <code class="filename">Sysroot Location:</code> field.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">External HW:</code></em></span> Select this option 
                                if you will be using actual hardware.</p></li></ul></div><p>
                    </p><p>
                        Click the <code class="filename">OK</code> button to save your plug-in configurations.
                    </p></div></div></div><div class="section" title="5.2.2.2. Creating the Project"><div class="titlepage"><div><div><h4 class="title"><a id="creating-the-project"></a>5.2.2.2. Creating the Project</h4></div></div></div><p>
                You can create two types of projects:  Autotools-based, or Makefile-based.  
                This section describes how to create Autotools-based projects from within 
                the Eclipse IDE.  
                For information on creating Makefile-based projects in a terminal window, see the section
                "<a class="link" href="#using-the-command-line" target="_top">Using the Command Line</a>"
                in the Yocto Project Application Developer's Guide.
            </p><p>
                To create a project based on a Yocto template and then display the source code, 
                follow these steps:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Select <code class="filename">File -&gt; New -&gt; Project</code>.</p></li><li class="listitem"><p>Double click <code class="filename">CC++</code>.</p></li><li class="listitem"><p>Double click <code class="filename">C Project</code> to create the project.</p></li><li class="listitem"><p>Expand <code class="filename">Yocto Project ADT Project</code>.</p></li><li class="listitem"><p>Select <code class="filename">Hello World ANSI C Autotools Project</code>.  
                        This is an Autotools-based project based on a Yocto template.</p></li><li class="listitem"><p>Put a name in the <code class="filename">Project name:</code> field.
                        Do not use hyphens as part of the name.</p></li><li class="listitem"><p>Click <code class="filename">Next</code>.</p></li><li class="listitem"><p>Add information in the <code class="filename">Author</code> and
                        <code class="filename">Copyright notice</code> fields.</p></li><li class="listitem"><p>Be sure the <code class="filename">License</code> field is correct.</p></li><li class="listitem"><p>Click <code class="filename">Finish</code>.</p></li><li class="listitem"><p>If the "open perspective" prompt appears, click "Yes" so that you 
                        in the C/C++ perspective.</p></li><li class="listitem"><p>The left-hand navigation pane shows your project.
                        You can display your source by double clicking the project's source file.
                        </p></li></ol></div><p>
            </p></div><div class="section" title="5.2.2.3. Configuring the Cross-Toolchains"><div class="titlepage"><div><div><h4 class="title"><a id="configuring-the-cross-toolchains"></a>5.2.2.3. Configuring the Cross-Toolchains</h4></div></div></div><p>
                The earlier section, "<a class="link" href="#configuring-the-eclipse-yocto-plug-in" title="5.2.2.1.5. Configuring the Eclipse Yocto Plug-in">Configuring 
                the Eclipse Yocto Plug-in</a>", sets up the default project 
                configurations.  
                You can override these settings for a given project by following these steps:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Select <code class="filename">Project -&gt; Change Yocto Project Settings</code>:  
                        This selection brings up the <code class="filename">Yocot Project Settings</code> Dialog
                        and allows you to make changes specific to an individual project.  
                        </p><p>By default, the Cross Compiler Options and Target Options for a project
                        are inherited from settings you provide using the <code class="filename">Preferences</code>
                        Dialog as described earlier 
                        in the "<a class="link" href="#configuring-the-eclipse-yocto-plug-in" title="5.2.2.1.5. Configuring the Eclipse Yocto Plug-in">Configuring the Eclipse 
                        Yocto Plug-in</a>" section.
                        The <code class="filename">Yocto Project Settings</code>
                        Dialog allows you to override those default settings
                        for a given project.</p></li><li class="listitem"><p>Make your configurations for the project and click "OK".</p></li><li class="listitem"><p>Select <code class="filename">Project -&gt; Reconfigure Project</code>:   
                        This selection reconfigures the project by running
                       <code class="filename">autogen.sh</code> in the workspace for your project.  
                        The script also runs <code class="filename">libtoolize</code>, <code class="filename">aclocal</code>,
                        <code class="filename">autoconf</code>, <code class="filename">autoheader</code>, 
                        <code class="filename">automake --a</code>, and 
                        <code class="filename">./configure</code>.
                        Click on the <code class="filename">Console</code> tab beneath your source code to 
                        see the results of reconfiguring your project.</p></li></ol></div><p>
            </p></div><div class="section" title="5.2.2.4. Building the Project"><div class="titlepage"><div><div><h4 class="title"><a id="building-the-project"></a>5.2.2.4. Building the Project</h4></div></div></div><p>
                To build the project, select <code class="filename">Project -&gt; Build Project</code>.  
                The console should update and you can note the cross-compiler you are using.
            </p></div><div class="section" title="5.2.2.5. Starting QEMU in User Space NFS Mode"><div class="titlepage"><div><div><h4 class="title"><a id="starting-qemu-in-user-space-nfs-mode"></a>5.2.2.5. Starting QEMU in User Space NFS Mode</h4></div></div></div><p>
                To start the QEMU emulator from within Eclipse, follow these steps:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Expose the <code class="filename">Run -&gt; External Tools</code> menu.
                        Your image should appear as a selectable menu item.
                        </p></li><li class="listitem"><p>Select your image from the menu to launch the 
                        emulator in a new window.</p></li><li class="listitem"><p>If needed, enter your host root password in the shell window at the prompt.  
                        This sets up a <code class="filename">Tap 0</code> connection needed for running in user-space 
                        NFS mode.</p></li><li class="listitem"><p>Wait for QEMU to launch.</p></li><li class="listitem"><p>Once QEMU launches, you can begin operating within that 
                        environment.
                        For example, you could determine the IP Address 
                       for the user-space NFS by using the <code class="filename">ifconfig</code> command.
                        </p></li></ol></div><p>
            </p></div><div class="section" title="5.2.2.6. Deploying and Debugging the Application"><div class="titlepage"><div><div><h4 class="title"><a id="deploying-and-debugging-the-application"></a>5.2.2.6. Deploying and Debugging the Application</h4></div></div></div><p>
                Once the QEMU emulator is running the image, using the Eclipse IDE 
                you can deploy your application and use the emulator to perform debugging.  
                Follow these steps to deploy the application.
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Select <code class="filename">Run -&gt; Debug Configurations...</code></p></li><li class="listitem"><p>In the left area, expand <code class="filename">C/C++Remote Application</code>.</p></li><li class="listitem"><p>Locate your project and select it to bring up a new 
                        tabbed view in the <code class="filename">Debug Configurations</code> Dialog.</p></li><li class="listitem"><p>Enter the absolute path into which you want to deploy 
                        the application.  
                        Use the <code class="filename">Remote Absolute File Path for C/C++Application:</code> field.  
                        For example, enter <code class="filename">/usr/bin/&lt;programname&gt;</code>.</p></li><li class="listitem"><p>Click on the <code class="filename">Debugger</code> tab to see the cross-tool debugger 
                        you are using.</p></li><li class="listitem"><p>Click on the <code class="filename">Main</code> tab.</p></li><li class="listitem"><p>Create a new connection to the QEMU instance 
                        by clicking on <code class="filename">new</code>.</p></li><li class="listitem"><p>Select <code class="filename">TCF</code>, which means Target Communication 
                        Framework.</p></li><li class="listitem"><p>Click <code class="filename">Next</code>.</p></li><li class="listitem"><p>Clear out the <code class="filename">host name</code> field and enter the IP Address 
                        determined earlier.</p></li><li class="listitem"><p>Click <code class="filename">Finish</code> to close the 
                        <code class="filename">New Connections</code> Dialog.</p></li><li class="listitem"><p>Use the drop-down menu now in the <code class="filename">Connection</code> field and pick 
                        the IP Address you entered.</p></li><li class="listitem"><p>Click <code class="filename">Debug</code> to bring up a login screen 
                        and login.</p></li><li class="listitem"><p>Accept the debug perspective.</p></li></ol></div><p>
            </p></div><div class="section" title="5.2.2.7. Running User-Space Tools"><div class="titlepage"><div><div><h4 class="title"><a id="running-user-space-tools"></a>5.2.2.7. Running User-Space Tools</h4></div></div></div><p>
                As mentioned earlier in the manual, several tools exist that enhance 
                your development experience.  
                These tools are aids in developing and debugging applications and images.  
                You can run these user-space tools from within the Eclipse IDE through the 
                <code class="filename">YoctoTools</code> menu.
            </p><p>
                Once you pick a tool, you need to configure it for the remote target. 
                Every tool needs to have the connection configured. 
                You must select an existing TCF-based RSE connection to the remote target. 
                If one does not exist, click <code class="filename">New</code> to create one.
            </p><p>
                Here are some specifics about the remote tools:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em><code class="filename">OProfile</code>:</em></span>  Selecting this tool causes 
                        the <code class="filename">oprofile-server</code> on the remote target to launch on 
                        the local host machine.  
                        The <code class="filename">oprofile-viewer</code> must be installed on the local host machine and the 
                        <code class="filename">oprofile-server</code> must be installed on the remote target, 
                        respectively, in order to use.
                        You must compile and install the <code class="filename">oprofile-viewer</code> from the source code 
                        on your local host machine.
                        Furthermore, in order to convert the target's sample format data into a form that the 
                        host can use, you must have <code class="filename">oprofile</code> version 0.9.4 or 
                        greater installed on the host.</p><p>You can locate both the viewer and server from 
                        <a class="ulink" href="http://git.yoctoproject.org/cgit/cgit.cgi/oprofileui/" target="_top">http://git.yoctoproject.org/cgit/cgit.cgi/oprofileui/</a>.
                        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>The <code class="filename">oprofile-server</code> is installed by default on 
                        the <code class="filename">core-image-sato-sdk</code> image.</div></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">Lttng-ust</code>:</em></span> Selecting this tool runs
                        <code class="filename">usttrace</code> on the remote target, transfers the output data back 
                        to the local host machine, and uses the <code class="filename">lttng</code> Eclipse plug-in to 
                        graphically display the output. 
                        For information on how to use <code class="filename">lttng</code> to trace an application, see
                        <a class="ulink" href="http://lttng.org/files/ust/manual/ust.html" target="_top">http://lttng.org/files/ust/manual/ust.html</a>.</p><p>For <code class="filename">Application</code>, you must supply the absolute path name of the 
                        application to be traced by user mode <code class="filename">lttng</code>.  
                        For example, typing <code class="filename">/path/to/foo</code> triggers 
                        <code class="filename">usttrace /path/to/foo</code> on the remote target to trace the 
                        program <code class="filename">/path/to/foo</code>.</p><p><code class="filename">Argument</code> is passed to <code class="filename">usttrace</code>
                        running on the remote target.</p><p>Before you use the <code class="filename">lttng-ust</code> tool, you need to setup 
                        the <code class="filename">lttng</code> Eclipse plug-in and create a <code class="filename">lttng</code>
                        project.
                        Do the following:
                        </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Follow these 
                                <a class="ulink" href="http://wiki.eclipse.org/Linux_Tools_Project/LTTng#Downloading_and_installing_the_LTTng_parser_library" target="_top">instructions</a>
                                to download and install the <code class="filename">lttng</code> parser library.
                                </p></li><li class="listitem"><p>Select <code class="filename">Window -&gt; Open Perspective -&gt; Other</code>
                                and then select <code class="filename">LTTng</code>.</p></li><li class="listitem"><p>Click <code class="filename">OK</code> to change the Eclipse perspective 
                                into the <code class="filename">LTTng</code> perspective.</p></li><li class="listitem"><p>Create a new <code class="filename">LTTng</code> project by selecting 
                                <code class="filename">File -&gt; New -&gt; Project</code>.</p></li><li class="listitem"><p>Choose <code class="filename">LTTng -&gt; LTTng Project</code>.</p></li><li class="listitem"><p>Click <code class="filename">YoctoTools -&gt; lttng-ust</code> to start user mode 
                                <code class="filename">lttng</code> on the remote target.</p></li></ol></div><p>After the output data has been transferred from the remote target back to the local
                        host machine, new traces will be imported into the selected <code class="filename">LTTng</code> project.
                        Then you can go to the <code class="filename">LTTng</code> project, right click the imported 
                        trace, and set the trace type as the <code class="filename">LTTng</code> kernel trace.
                        Finally, right click the imported trace and select <code class="filename">Open</code>
                        to display the data graphically.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">PowerTOP</code>:</em></span> Selecting this tool runs 
                        <code class="filename">powertop</code> on the remote target machine and displays the results in a 
                        new view called <code class="filename">powertop</code>.</p><p><code class="filename">Time to gather data(sec):</code> is the time passed in seconds before data 
                        is gathered from the remote target for analysis.</p><p><code class="filename">show pids in wakeups list:</code> corresponds to the 
                        <code class="filename">-p</code> argument 
                        passed to <code class="filename">powertop</code>.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">LatencyTOP and Perf</code>:</em></span>  
                        <code class="filename">latencytop</code> identifies system latency, while 
                        <code class="filename">perf</code> monitors the system's 
                        performance counter registers. 
                        Selecting either of these tools causes an RSE terminal view to appear 
                        from which you can run the tools. 
                        Both tools refresh the entire screen to display results while they run.</p></li></ul></div><p>
            </p></div><div class="section" title="5.2.2.8. Customizing an Image Using a BitBake Commander Project and Hob"><div class="titlepage"><div><div><h4 class="title"><a id="customizing-an-image-using-a-bitbake-commander-project-and-hob"></a>5.2.2.8. Customizing an Image Using a BitBake Commander Project and Hob</h4></div></div></div><p>
                Within Eclipse, you can create a Yocto BitBake Commander project, 
                edit the metadata, and then use the 
                <a class="ulink" href="http://www.yoctoproject.org/projects/hob" target="_top">Hob</a> to build a customized 
                image all within one IDE.
            </p><div class="section" title="5.2.2.8.1. Creating the Yocto BitBake Commander Project"><div class="titlepage"><div><div><h5 class="title"><a id="creating-the-yocto-bitbake-commander-project"></a>5.2.2.8.1. Creating the Yocto BitBake Commander Project</h5></div></div></div><p>
                    To create a Yocto BitBake Commander project, follow these steps:
                    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Select <code class="filename">Window -&gt; Open Perspective -&gt; Other</code>
                            and then choose <code class="filename">Bitbake Commander</code>.</p></li><li class="listitem"><p>Click <code class="filename">OK</code> to change the Eclipse perspective into the 
                            Bitbake Commander perspective.</p></li><li class="listitem"><p>Select <code class="filename">File -&gt; New -&gt; Project</code> to create a new Yocto 
                            Bitbake Commander project.</p></li><li class="listitem"><p>Choose <code class="filename">Yocto Project Bitbake Commander -&gt; New Yocto Project</code>
                            and click <code class="filename">Next</code>.</p></li><li class="listitem"><p>Enter the Project Name and choose the Project Location. 
                            The Yocto project's metadata files will be put under the directory 
                            <code class="filename">&lt;project_location&gt;/&lt;project_name&gt;</code>. 
                            If that directory does not exist, you need to check 
                            the "Clone from Yocto Git Repository" box, which would execute a 
                            <code class="filename">git clone</code> command to get the project's metadata files.
                            </p></li><li class="listitem"><p>Select <code class="filename">Finish</code> to create the project.</p></li></ol></div><p>
                </p></div><div class="section" title="5.2.2.8.2. Editing the Metadata Files"><div class="titlepage"><div><div><h5 class="title"><a id="editing-the-metadata-files"></a>5.2.2.8.2. Editing the Metadata Files</h5></div></div></div><p>
                    After you create the Yocto Bitbake Commander project, you can modify the metadata files
                    by opening them in the project.
                    When editing recipe files (<code class="filename">.bb</code> files), you can view BitBake
                    variable values and information by hovering the mouse pointer over the variable name and 
                    waiting a few seconds.
                </p><p>
                    To edit the metadata, follow these steps:
                    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Select your Yocto Bitbake Commander project.</p></li><li class="listitem"><p>Select <code class="filename">File -&gt; New -&gt; Yocto BitBake Commander -&gt; BitBake Recipe</code>
                            to open a new recipe wizard.</p></li><li class="listitem"><p>Point to your source by filling in the "SRC_URL" field.
                            For example, you can add a recipe to your 
                            <a class="link" href="#source-directory" target="_top">source directory</a>
                            by defining "SRC_URL" as follows:
                            </p><pre class="literallayout">
     ftp://ftp.gnu.org/gnu/m4/m4-1.4.9.tar.gz
                            </pre></li><li class="listitem"><p>Click "Populate" to calculate the archive md5, sha256, 
                            license checksum values and to auto-generate the recipe filename.</p></li><li class="listitem"><p>Fill in the "Description" field.</p></li><li class="listitem"><p>Be sure values for all required fields exist.</p></li><li class="listitem"><p>Click <code class="filename">Finish</code>.</p></li></ol></div><p>
                </p></div><div class="section" title="5.2.2.8.3. Building and Customizing the Image"><div class="titlepage"><div><div><h5 class="title"><a id="buiding-and-customizing-the-image"></a>5.2.2.8.3. Building and Customizing the Image</h5></div></div></div><p>
                    To build and customize the image in Eclipse, follow these steps:
                    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Select your Yocto Bitbake Commander project.</p></li><li class="listitem"><p>Select <code class="filename">Project -&gt; Launch HOB</code>.</p></li><li class="listitem"><p>Enter the build directory where you want to put your final images.</p></li><li class="listitem"><p>Click <code class="filename">OK</code> to launch Hob.</p></li><li class="listitem"><p>Use Hob to customize and build your own images. 
                            For information on Hob, see the 
                            <a class="ulink" href="http://www.yoctoproject.org/projects/hob" target="_top">Hob Project Page</a> on the 
                            Yocto Project website.</p></li></ol></div><p>
                </p></div></div></div><div class="section" title="5.2.3. Workflow Using Stand-alone Cross-development Toolchains"><div class="titlepage"><div><div><h3 class="title"><a id="workflow-using-stand-alone-cross-development-toolchains"></a>5.2.3. Workflow Using Stand-alone Cross-development Toolchains</h3></div></div></div><p>
            If you want to develop an application without prior installation of the ADT, you 
            still can employ the cross-development toolchain, the QEMU emulator, and a number of supported
            target image files.  
            You just need to follow these general steps:
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Install the cross-development toolchain for your target hardware:</em></span> 
                    For information on how to install the toolchain, see the
                    "<a class="link" href="#using-an-existing-toolchain-tarball" target="_top">Using a Cross-Toolchain Tarball</a>" 
                    section
                    in the Yocto Project Application Developer's Guide.</p></li><li class="listitem"><p><span class="emphasis"><em>Download the Target Image:</em></span>  The Yocto Project supports
                    several target architectures and has many pre-built kernel images and root filesystem 
                    images.</p><p>If you are going to develop your application on hardware, go to the 
                    <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines" target="_top"><code class="filename">machines</code></a> 
                    download area and choose a target machine area
                    from which to download the kernel image and root filesystem.
                    This download area could have several files in it that support development using   
                    actual hardware. 
                    For example, the area might contain <code class="filename">.hddimg</code> files that combine the 
                    kernel image with the filesystem, boot loaders, etc.
                    Be sure to get the files you need for your particular development process.</p><p>If you are going to develop your application and then run and test it using the QEMU
                    emulator, go to the 
                    <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines/qemu" target="_top"><code class="filename">machines/qemu</code></a> 
                    download area.
                    From this area, go down into the directory for your target architecture
                    (e.g. <code class="filename">qemux86_64</code> for an 
                    <span class="trademark">Intel</span>®-based 64-bit architecture).
                    Download kernel, root filesystem, and any other files you need for your process.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>In order to use the root filesystem in QEMU, you need to extract it.
                    See the 
                    "<a class="link" href="#extracting-the-root-filesystem" target="_top">Extracting the Root Filesystem</a>" 
                    section for information on how to extract the root filesystem.</div></li><li class="listitem"><p><span class="emphasis"><em>Develop and Test your Application:</em></span>  At this point, 
                    you have the tools to develop your application.  
                    If you need to separately install and use the QEMU emulator, you can go to 
                    <a class="ulink" href="http://www.qemu.org" target="_top">QEMU Home Page</a> to download and learn about the 
                    emulator.</p></li></ol></div><p>
        </p></div></div><div class="section" title="5.3. Modifying Temporary Source Code"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="modifying-temporary-source-code"></a>5.3. Modifying Temporary Source Code</h2></div></div></div><p>
        You might
        find it helpful during development to modify the temporary source code used by recipes
        to build packages.
        For example, suppose you are developing a patch and you need to experiment a bit
        to figure out your solution.
        After you have initially built the package, you can iteratively tweak the 
        source code, which is located in the 
        <a class="link" href="#build-directory">build directory</a>, and then 
        you can force a re-compile and quickly test your altered code.
        Once you settle on a solution, you can then preserve your changes in the form of 
        patches.
        You can accomplish these steps all within either a 
        <a class="ulink" href="http://savannah.nongnu.org/projects/quilt" target="_top">Quilt</a> or 
        <a class="link" href="#git" title="3.6. Git">Git</a> workflow.
    </p><div class="section" title="5.3.1. Finding the Temporary Source Code"><div class="titlepage"><div><div><h3 class="title"><a id="finding-the-temporary-source-code"></a>5.3.1. Finding the Temporary Source Code</h3></div></div></div><p>
            During a build, the unpacked temporary source code used by recipes 
            to build packages is available in the build directory as 
            defined by the 
            <code class="filename"><a class="link" href="#var-S" target="_top">S</a></code> variable.
            Below is the default value for the <code class="filename">S</code> variable as defined in the 
            <code class="filename">meta/conf/bitbake.conf</code> configuration file in the 
            <a class="link" href="#source-directory">source directory</a>:
            </p><pre class="literallayout">
     S = ${WORKDIR}/${BP}
            </pre><p>
            You should be aware that many recipes override the <code class="filename">S</code> variable.
            For example, recipes that fetch their source from Git usually set 
            <code class="filename">S</code> to <code class="filename">${WORKDIR}/git</code>.
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><code class="filename">BP</code> represents the "Base Package", which is the base package
                name and the package version:
                <pre class="literallayout">
     BP = ${BPN}-${PV}
                </pre></div><p> 
        </p><p>
            The path to the work directory for the recipe 
            (<a class="link" href="#var-WORKDIR" target="_top"><code class="filename">WORKDIR</code></a>) depends
            on the package name and the architecture of the target device.
            For example, here is the work directory for packages whose targets are not device-dependent:
            </p><pre class="literallayout">
     ${TMPDIR}/work/${PACKAGE_ARCH}-poky-${TARGET_OS}/${PN}-${PV}-${PR}
            </pre><p>
            Let's look at an example without variables.
            Assuming a top-level source directory named <code class="filename">poky</code>
            and a default build directory of <code class="filename">poky/build</code>, 
            the following is the work directory for the <code class="filename">acl</code> package:
            </p><pre class="literallayout">
     ~/poky/build/tmp/work/i586-poky-linux/acl-2.2.51-r3
            </pre><p>
        </p><p>
            If your package is dependent on the target device, the work directory varies slightly:
            </p><pre class="literallayout">
     ${TMPDIR}/work/${MACHINE}-poky-${TARGET_OS}/${PN}-${PV}-${PR}
            </pre><p>
            Again, assuming top-level source directory named <code class="filename">poky</code>
            and a default build directory of <code class="filename">poky/build</code>, the 
            following is the work directory for the <code class="filename">acl</code> package that is being 
            built for a MIPS-based device:
            </p><pre class="literallayout">
     ~/poky/build/tmp/work/mips-poky-linux/acl-2.2.51-r2
            </pre><p>
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
            To better understand how the OpenEmbedded build system resolves directories during the 
            build process, see the glossary entries for the
            <a class="link" href="#var-WORKDIR" target="_top"><code class="filename">WORKDIR</code></a>,
            <a class="link" href="#var-TMPDIR" target="_top"><code class="filename">TMPDIR</code></a>,
            <a class="link" href="#var-TOPDIR" target="_top"><code class="filename">TOPDIR</code></a>,
            <a class="link" href="#var-PACKAGE_ARCH" target="_top"><code class="filename">PACKAGE_ARCH</code></a>,
            <a class="link" href="#var-TARGET_OS" target="_top"><code class="filename">TARGET_OS</code></a>,
            <a class="link" href="#var-PN" target="_top"><code class="filename">PN</code></a>,
            <a class="link" href="#var-PV" target="_top"><code class="filename">PV</code></a>,
            and
            <a class="link" href="#var-PR" target="_top"><code class="filename">PR</code></a>
            variables in the Yocto Project Reference Manual.
        </div><p>
            Now that you know where to locate the directory that has the temporary source code, you can use a 
            Quilt or Git workflow to make your edits, test the changes, and preserve the 
            changes in the form of patches.
        </p></div><div class="section" title="5.3.2. Using a Quilt Workflow"><div class="titlepage"><div><div><h3 class="title"><a id="using-a-quilt-workflow"></a>5.3.2. Using a Quilt Workflow</h3></div></div></div><p>
            <a class="ulink" href="http://savannah.nongnu.org/projects/quilt" target="_top">Quilt</a>
            is a powerful tool that allows you to capture source code changes without having 
            a clean source tree.
            This section outlines the typical workflow you can use to modify temporary source code, 
            test changes, and then preserve the changes in the form of a patch all using Quilt.
        </p><p>
            Follow these general steps:
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Find the Source Code:</em></span>
                    The temporary source code used by the OpenEmbedded build system is kept in the 
                    build directory.  
                    See the 
                    "<a class="link" href="#finding-the-temporary-source-code" title="5.3.1. Finding the Temporary Source Code">Finding the Temporary Source Code</a>"
                    section to learn how to locate the directory that has the temporary source code for a 
                    particular package.</p></li><li class="listitem"><p><span class="emphasis"><em>Change Your Working Directory:</em></span>
                    You need to be in the directory that has the temporary source code.
                    That directory is defined by the 
                    <a class="link" href="#var-S" target="_top">S</a>
                    variable.</p></li><li class="listitem"><p><span class="emphasis"><em>Create a New Patch:</em></span>
                    Before modifying source code, you need to create a new patch.
                    To create a new patch file, use <code class="filename">quilt new</code> as below:
                    </p><pre class="literallayout">
     $ quilt new my_changes.patch
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Notify Quilt and Add Files:</em></span>
                    After creating the patch, you need to notify Quilt about the files you will 
                    be changing.
                    Add the files you will be modifying into the patch you just created:
                    </p><pre class="literallayout">
     $ quilt add file1.c file2.c file3.c
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Edit the Files:</em></span>
                    Make the changes to the temporary source code.</p></li><li class="listitem"><p><span class="emphasis"><em>Test Your Changes:</em></span>
                    Once you have modified the source code, the easiest way to test your changes 
                    is by calling the <code class="filename">compile</code> task as shown in the following example:
                    </p><pre class="literallayout">
     $ bitbake -c compile -f &lt;name_of_package&gt;
                    </pre><p>
                    The <code class="filename">-f</code> or <code class="filename">--force</code>
                    option forces re-execution of the specified task.
                    If you find problems with your code, you can just keep editing and 
                    re-testing iteratively until things work as expected.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>All the modifications you make to the temporary source code
                    disappear once you <code class="filename">-c clean</code> or 
                    <code class="filename">-c cleanall</code> with BitBake for the package.
                    Modifications will also disappear if you use the <code class="filename">rm_work</code>
                    feature as described in the
                    "<a class="link" href="#building-image" target="_top">Building an Image</a>" 
                    section of the Yocto Project Quick Start.
                    </div></li><li class="listitem"><p><span class="emphasis"><em>Generate the Patch:</em></span>
                    Once your changes work as expected, you need to use Quilt to generate the final patch that 
                    contains all your modifications.
                    </p><pre class="literallayout">
     $ quilt refresh
                    </pre><p>
                    At this point the <code class="filename">my_changes.patch</code> file has all your edits made 
                    to the <code class="filename">file1.c</code>, <code class="filename">file2.c</code>, and 
                    <code class="filename">file3.c</code> files.</p><p>You can find the resulting patch file in the <code class="filename">patches/</code> 
                    subdirectory of the source (<code class="filename">S</code>) directory.</p></li><li class="listitem"><p><span class="emphasis"><em>Copy the Patch File:</em></span> 
                    For simplicity, copy the patch file into a directory named <code class="filename">files</code>,
                    which you can create in the same directory as the recipe.
                    Placing the patch here guarantees that the OpenEmbedded build system will find
                    the patch.
                    Next, add the patch into the  
                    <code class="filename"><a class="link" href="#var-SRC_URI" target="_top">SRC_URI</a></code> 
                    of the recipe.  
                    Here is an example:
                    </p><pre class="literallayout">
     SRC_URI += "file://my_changes.patch"
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Increment the Package Revision Number:</em></span>
                    Finally, don't forget to 'bump' the 
                    <code class="filename"><a class="link" href="#var-PR" target="_top">PR</a></code>
                    value in the same recipe since the resulting packages have changed.</p></li></ol></div><p>
        </p></div><div class="section" title="5.3.3. Using a Git Workflow"><div class="titlepage"><div><div><h3 class="title"><a id="using-a-git-workflow"></a>5.3.3. Using a Git Workflow</h3></div></div></div><p>
            Git is an even more powerful tool that allows you to capture source code changes without having 
            a clean source tree.
            This section outlines the typical workflow you can use to modify temporary source code, 
            test changes, and then preserve the changes in the form of a patch all using Git.
            For general information on Git as it is used in the Yocto Project, see the 
            "<a class="link" href="#git" title="3.6. Git">Git</a>" section.
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
            This workflow uses Git only for its ability to manage local changes to the source code 
            and produce patches independent of any version control system used with the Yocto Project.
        </div><p>
            Follow these general steps:
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Find the Source Code:</em></span>
                    The temporary source code used by the OpenEmbedded build system is kept in the 
                    build directory.  
                    See the 
                    "<a class="link" href="#finding-the-temporary-source-code" title="5.3.1. Finding the Temporary Source Code">Finding the Temporary Source Code</a>"
                    section to learn how to locate the directory that has the temporary source code for a 
                    particular package.</p></li><li class="listitem"><p><span class="emphasis"><em>Change Your Working Directory:</em></span>
                    You need to be in the directory that has the temporary source code.
                    That directory is defined by the 
                    <a class="link" href="#var-S" target="_top">S</a>
                    variable.</p></li><li class="listitem"><p><span class="emphasis"><em>Initialize a Git Repository:</em></span>
                    Use the <code class="filename">git init</code> command to initialize a new local repository
                    that is based on the work directory:
                    </p><pre class="literallayout">
     $ git init
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Stage all the files:</em></span>
                    Use the <code class="filename">git add *</code> command to stage all the files in the source
                    code directory so that they can be committed:
                    </p><pre class="literallayout">
     $ git add *
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Commit the Source Files:</em></span>
                    Use the <code class="filename">git commit</code> command to initially commit all the files in 
                    the work directory:
                    </p><pre class="literallayout">
     $ git commit
                    </pre><p>
                    At this point, your Git repository is aware of all the source code files.
                    Any edits you now make to files will be tracked by Git.</p></li><li class="listitem"><p><span class="emphasis"><em>Edit the Files:</em></span>
                    Make the changes to the temporary source code.</p></li><li class="listitem"><p><span class="emphasis"><em>Test Your Changes:</em></span>
                    Once you have modified the source code, the easiest way to test your changes 
                    is by calling the <code class="filename">compile</code> task as shown in the following example:
                    </p><pre class="literallayout">
     $ bitbake -c compile -f &lt;name_of_package&gt;
                    </pre><p>
                    The <code class="filename">-f</code> or <code class="filename">--force</code>
                    option forces re-execution of the specified task.
                    If you find problems with your code, you can just keep editing and 
                    re-testing iteratively until things work as expected.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>All the modifications you make to the temporary source code
                    disappear once you <code class="filename">-c clean</code> or 
                    <code class="filename">-c cleanall</code> with BitBake for the package.
                    Modifications will also disappear if you use the <code class="filename">rm_work</code>
                    feature as described in the
                    "<a class="link" href="#building-image" target="_top">Building an Image</a>" 
                    section of the Yocto Project Quick Start.
                    </div></li><li class="listitem"><p><span class="emphasis"><em>See the List of Files You Changed:</em></span>
                    Use the <code class="filename">git status</code> command to see what files you have actually edited. 
                    The ability to have Git track the files you have changed is an advantage that this
                    workflow has over the Quilt workflow.
                    Here is the Git command to list your changed files:
                    </p><pre class="literallayout">
     $ git status
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Stage the Modified Files:</em></span>
                    Use the <code class="filename">git add</code> command to stage the changed files so they
                    can be committed as follows:
                    </p><pre class="literallayout">
     $ git add file1.c file2.c file3.c
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Commit the Staged Files and View Your Changes:</em></span>
                    Use the <code class="filename">git commit</code> command to commit the changes to the 
                    local repository.  
                    Once you have committed the files, you can use the <code class="filename">git log</code>
                    command to see your changes:
                    </p><pre class="literallayout">
     $ git commit
     $ git log
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Generate the Patch:</em></span>
                    Once the changes are committed, use the <code class="filename">git format-patch</code>
                    command to generate a patch file:
                    </p><pre class="literallayout">
     $ git format-patch HEAD~1
                    </pre><p>
                    The <code class="filename">HEAD~1</code> part of the command causes Git to generate the 
                    patch file for the most recent commit.</p><p>At this point, the patch file has all your edits made 
                    to the <code class="filename">file1.c</code>, <code class="filename">file2.c</code>, and 
                    <code class="filename">file3.c</code> files.
                    You can find the resulting patch file in the current directory.
                    The patch file ends with <code class="filename">.patch</code>.</p></li><li class="listitem"><p><span class="emphasis"><em>Copy the Patch File:</em></span> 
                    For simplicity, copy the patch file into a directory named <code class="filename">files</code>,
                    which you can create in the same directory as the recipe.
                    Placing the patch here guarantees that the OpenEmbedded build system will find
                    the patch.
                    Next, add the patch into the  
                    <code class="filename"><a class="link" href="#var-SRC_URI" target="_top">SRC_URI</a></code> 
                    of the recipe.  
                    Here is an example:
                    </p><pre class="literallayout">
     SRC_URI += "file://my_changes.patch"
                    </pre></li><li class="listitem"><p><span class="emphasis"><em>Increment the Package Revision Number:</em></span>
                    Finally, don't forget to 'bump' the 
                    <code class="filename"><a class="link" href="#var-PR" target="_top">PR</a></code>
                    value in the same recipe since the resulting packages have changed.</p></li></ol></div><p>
        </p></div></div><div class="section" title="5.4. Image Development Using Hob"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="image-development-using-hob"></a>5.4. Image Development Using Hob</h2></div></div></div><p>
        The <a class="ulink" href="http://www.yoctoproject.org/projects/hob" target="_top">Hob</a> is a graphical user interface for the 
        OpenEmbedded build system, which is based on BitBake.
        You can use the Hob to build custom operating system images within the Yocto Project build environment.
        Hob simply provides a friendly interface over the build system used during system development.
        In other words, building images with the Hob lets you take care of common build tasks more easily.
    </p><p>
        For a better understanding of Hob, see the project page at
        <a class="ulink" href="http://www.yoctoproject.org/projects/hob" target="_top">http://www.yoctoproject.org/projects/hob</a> on the Yocto Project website.
        The page has a short introductory training video on Hob.
        The following lists some features of Hob:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>You can setup and run Hob using these commands:
            </p><pre class="literallayout">
     $ source oe-init-build-env
     $ hob
            </pre></li><li class="listitem"><p>You can set the 
                <a class="link" href="#var-MACHINE" target="_top"><code class="filename">MACHINE</code></a>
                for which you are building the image.</p></li><li class="listitem"><p>You can modify various policy settings such as the package format used to build with, 
                the parrallelism BitBake uses, whether or not to build an external toolchain, and which host 
                to build against.</p></li><li class="listitem"><p>You can manage 
                <a class="link" href="#understanding-and-creating-layers" title="4.1. Understanding and Creating Layers">layers</a>.</p></li><li class="listitem"><p>You can select a base image and then add extra packages for your custom build.
                </p></li><li class="listitem"><p>You can launch and monitor the build from within Hob.</p></li></ul></div><p>
    </p></div><div class="section" title="5.5. Using a Development Shell"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="platdev-appdev-devshell"></a>5.5. Using a Development Shell</h2></div></div></div><p>
        When debugging certain commands or even when just editing packages, 
        <code class="filename">devshell</code> can be a useful tool.
        When you invoke <code class="filename">devshell</code>, source files are 
        extracted into your working directory and patches are applied. 
        Then, a new terminal is opened and you are placed in the working directory.
        In the new terminal, all the OpenEmbedded build-related environment variables are 
        still defined so you can use commands such as <code class="filename">configure</code> and 
        <code class="filename">make</code>. 
        The commands execute just as if the OpenEmbedded build system were executing them. 
        Consequently, working this way can be helpful when debugging a build or preparing 
        software to be used with the OpenEmbedded build system.
    </p><p>
        Following is an example that uses <code class="filename">devshell</code> on a target named
        <code class="filename">matchbox-desktop</code>:
        </p><pre class="literallayout">
     $ bitbake matchbox-desktop -c devshell
        </pre><p>
    </p><p>
        This command opens a terminal with a shell prompt within the OpenEmbedded build environment. 
        The default shell is xterm.
        The following occurs:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The <code class="filename">PATH</code> variable includes the 
                cross-toolchain.</p></li><li class="listitem"><p>The <code class="filename">pkgconfig</code> variables find the correct 
                <code class="filename">.pc</code> files.</p></li><li class="listitem"><p>The <code class="filename">configure</code> command finds the 
                Yocto Project site files as well as any other necessary files.</p></li></ul></div><p>
        Within this environment, you can run <code class="filename">configure</code>
        or <code class="filename">compile</code> commands as if they were being run by 
        the OpenEmbedded build system itself.
        As noted earlier, the working directory also automatically changes to the 
        source directory (<a class="link" href="#var-S" target="_top"><code class="filename">S</code></a>).
    </p><p> 
        When you are finished, you just exit the shell or close the terminal window.
    </p><p>
        Because an external shell is launched rather than opening directly into the 
        original terminal window, it allows easier interaction with BitBake's multiple
        threads as well as accomodates a future client/server split.
    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
            It is worth remembering that when using <code class="filename">devshell</code>
            you need to use the full compiler name such as <code class="filename">arm-poky-linux-gnueabi-gcc</code> 
            instead of just using <code class="filename">gcc</code>.
            The same applies to other applications such as <code class="filename">binutils</code>, 
            <code class="filename">libtool</code> and so forth.
            BitBake sets up environment variables such as <code class="filename">CC</code>
            to assist applications, such as <code class="filename">make</code> to find the correct tools.
        </p><p>
            It is also worth noting that <code class="filename">devshell</code> still works over
            X11 forwarding and similar situations
        </p></div></div></div>

    <div class="appendix" title="Appendix A. BSP Development Example"><div class="titlepage"><div><div><h2 class="title"><a id="dev-manual-bsp-appendix"></a>Appendix A. BSP Development Example</h2></div></div></div><p>
    This appendix provides a complete BSP development example.
    The example assumes the following:
    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>No previous preparation or use of the Yocto Project.</p></li><li class="listitem"><p>Use of the Crown Bay Board Support Package (BSP) as a "base" BSP from 
            which to work.  
            The example begins with the Crown Bay BSP as the starting point
            but ends by building a new 'atom-pc' BSP, which was based on the Crown Bay BSP.
            </p></li><li class="listitem"><p>Shell commands assume <code class="filename">bash</code></p></li><li class="listitem"><p>Example was developed on an Intel-based Core i7 platform running 
            Ubuntu 10.04 LTS released in April of 2010.</p></li></ul></div><p>             
</p><div class="section" title="A.1. Getting Local Source Files and BSP Files"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="getting-local-yocto-project-files-and-bsp-files"></a>A.1. Getting Local Source Files and BSP Files</h2></div></div></div><p>
        You need to have the <a class="link" href="#source-directory">source directory</a>
        available on your host system.  
        You can set up this directory through tarball extraction or by cloning the 
        <code class="filename">poky</code> Git repository.
        The following paragraphs describe both methods.
        For additional information, see the bulleted item
        "<a class="link" href="#local-yp-release">Yocto Project Release</a>".
    </p><p>
        As mentioned, one way to set up the source directory is to use Git to clone the 
        <code class="filename">poky</code> repository. 
        These commands create a local copy of the Git repository.
        By default, the top-level directory of the repository is named <code class="filename">poky</code>:
        </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/poky
     $ cd poky
        </pre><p> 
        Alternatively, you can start with the downloaded Poky "1.2+snapshot" tarball.
        These commands unpack the tarball into a source directory structure.
        By default, the top-level directory of the source directory is named
        <code class="filename">poky-1.2+snapshot-8.0</code>:
        </p><pre class="literallayout">
     $ tar xfj poky-1.2+snapshot-8.0.tar.bz2
     $ cd poky-1.2+snapshot-8.0
        </pre><p> 
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>If you're using the tarball method, you can ignore all the following steps that
        ask you to carry out Git operations.  
        You already have the results of those operations
        in the form of the 1.2+snapshot release tarballs.
        Consequently, there is nothing left to do other than extract those tarballs into the 
        proper locations.</p><p>Once you expand the released tarball, you have a snapshot of the Git repository
        that represents a specific release.
        Fundamentally, this is different than having a local copy of the Poky Git repository.  
        Given the tarball method, changes you make are building on top of a release.
        With the Git repository method you have the ability to track development
        and keep changes in revision control.
        See the 
        "<a class="link" href="#repositories-tags-and-branches" title="3.6.1. Repositories, Tags, and Branches">Repositories, Tags, and Branches</a>" section
        for more discussion around these differences.</p></div><p>
    </p><p>
        With the local <code class="filename">poky</code> Git repository set up, 
        you have all the development branches available to you from which you can work. 
        Next, you need to be sure that your local repository reflects the exact
        release in which you are interested.
        From inside the repository you can see the development branches that represent
        areas of development that have diverged from the main (master) branch
        at some point, such as a branch to track a maintenance release's development.  
        You can also see the tag names used to mark snapshots of stable releases or 
        points in the repository.
        Use the following commands to list out the branches and the tags in the repository, 
        respectively.
        </p><pre class="literallayout">
     $ git branch -a
     $ git tag -l
        </pre><p> 
        For this example, we are going to use the Yocto Project 1.3 Release, which is code
        named "1.2+snapshot". 
        To make sure we have a local area (branch in Git terms) on our machine that 
        reflects the 1.3 release, we can use the following commands:
        </p><pre class="literallayout">
     $ cd ~/poky
     $ git fetch --tags
     $ git checkout 1.2+snapshot-8.0 -b 1.2+snapshot
     Switched to a new branch '1.2+snapshot'
        </pre><p>
        The <code class="filename">git fetch --tags</code> is somewhat redundant since you just set 
        up the repository and should have all the tags.
        The <code class="filename">fetch</code> command makes sure all the tags are available in your
        local repository.
        The Git <code class="filename">checkout</code> command with the <code class="filename">-b</code> option
        creates a local branch for you named <code class="filename">1.2+snapshot</code>.
        Your local branch begins in the same state as the Yocto Project 1.3 released tarball 
        marked with the <code class="filename">1.2+snapshot-8.0</code> tag in the source repositories.
    </p></div><div class="section" title="A.2. Choosing a Base BSP"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="choosing-a-base-bsp-app"></a>A.2. Choosing a Base BSP</h2></div></div></div><p>
        For this example, the base BSP is the <span class="trademark">Intel</span>®
        <span class="trademark">Atom</span>™ Processor E660 with Intel Platform 
        Controller Hub EG20T Development Kit, which is otherwise referred to as "Crown Bay."
        The BSP layer is <code class="filename">meta-crownbay</code>.  
        The base BSP is simply the BSP
        we will be using as a starting point, so don't worry if you don't actually have Crown Bay
        hardware.
        The remainder of the example transforms the base BSP into a BSP that should be
        able to boot on generic atom-pc (netbook) hardware.
    </p><p>
        For information on how to choose a base BSP, see
        "<a class="link" href="#developing-a-board-support-package-bsp" title="5.1.1. Developing a Board Support Package (BSP)">Developing a Board Support Package (BSP)</a>".
    </p></div><div class="section" title="A.3. Getting Your Base BSP"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="getting-your-base-bsp-app"></a>A.3. Getting Your Base BSP</h2></div></div></div><p>
        You need to have the base BSP layer on your development system.  
        Similar to the local <a class="link" href="#source-directory">source directory</a>, 
        you can get the BSP 
        layer in a couple of different ways:  
        download the BSP tarball and extract it, or set up a local Git repository that 
        has the BSP layers.  
        You should use the same method that you used to set up the source directory earlier.
        See "<a class="link" href="#getting-setup" title="2.2. Getting Set Up">Getting Setup</a>" for information on how to get 
        the BSP files.
    </p><p>
        This example assumes the BSP layer will be located within a directory named
        <code class="filename">meta-intel</code> contained within the <code class="filename">poky</code>
        parent directory.  
        The following steps will automatically create the
        <code class="filename">meta-intel</code> directory and the contained 
        <code class="filename">meta-crownbay</code> starting point in both the Git and the tarball cases.
    </p><p>
        If you're using the Git method, you could do the following to create
        the starting layout after you have made sure you are in the <code class="filename">poky</code>
        directory created in the previous steps:
        </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/meta-intel.git
     $ cd meta-intel
        </pre><p> 
        Alternatively, you can start with the downloaded Crown Bay tarball.
        You can download the 1.2+snapshot version of the BSP tarball from the
        <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">Download</a> page of the 
        Yocto Project website. 
        Here is the specific link for the tarball needed for this example:
        <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines/crownbay-noemgd/crownbay-noemgd-1.2+snapshot-8.0.tar.bz2" target="_top">http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines/crownbay-noemgd/crownbay-noemgd-1.2+snapshot-8.0.tar.bz2</a>.
        Again, be sure that you are already in the <code class="filename">poky</code> directory
        as described previously before installing the tarball:
        </p><pre class="literallayout">
     $ tar xfj crownbay-noemgd-1.2+snapshot-8.0.tar.bz2
     $ cd meta-intel
        </pre><p> 
    </p><p>
        The <code class="filename">meta-intel</code> directory contains all the metadata 
        that supports BSP creation.  
        If you're using the Git method, the following
        step will switch to the 1.2+snapshot metadata.
        If you're using the tarball method, you already have the correct metadata and can 
        skip to the next step.
        Because <code class="filename">meta-intel</code> is its own Git repository, you will want
        to be sure you are in the appropriate branch for your work.
        For this example we are going to use the <code class="filename">1.2+snapshot</code> branch. 
        </p><pre class="literallayout">
     $ git checkout -b 1.2+snapshot origin/1.2+snapshot
     Branch 1.2+snapshot set up to track remote branch 1.2+snapshot from origin.
     Switched to a new branch '1.2+snapshot'
        </pre><p>
    </p></div><div class="section" title="A.4. Making a Copy of the Base BSP to Create Your New BSP Layer"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="making-a-copy-of-the-base bsp-to-create-your-new-bsp-layer-app"></a>A.4. Making a Copy of the Base BSP to Create Your New BSP Layer</h2></div></div></div><p>
        Now that you have set up the source directory and included the base BSP files, you need to 
        create a new layer for your BSP.
        To create your BSP layer, you simply copy the <code class="filename">meta-crownbay</code>
        layer to a new layer.
    </p><p>  
        For this example, the new layer will be named <code class="filename">meta-mymachine</code>.  
        The name should follow the BSP layer naming convention, which is 
        <code class="filename">meta-&lt;name&gt;</code>.  
        The following assumes your working directory is <code class="filename">meta-intel</code> 
        inside your source directory.  
        To start your new layer, just copy the new layer alongside the existing
        BSP layers in the <code class="filename">meta-intel</code> directory:
        </p><pre class="literallayout">
     $ cp -a meta-crownbay/ meta-mymachine 
        </pre><p>
    </p></div><div class="section" title="A.5. Making Changes to Your BSP"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="making-changes-to-your-bsp-app"></a>A.5. Making Changes to Your BSP</h2></div></div></div><p>
        Right now you have two identical BSP layers with different names:  
        <code class="filename">meta-crownbay</code> and <code class="filename">meta-mymachine</code>.  
        You need to change your configurations so that they work for your new BSP and 
        your particular hardware.
        The following sections look at each of these areas of the BSP.
    </p><div class="section" title="A.5.1. Changing the BSP Configuration"><div class="titlepage"><div><div><h3 class="title"><a id="changing-the-bsp-configuration"></a>A.5.1. Changing the BSP Configuration</h3></div></div></div><p>  
            We will look first at the configurations, which are all done in the layer’s 
            <code class="filename">conf</code> directory.
        </p><p>
            First, since in this example the new BSP will not support EMGD, we will get rid of the 
            <code class="filename">crownbay.conf</code> file and then rename the 
            <code class="filename">crownbay-noemgd.conf</code> file to <code class="filename">mymachine.conf</code>.  
            Much of what we do in the configuration directory is designed to help the OpenEmbedded 
            build system work with the new layer and to be able to find and use the right software.  
            The following two commands result in a single machine configuration file named 
            <code class="filename">mymachine.conf</code>.  
            </p><pre class="literallayout">
     $ rm meta-mymachine/conf/machine/crownbay.conf
     $ mv meta-mymachine/conf/machine/crownbay-noemgd.conf \
     meta-mymachine/conf/machine/mymachine.conf
            </pre><p>
        </p><p>
            Next, we need to make changes to the <code class="filename">mymachine.conf</code> itself.
            The only changes we want to make for this example are to the comment lines.  
            Changing comments, of course, is never strictly necessary, but it's alway good form to make
            them reflect reality as much as possible.

            Here, simply substitute the Crown Bay name with an appropriate name for the BSP 
            (<code class="filename">mymachine</code> in this case) and change the description to 
            something that describes your hardware.
        </p><p>
            Note that inside the <code class="filename">mymachine.conf</code> is the 
            <code class="filename">PREFERRED_VERSION_linux-yocto</code> statement. 
            This statement identifies the kernel that the BSP is going to use.
            In this case, the BSP is using <code class="filename">linux-yocto</code>, which is the 
            current Yocto Project kernel based on the Linux 3.2 release. 
        </p><p>
            The next configuration file in the new BSP layer we need to edit is
            <code class="filename">meta-mymachine/conf/layer.conf</code>.
            This file identifies build information needed for the new layer.  
            You can see the 
            "<a class="link" href="#bsp-filelayout-layer" target="_top">Layer Configuration File</a>" section
            in The Board Support Packages (BSP) Development Guide for more information on this configuration file.  
            Basically, we are changing the existing statements to work with our BSP. 
        </p><p>
            The file contains these statements that reference the Crown Bay BSP:
            </p><pre class="literallayout">
     BBFILE_COLLECTIONS += "crownbay"
     BBFILE_PATTERN_crownbay := "^${LAYERDIR}/"
     BBFILE_PRIORITY_crownbay = "6"

     LAYERDEPENDS_crownbay = "intel"
            </pre><p>
        </p><p>
            Simply substitute the machine string name <code class="filename">crownbay</code>
            with the new machine name <code class="filename">mymachine</code> to get the following:
            </p><pre class="literallayout">
     BBFILE_COLLECTIONS += "mymachine"
     BBFILE_PATTERN_mymachine := "^${LAYERDIR}/"
     BBFILE_PRIORITY_mymachine = "6"

     LAYERDEPENDS_mymachine = "intel"
            </pre><p>
        </p></div><div class="section" title="A.5.2. Changing the Recipes in Your BSP"><div class="titlepage"><div><div><h3 class="title"><a id="changing-the-recipes-in-your-bsp"></a>A.5.2. Changing the Recipes in Your BSP</h3></div></div></div><p>
            Now we will take a look at the recipes in your new layer.  
            The standard BSP structure has areas for BSP, graphics, core, and kernel recipes.  
            When you create a BSP, you use these areas for appropriate recipes and append files.  
            Recipes take the form of <code class="filename">.bb</code> files, while append files take
            the form of <code class="filename">.bbappend</code> files.  
            If you want to leverage the existing recipes the OpenEmbedded build system uses
            but change those recipes, you can use <code class="filename">.bbappend</code> files.  
            All new recipes and append files for your layer must go in the layer’s 
            <code class="filename">recipes-bsp</code>, <code class="filename">recipes-kernel</code>, 
            <code class="filename">recipes-core</code>, and 
            <code class="filename">recipes-graphics</code> directories.    
        </p><div class="section" title="A.5.2.1. Changing  recipes-bsp"><div class="titlepage"><div><div><h4 class="title"><a id="changing-recipes-bsp"></a>A.5.2.1. Changing  <code class="filename">recipes-bsp</code></h4></div></div></div><p>
                First, let's look at <code class="filename">recipes-bsp</code>.
                For this example we are not adding any new BSP recipes.  
                And, we only need to remove the formfactor we do not want and change the name of 
                the remaining one that doesn't support EMGD.  
                These commands take care of the <code class="filename">recipes-bsp</code> recipes:
                </p><pre class="literallayout">
     $ rm -rf meta-mymachine/recipes-bsp/formfactor/formfactor/crownbay
     $ mv meta-mymachine/recipes-bsp/formfactor/formfactor/crownbay-noemgd/ \
     meta-mymachine/recipes-bsp/formfactor/formfactor/mymachine
                </pre><p>
            </p></div><div class="section" title="A.5.2.2. Changing  recipes-graphics"><div class="titlepage"><div><div><h4 class="title"><a id="changing-recipes-graphics"></a>A.5.2.2. Changing  <code class="filename">recipes-graphics</code></h4></div></div></div><p>
                Now let's look at <code class="filename">recipes-graphics</code>.
                For this example we want to remove anything that supports EMGD and 
                be sure to rename remaining directories appropriately.  
                The following commands clean up the <code class="filename">recipes-graphics</code> directory:
                </p><pre class="literallayout">
     $ rm -rf meta-mymachine/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay
     $ mv meta-mymachine/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd \
        meta-mymachine/recipes-graphics/xorg-xserver/xserver-xf86-config/mymachine   
                </pre><p>
            </p><p>
                At this point the <code class="filename">recipes-graphics</code> directory just has files that 
                support Video Electronics Standards Association (VESA) graphics modes and not EMGD.  
            </p></div><div class="section" title="A.5.2.3. Changing  recipes-core"><div class="titlepage"><div><div><h4 class="title"><a id="changing-recipes-core"></a>A.5.2.3. Changing  <code class="filename">recipes-core</code></h4></div></div></div><p>
                Now let's look at changes in <code class="filename">recipes-core</code>.
                The file <code class="filename">task-core-tools.bbappend</code> in 
                <code class="filename">recipes-core/tasks</code> appends the similarly named recipe
                located in the <a class="link" href="#source-directory">source directory</a> at 
                <code class="filename">meta/recipes-core/tasks</code>.
                The append file in our layer right now is Crown Bay-specific and supports 
                EMGD and non-EMGD.
                Here are the contents of the file:
                </p><pre class="literallayout">
     RRECOMMENDS_task-core-tools-profile_append_crownbay = " systemtap"
     RRECOMMENDS_task-core-tools-profile_append_crownbay-noemgd = " systemtap"
                </pre><p>
            </p><p>
                The <code class="filename">RRECOMMENDS</code> statements list packages that 
                extend usability.
                The first <code class="filename">RRECOMMENDS</code> statement can be removed, while the 
                second one can be changed to reflect <code class="filename">meta-mymachine</code>:
                </p><pre class="literallayout">
     RRECOMMENDS_task-core-tools-profile_append_mymachine = " systemtap"
                </pre><p>
            </p></div><div class="section" title="A.5.2.4. Changing  recipes-kernel"><div class="titlepage"><div><div><h4 class="title"><a id="changing-recipes-kernel"></a>A.5.2.4. Changing  <code class="filename">recipes-kernel</code></h4></div></div></div><p>
                Finally, let's look at <code class="filename">recipes-kernel</code> changes.
                Recall that the BSP uses the <code class="filename">linux-yocto</code> kernel as determined
                earlier in the <code class="filename">mymachine.conf</code>.
                The recipe for that kernel is not located in the  
                BSP layer but rather in the source directory at 
                <code class="filename">meta/recipes-kernel/linux</code> and is 
                named <code class="filename">linux-yocto_3.2.bb</code>.
                The <code class="filename">SRCREV_machine</code> and <code class="filename">SRCREV_meta</code>
                statements point to the exact commits used by the Yocto Project development team
                in their source repositories that identify the right kernel for our hardware.
                In other words, the <code class="filename">SRCREV</code> values are simply Git commit 
                IDs that identify which commit on each
                of the kernel branches (machine and meta) will be checked out and used to build
                the kernel.
            </p><p>
                However, in the <code class="filename">meta-mymachine</code> layer in 
                <code class="filename">recipes-kernel/linux</code> resides a <code class="filename">.bbappend</code>
                file named <code class="filename">linux-yocto_3.2.bbappend</code> that 
                appends information to the recipe of the same name in <code class="filename">meta/recipes-kernel/linux</code>.
                Thus, the <code class="filename">SRCREV</code> statements in the append file override
                the more general statements found in <code class="filename">meta</code>.
            </p><p>
                The <code class="filename">SRCREV</code> statements in the append file currently identify
                the kernel that supports the Crown Bay BSP with and without EMGD support.
                Here are the statements:
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>The commit ID strings used in this manual might not match the actual commit
                    ID strings found in the <code class="filename">linux-yocto_3.2.bbappend</code> file.
                    For the example, this difference does not matter.</div><p> 
                </p><pre class="literallayout">
     SRCREV_machine_pn-linux-yocto_crownbay ?= \
        "211fc7f4d10ec2b82b424286aabbaff9254b7cbd"
     SRCREV_meta_pn-linux-yocto_crownbay ?= \
        "514847185c78c07f52e02750fbe0a03ca3a31d8f"

     SRCREV_machine_pn-linux-yocto_crownbay-noemgd ?= \
        "211fc7f4d10ec2b82b424286aabbaff9254b7cbd"
     SRCREV_meta_pn-linux-yocto_crownbay-noemgd ?= \
        "514847185c78c07f52e02750fbe0a03ca3a31d8f"
                </pre><p>
            </p><p>
                You will notice that there are two pairs of <code class="filename">SRCREV</code> statements.  
                The top pair identifies the kernel that supports
                EMGD, which we don’t care about in this example.  
                The bottom pair identifies the kernel that we will use:  
                <code class="filename">linux-yocto</code>.  
                At this point though, the unique commit strings all are still associated with 
                Crown Bay and not <code class="filename">meta-mymachine</code>.
            </p><p>  
                To fix this situation in <code class="filename">linux-yocto_3.2.bbappend</code>,
                we delete the two <code class="filename">SRCREV</code> statements that support 
                EMGD (the top pair).
                We also change the remaining pair to specify <code class="filename">mymachine</code>
                and insert the commit identifiers to identify the kernel in which we 
                are interested, which will be based on the <code class="filename">atom-pc-standard</code>
                kernel.
                In this case, because we're working with the 1.2+snapshot branch of everything, we
                need to use the <code class="filename">SRCREV</code> values for the atom-pc branch
                that are associated with the 1.2+snapshot release.  
                To find those values, we need to find the <code class="filename">SRCREV</code>
                values that 1.2+snapshot uses for the atom-pc branch, which we find in the
                <code class="filename">poky/meta-yocto/recipes-kernel/linux/linux-yocto_3.2.bbappend</code>
                file.
            </p><p>  
                The machine <code class="filename">SRCREV</code> we want is in the 
                <code class="filename">SRCREV_machine_atom-pc</code> variable.  
                The meta <code class="filename">SRCREV</code> isn't specified in this file, so it must be 
                specified in the base kernel recipe in the
                <code class="filename">poky/meta/recipes-kernel/linux/linux-yocto_3.2.bb</code>
                file, in the <code class="filename">SRCREV_meta</code>  variable found there.  
                Here are the final <code class="filename">SRCREV</code> statements:
                </p><pre class="literallayout">
     SRCREV_machine_pn-linux-yocto_mymachine ?= \
        "f29531a41df15d74be5ad47d958e4117ca9e489e"
     SRCREV_meta_pn-linux-yocto_mymachine ?= \
        "b14a08f5c7b469a5077c10942f4e1aec171faa9d"
                </pre><p>
            </p><p>
                In this example, we're using the <code class="filename">SRCREV</code> values we 
                found already captured in the 1.2+snapshot release because we're creating a BSP based on 
                1.2+snapshot.  
                If, instead, we had based our BSP on the master branches, we would want to use 
                the most recent <code class="filename">SRCREV</code> values taken directly from the kernel repo.
                We will not be doing that for this example.
                However, if you do base a future BSP on master and
                if you are familiar with Git repositories, you probably won’t have trouble locating the 
                exact commit strings in the Yocto Project source repositories you need to change 
                the <code class="filename">SRCREV</code> statements.  
                You can find all the <code class="filename">machine</code> and <code class="filename">meta</code> 
                branch points (commits) for the <code class="filename">linux-yocto-3.2</code> kernel at
                <a class="ulink" href="http://git.yoctoproject.org/cgit/cgit.cgi/linux-yocto-3.2" target="_top">http://git.yoctoproject.org/cgit/cgit.cgi/linux-yocto-3.2</a>.  
            </p><p>
                If you need a little more assistance after going to the link then do the following:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Expand the list of branches by clicking <code class="filename">[…]</code></p></li><li class="listitem"><p>Click on the <code class="filename">standard/default/common-pc/atom-pc</code> 
                        branch</p></li><li class="listitem"><p>Click on the commit column header to view the top commit</p></li><li class="listitem"><p>Copy the commit string for use in the 
                        <code class="filename">linux-yocto_3.2.bbappend</code> file</p></li></ol></div><p>
            </p><p>
                For the <code class="filename">SRCREV</code> statement that points to the <code class="filename">meta</code>
                branch use the same procedure except expand the <code class="filename">meta</code>
                branch in step 2 above.
            </p><p>
                Also in the <code class="filename">linux-yocto_3.2.bbappend</code> file are 
                <a class="link" href="#var-COMPATIBLE_MACHINE" target="_top"><code class="filename">COMPATIBLE_MACHINE</code></a>, 
                <a class="link" href="#var-KMACHINE" target="_top"><code class="filename">KMACHINE</code></a>, 
                and 
                <a class="link" href="#var-KBRANCH" target="_top"><code class="filename">KBRANCH</code></a> statements.  
                Two sets of these exist: one set supports EMGD and one set does not.
                Because we are not interested in supporting EMGD those three can be deleted.
                The remaining three must be changed so that <code class="filename">mymachine</code> replaces
                <code class="filename">crownbay-noemgd</code> and <code class="filename">crownbay</code>.
                Because we are using the <code class="filename">atom-pc</code> branch for this new BSP, we can also find
                the exact branch we need for the <code class="filename">KMACHINE</code>  
                and <code class="filename">KBRANCH</code> variables in our new BSP from the value
                we find in the
                <code class="filename">poky/meta-yocto/recipes-kernel/linux/linux-yocto_3.2.bbappend</code>
                file we looked at in a previous step.  
                In this case, the values we want are in the <code class="filename">KMACHINE_atom-pc</code> variable
                and the <code class="filename">KBRANCH_atom-pc</code> variables in that file.
                Here is the final <code class="filename">linux-yocto_3.2.bbappend</code> file after all 
                the edits:
                </p><pre class="literallayout">
     FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

     COMPATIBLE_MACHINE_mymachine = "mymachine"
     KMACHINE_mymachine  = "atom-pc"
     KBRANCH_mymachine  = "standard/default/common-pc/atom-pc"

     SRCREV_machine_pn-linux-yocto_mymachine ?= \
        "f29531a41df15d74be5ad47d958e4117ca9e489e"
     SRCREV_meta_pn-linux-yocto_mymachine ?= \
        "b14a08f5c7b469a5077c10942f4e1aec171faa9d"
                </pre><p>
            </p></div></div><div class="section" title="A.5.3. BSP Recipe Change Summary"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-recipe-change-summary"></a>A.5.3. BSP Recipe Change Summary</h3></div></div></div><p>
            In summary, the edits to the layer’s recipe files result in removal of any files and 
            statements that do not support your targeted hardware in addition to the inclusion 
            of any new recipes you might need.  
            In this example, it was simply a matter of ridding the new layer 
            <code class="filename">meta-mymachine</code> of any code that supported the EMGD features
            and making sure we were identifying the kernel that supports our example, which
            is the <code class="filename">atom-pc-standard</code> kernel.  
            We did not introduce any new recipes to the layer. 
        </p><p>
            Finally, it is also important to update the layer’s <code class="filename">README</code>
            file so that the information in it reflects your BSP.
        </p></div></div><div class="section" title="A.6. Preparing for the Build"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="preparing-for-the-build-app"></a>A.6. Preparing for the Build</h2></div></div></div><p>
        To get ready to build your image that uses the new layer you need to do the following:
        </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Get the environment ready for the build by sourcing the environment 
                script. 
                The environment script is in the top-level of the source directory.
                The script has the string 
                <code class="filename">init-build-env</code> in the file’s name.  
                For this example, the following command gets the build environment ready:                       
                </p><pre class="literallayout">
     $ source oe-init-build-env yocto-build
                </pre><p>
                When you source the script, a build directory is created in the current 
                working directory.  
                In our example we were in the <code class="filename">poky</code> directory.  
                Thus, entering the previous command created the <code class="filename">yocto-build</code> directory.  
                If you do not provide a name for the build directory it defaults to 
                <code class="filename">build</code>.  
                The <code class="filename">yocto-build</code> directory contains a
                <code class="filename">conf</code> directory that has 
                two configuration files you will need to check:  <code class="filename">bblayers.conf</code>
                and <code class="filename">local.conf</code>.</p></li><li class="listitem"><p>Check and edit the resulting <code class="filename">local.conf</code> file.
                This file minimally identifies the machine for which to build the image by 
                configuring the <code class="filename">MACHINE</code> variable.  
                For this example you must set the variable to mymachine as follows:
                </p><pre class="literallayout">
     MACHINE ??= “mymachine”
                </pre><p>
                You should also be sure any other variables in which you are interested are set.  
                Some variables to consider are <code class="filename">BB_NUMBER_THREADS</code>
                and <code class="filename">PARALLEL_MAKE</code>, both of which can greatly reduce your build time 
                if your development system supports multiple cores.
                For development systems that support multiple cores, a good rule of thumb is to set 
                both the <code class="filename">BB_NUMBER_THREADS</code> and <code class="filename">PARALLEL_MAKE</code> 
                variables to twice the number of cores your system supports.</p></li><li class="listitem"><p>Update the <code class="filename">bblayers.conf</code> file so that it includes 
                both the path to your new BSP layer and the path to the 
                <code class="filename">meta-intel</code> layer.  
                In this example, you need to include both these paths as part of the 
                <code class="filename">BBLAYERS</code> variable:
                </p><pre class="literallayout">
     $HOME/poky/meta-intel
     $HOME/poky/meta-intel/meta-mymachine
                </pre></li></ol></div><p>
    </p><p>
        The  
        <a class="link" href="#ref-variables-glos" target="_top">Variables Glossary</a> chapter in the 
        Yocto Project Reference Manual has more information on configuration variables.
    </p></div><div class="section" title="A.7. Building and Booting the Image"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="building-the-image-app"></a>A.7. Building and Booting the Image</h2></div></div></div><p>
        To build the image for our <code class="filename">meta-mymachine</code> BSP enter the following command 
        from the same shell from which you ran the setup script.  
        You should run the <code class="filename">bitbake</code> command without any intervening shell commands.  
        For example, moving your working directory around could cause problems.  
        Here is the command for this example:
        </p><pre class="literallayout">
     $ bitbake -k core-image-sato
        </pre><p>
    </p><p>
        This command specifies an image that has Sato support and that can be run from a USB device or 
        from a CD without having to first install anything.  
        The build process takes significant time and includes thousands of tasks, which are reported 
        at the console.  
        If the build results in any type of error you should check for misspellings in the 
        files you changed or problems with your host development environment such as missing packages.
    </p><p>
        Finally, once you have an image, you can try booting it from a device
        (e.g. a USB device).
        To prepare a bootable USB device, insert a USB flash drive into your build system and
        copy the <code class="filename">.hddimg</code> file, located in the 
        <code class="filename">poky/build/tmp/deploy/images</code>
        directory after a successful build to the flash drive.  
        Assuming the USB flash drive takes device <code class="filename">/dev/sdf</code>, 
        use <code class="filename">dd</code> to copy the live image to it.  
        For example:
        </p><pre class="literallayout">
     # dd if=core-image-sato-mymachine-20111101223904.hddimg of=/dev/sdf
     # sync
     # eject /dev/sdf
        </pre><p>
        You should now have a bootable USB flash device.  
    </p><p>
        Insert the device
        into a bootable USB socket on the target, and power it on.  
        The system should boot to the Sato graphical desktop.
        <sup>[<a id="id1497755" href="#ftn.id1497755" class="footnote">2</a>]</sup> 
    </p><p>
        For reference, the sato image produced by the previous steps for 1.2+snapshot 
        should look like the following in terms of size.
        If your sato image is much different from this,
        you probably made a mistake in one of the above steps:
        </p><pre class="literallayout">
     260538368 2012-04-27 01:44 core-image-sato-mymachine-20120427025051.hddimg
        </pre><p>
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>The previous instructions are also present in the README that was copied
        from meta-crownbay, which should also be updated to reflect the specifics of your
        new BSP.  
        That file and the <code class="filename">README.hardware</code> file in the top-level 
        <code class="filename">poky</code> directory
        also provides some suggestions for things to try if booting fails and produces
        strange error messages.</div><p>
    </p></div><div class="footnotes"><br /><hr width="100" align="left" /><div class="footnote"><p><sup>[<a id="ftn.id1497755" href="#id1497755" class="para">2</a>] </sup>Because 
            this new image is not in any way tailored to the system you're
            booting it on, which is assumed to be some sort of atom-pc (netbook) system for this
            example, it might not be completely functional though it should at least boot to a text
            prompt.  
            Specifically, it might fail to boot into graphics without some tweaking.  
            If this ends up being the case, a possible next step would be to replace the 
            <code class="filename">mymachine.conf</code>
            contents with the contents of <code class="filename">atom-pc.conf</code> and replace 
            <code class="filename">xorg.conf</code> with <code class="filename">atom-pc xorg.conf</code>
            in <code class="filename">meta-yocto</code> and see if it fares any better.  
            In any case, following the previous steps will give you a buildable image that 
            will probably boot on most systems.
            Getting things working like you want
            them to for your hardware will normally require some amount of experimentation with
            configuration settings.</p></div></div></div>

    <div class="appendix" title="Appendix B. Kernel Modification Example"><div class="titlepage"><div><div><h2 class="title"><a id="dev-manual-kernel-appendix"></a>Appendix B. Kernel Modification Example</h2></div></div></div><p>
        Kernel modification involves changing or adding configurations to an existing kernel,  
        changing or adding recipes to the kernel that are needed to support specific hardware features, 
        or even altering the source code itself.  
        This appendix presents simple examples that modify the kernel source code, 
        change the kernel configuration, and add a kernel source recipe.
    </p><div class="section" title="B.1. Modifying the Kernel Source Code"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="modifying-the-kernel-source-code"></a>B.1. Modifying the Kernel Source Code</h2></div></div></div><p>
            This example adds some simple QEMU emulator console output at boot time by 
            adding <code class="filename">printk</code> statements to the kernel's
            <code class="filename">calibrate.c</code> source code file.
            Booting the modified image causes the added messages to appear on the emulator's
            console.
        </p><div class="section" title="B.1.1. Understanding the Files You Need"><div class="titlepage"><div><div><h3 class="title"><a id="understanding-the-files-you-need"></a>B.1.1. Understanding the Files You Need</h3></div></div></div><p>
                Before you modify the kernel, you need to know what Git repositories and file 
                structures you need.
                Briefly, you need the following: 
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>A local 
                        <a class="link" href="#source-directory">source directory</a> for the 
                        poky Git repository</p></li><li class="listitem"><p>Local copies of the
                        <a class="link" href="#poky-extras-repo"><code class="filename">poky-extras</code></a>
                        Git repository placed within the source directory.</p></li><li class="listitem"><p>A bare clone of the 
                        <a class="link" href="#local-kernel-files">Yocto Project Kernel</a> upstream Git 
                        repository to which you want to push your modifications.
                        </p></li><li class="listitem"><p>A copy of that bare clone in which you make your source 
                        modifications</p></li></ul></div><p>
            </p><p> 
                The following figure summarizes these four areas.  
                Within each rectangular that represents a data structure, a  
                host development directory pathname appears at the 
                lower left-hand corner of the box.  
                These pathnames are the locations used in this example.
                The figure also provides key statements and commands used during the kernel
                modification process:
            </p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="630"><tr style="height: 450px"><td align="center"><img src="figures/kernel-example-repos-denzil.png" align="middle" /></td></tr></table><p>
            </p><p>
                Here is a brief description of the four areas:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Local Source Directory:</em></span> 
                        This area contains all the metadata that supports building images 
                        using the OpenEmbedded build system.
                        In this example, the source directory also 
                        contains the build directory, which contains the configuration directory 
                        that lets you control the build.
                        Also in this example, the source directory contains local copies of the 
                        <code class="filename">poky-extras</code> Git repository.</p><p>See the bulleted item
                        "<a class="link" href="#local-yp-release">Yocto Project Release</a>"
                        for information on how to get these files on your local system.</p></li><li class="listitem"><p><span class="emphasis"><em>Local copies of the<code class="filename">poky-extras</code> 
                        Git Repository:</em></span> 
                        This area contains the <code class="filename">meta-kernel-dev</code> layer, 
                        which is where you make changes that append the kernel build recipes.
                        You edit <code class="filename">.bbappend</code> files to locate your 
                        local kernel source files and to identify the kernel being built.
                        This Git repository is a gathering place for extensions to the Yocto Project
                        (or really any) kernel recipes that faciliate the creation and development
                        of kernel features, BSPs or configurations.</p><p>See the bulleted item
                        "<a class="link" href="#poky-extras-repo">The 
                        <code class="filename">poky-extras</code> Git Repository</a>" 
                        for information on how to get these files.</p></li><li class="listitem"><p><span class="emphasis"><em>Bare Clone of the Yocto Project kernel:</em></span> 
                        This bare Git repository tracks the upstream Git repository of the Linux 
                        Yocto kernel source code you are changing.
                        When you modify the kernel you must work through a bare clone.
                        All source code changes you make to the kernel must be committed and 
                        pushed to the bare clone using Git commands.
                        As mentioned, the <code class="filename">.bbappend</code> file in the 
                        <code class="filename">poky-extras</code> repository points to the bare clone
                        so that the build process can locate the locally changed source files.</p><p>See the bulleted item
                        "<a class="link" href="#local-kernel-files">Yocto Project Kernel</a>"
                        for information on how to set up the bare clone.
                        </p></li><li class="listitem"><p><span class="emphasis"><em>Copy of the Yocto Project Kernel Bare Clone:</em></span>
                        This Git repository contains the actual source files that you modify.  
                        Any changes you make to files in this location need to ultimately be pushed
                        to the bare clone using the <code class="filename">git push</code> command.</p><p>See the bulleted item
                        "<a class="link" href="#local-kernel-files">Yocto Project Kernel</a>"
                        for information on how to set up the bare clone.
                        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>Typically, Git workflows follow a scheme where changes made to a local area 
                        are pulled into a Git repository.
                        However, because the <code class="filename">git pull</code> command does not work 
                        with bare clones, this workflow pushes changes to the 
                        repository even though you could use other more complicated methods to
                        get changes into the bare clone.</div><p>
                        </p></li></ul></div><p>
            </p></div><div class="section" title="B.1.2. Setting Up the Local Source Directory"><div class="titlepage"><div><div><h3 class="title"><a id="setting-up-the-local-yocto-project-files-git-repository"></a>B.1.2. Setting Up the Local Source Directory</h3></div></div></div><p>
                You can set up the source directory through tarball extraction or by 
                cloning the <code class="filename">poky</code> Git repository.  
                This example uses <code class="filename">poky</code> as the root directory of the 
                local source directory.
                See the bulleted item
                "<a class="link" href="#local-yp-release">Yocto Project Release</a>"
                for information on how to get these files.
            </p><p>
                Once you have source directory set up, 
                you have many development branches from which you can work. 
                From inside the local repository you can see the branch names and the tag names used 
                in the upstream Git repository by using either of the following commands:
                </p><pre class="literallayout">
     $ cd poky
     $ git branch -a
     $ git tag -l
                </pre><p> 
                This example uses the Yocto Project 1.3 Release code named "1.2+snapshot", 
                which maps to the <code class="filename">1.2+snapshot</code> branch in the repository. 
                The following commands create and checkout the local <code class="filename">1.2+snapshot</code>
                branch:
                </p><pre class="literallayout">
     $ git checkout -b 1.2+snapshot origin/1.2+snapshot
     Branch 1.2+snapshot set up to track remote branch 1.2+snapshot from origin.
     Switched to a new branch '1.2+snapshot'
                </pre><p>
            </p></div><div class="section" title="B.1.3. Setting Up the Local poky-extras Git Repository"><div class="titlepage"><div><div><h3 class="title"><a id="setting-up-the-poky-extras-git-repository"></a>B.1.3. Setting Up the Local poky-extras Git Repository</h3></div></div></div><p>
                This example creates a local copy of the <code class="filename">poky-extras</code> Git 
                repository inside the <code class="filename">poky</code> source directory.
                See the bulleted item "<a class="link" href="#poky-extras-repo">The 
                <code class="filename">poky-extras</code> Git Repository</a>" 
                for information on how to set up a local copy of the
                <code class="filename">poky-extras</code> repository.
            </p><p>
                Because this example uses the Yocto Project 1.3 Release code 
                named "1.2+snapshot", which maps to the <code class="filename">1.2+snapshot</code> 
                branch in the repository, you need to be sure you are using that 
                branch for <code class="filename">poky-extra</code>.
                The following commands create and checkout the local 
                branch you are using for the <code class="filename">1.2+snapshot</code>
                branch:
                </p><pre class="literallayout">
     $ git checkout -b 1.2+snapshot origin/1.2+snapshot
     Branch 1.2+snapshot set up to track remote branch 1.2+snapshot from origin.
     Switched to a new branch '1.2+snapshot'
                </pre><p>
            </p></div><div class="section" title="B.1.4. Setting Up the Bare Clone and its Copy"><div class="titlepage"><div><div><h3 class="title"><a id="setting-up-the-bare-clone-and-its-copy"></a>B.1.4. Setting Up the Bare Clone and its Copy</h3></div></div></div><p>
                This example modifies the <code class="filename">linux-yocto-3.2</code> kernel.
                Thus, you need to create a bare clone of that kernel and then make a copy of the 
                bare clone.
                See the bulleted item
                "<a class="link" href="#local-kernel-files">Yocto Project Kernel</a>" 
                for information on how to do that.
            </p><p>
                The bare clone exists for the kernel build tools and simply as the receiving end 
                of <code class="filename">git push</code>
                commands after you make edits and commits inside the copy of the clone.
                The copy (<code class="filename">my-linux-yocto-3.2-work</code> in this example) has to have 
                a local branch created and checked out for your work.
                This example uses <code class="filename">common-pc-base</code> as the local branch.
                The following commands create and checkout the branch:
                </p><pre class="literallayout">
     $ cd ~/my-linux-yocto-3.2-work
     $ git checkout -b common-pc-base origin/standard/default/common-pc/base
     Checking out files: 100% (532/532), done.
     Branch common-pc-base set up to track remote branch 
        standard/default/common-pc/base from origin.
     Switched to a new branch 'common-pc-base'
                </pre><p>
            </p></div><div class="section" title="B.1.5. Building and Booting the Default QEMU Kernel Image"><div class="titlepage"><div><div><h3 class="title"><a id="building-and-booting-the-default-qemu-kernel-image"></a>B.1.5. Building and Booting the Default QEMU Kernel Image</h3></div></div></div><p>
                Before we make changes to the kernel source files, this example first builds the 
                default image and then boots it inside the QEMU emulator.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    Because a full build can take hours, you should check two variables in the 
                    <code class="filename">build</code> directory that is created after you source the 
                    <code class="filename">oe-init-build-env</code> script.
                    You can find these variables
                    <code class="filename">BB_NUMBER_THREADS</code> and <code class="filename">PARALLEL_MAKE</code>
                    in the <code class="filename">build/conf</code> directory in the 
                    <code class="filename">local.conf</code> configuration file.
                    By default, these variables are commented out.
                    If your host development system supports multi-core and multi-thread capabilities,
                    you can uncomment these statements and set the variables to significantly shorten
                    the full build time.
                    As a guideline, set both <code class="filename">BB_NUMBER_THREADS</code> and 
                    <code class="filename">PARALLEL_MAKE</code> to twice the number 
                    of cores your machine supports.
                </div><p>
                The following two commands <code class="filename">source</code> the build environment setup script
                and build the default <code class="filename">qemux86</code> image.
                If necessary, the script creates the build directory:
                </p><pre class="literallayout">
     $ cd ~/poky
     $ source oe-init-build-env

          ### Shell environment set up for builds. ###

     You can now run 'bitbake &lt;target&gt;'

     Common targets are:
         core-image-minimal
         core-image-sato
         meta-toolchain
         meta-toolchain-sdk
         adt-installer
         meta-ide-support

     You can also run generated qemu images with a command like 'runqemu qemux86'
                </pre><p>
            </p><p>
                The following <code class="filename">bitbake</code> command starts the build:
                </p><pre class="literallayout">
     $ bitbake -k core-image-minimal
                </pre><p>
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>Be sure to check the settings in the <code class="filename">local.conf</code>
                before starting the build.</div><p>
            </p><p>  
                After the build completes, you can start the QEMU emulator using the resulting image
                <code class="filename">qemux86</code> as follows:
                </p><pre class="literallayout">
     $ runqemu qemux86
                </pre><p>
            </p><p>
                As the image boots in the emulator, console message and status output appears
                across the terminal window.
                Because the output scrolls by quickly, it is difficult to read.
                To examine the output, you log into the system using the 
                login <code class="filename">root</code> with no password.
                Once you are logged in, issue the following command to scroll through the 
                console output:
                </p><pre class="literallayout">
     # dmesg | less
                </pre><p>
            </p><p>
                Take note of the output as you will want to look for your inserted print command output
                later in the example.
            </p></div><div class="section" title="B.1.6. Changing the Source Code and Pushing it to the Bare Clone"><div class="titlepage"><div><div><h3 class="title"><a id="changing-the-source-code-and-pushing-it-to-the-bare-clone"></a>B.1.6. Changing the Source Code and Pushing it to the Bare Clone</h3></div></div></div><p>
                The file you change in this example is named <code class="filename">calibrate.c</code>
                and is located in the <code class="filename">my-linux-yocto-3.2-work</code> Git repository
                (the copy of the bare clone) in <code class="filename">init</code>.
                This example simply inserts several <code class="filename">printk</code> statements
                at the beginning of the <code class="filename">calibrate_delay</code> function.
            </p><p>
                Here is the unaltered code at the start of this function:
                </p><pre class="literallayout">
     void __cpuinit calibrate_delay(void)
     {
     	unsigned long lpj;
     	static bool printed;
     	int this_cpu = smp_processor_id();

     	if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
               .
               .
               .
               </pre><p>
           </p><p>
               Here is the altered code showing five new <code class="filename">printk</code> statements 
               near the top of the function:
                </p><pre class="literallayout">
     void __cpuinit calibrate_delay(void)
     {
         unsigned long lpj;
         static bool printed;
         int this_cpu = smp_processor_id();

         printk("*************************************\n");
         printk("*                                   *\n");
         printk("*        HELLO YOCTO KERNEL         *\n");
         printk("*                                   *\n");
         printk("*************************************\n");

     	if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
               .
               .
               .
               </pre><p>
           </p><p>
               After making and saving your changes, you need to stage them for the push.
               The following Git commands are one method of staging and committing your changes:
               </p><pre class="literallayout">
     $ git add calibrate.c
     $ git commit --signoff
               </pre><p>
           </p><p>
               Once the source code has been modified, you need to use Git to push the changes to 
               the bare clone.  
               If you do not push the changes, then the OpenEmbedded build system will not pick 
               up the changed source files.
           </p><p>
               The following command pushes the changes to the bare clone:
               </p><pre class="literallayout">
     $ git push origin common-pc-base:standard/default/common-pc/base
               </pre><p>
           </p></div><div class="section" title="B.1.7. Changing Build Parameters for Your Build"><div class="titlepage"><div><div><h3 class="title"><a id="changing-build-parameters-for-your-build"></a>B.1.7. Changing Build Parameters for Your Build</h3></div></div></div><p>
               At this point, the source has been changed and pushed.
               The example now defines some variables used by the OpenEmbedded build system 
               to locate your kernel source.
               You essentially need to identify where to find the kernel recipe and the changed source code.
               You also need to be sure some basic configurations are in place that identify the 
               type of machine you are building and to help speed up the build should your host support
               multiple-core and thread capabilities.
           </p><p>
               Do the following to make sure the build parameters are set up for the example.
               Once you set up these build parameters, they do not have to change unless you 
               change the target architecture of the machine you are building or you move
               the bare clone, copy of the clone, or the <code class="filename">poky-extras</code> repository:
               </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Build for the Correct Target Architecture:</em></span> The 
                       <code class="filename">local.conf</code> file in the build directory defines the build's 
                       target architecture.
                       By default, <code class="filename">MACHINE</code> is set to 
                       <code class="filename">qemux86</code>, which specifies a 32-bit 
                       <span class="trademark">Intel</span>® Architecture 
                       target machine suitable for the QEMU emulator.  
                       In this example, <code class="filename">MACHINE</code> is correctly configured.
                       </p></li><li class="listitem"><p><span class="emphasis"><em>Optimize Build Time:</em></span> Also in the 
                       <code class="filename">local.conf</code> file are two variables that can speed your 
                       build time if your host supports multi-core and multi-thread capabilities:
                       <code class="filename">BB_NUMBER_THREADS</code> and <code class="filename">PARALLEL_MAKE</code>.
                       If the host system has multiple cores then you can optimize build time 
                       by setting both these variables to twice the number of 
                       cores.</p></li><li class="listitem"><p><span class="emphasis"><em>Identify Your <code class="filename">meta-kernel-dev</code>
                       Layer:</em></span> The <code class="filename">BBLAYERS</code> variable in the 
                       <code class="filename">bblayers.conf</code> file found in the 
                       <code class="filename">poky/build/conf</code> directory needs to have the path to your local
                       <code class="filename">meta-kernel-dev</code> layer.  
                       By default, the <code class="filename">BBLAYERS</code> variable contains paths to  
                       <code class="filename">meta</code> and <code class="filename">meta-yocto</code> in the 
                       <code class="filename">poky</code> Git repository.
                       Add the path to your <code class="filename">meta-kernel-dev</code> location.
                       Be sure to substitute your user information in the statement.
                       Here is an example:
                       </p><pre class="literallayout">
     BBLAYERS = " \
       /home/scottrif/poky/meta \
       /home/scottrif/poky/meta-yocto \
       /home/scottrif/poky/poky-extras/meta-kernel-dev \
       "
                       </pre></li><li class="listitem"><p><span class="emphasis"><em>Identify Your Source Files:</em></span> In the 
                       <code class="filename">linux-yocto_3.2.bbappend</code> file located in the 
                       <code class="filename">poky-extras/meta-kernel-dev/recipes-kernel/linux</code>
                       directory, you need to identify the location of the 
                       local source code, which in this example is the bare clone named
                       <code class="filename">linux-yocto-3.2.git</code>.
                       To do this, set the <code class="filename">KSRC_linux_yocto</code> variable to point to your
                       local <code class="filename">linux-yocto-3.2.git</code> Git repository by adding the 
                       following statement.
                       Be sure to substitute your user information in the statement:
                       </p><pre class="literallayout">
     KSRC_linux_yocto_3_2 ?= "/home/scottrif/linux-yocto-3.2.git"
                       </pre></li></ul></div><p>
           </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>Before attempting to build the modified kernel, there is one more set of changes you 
               need to make in the <code class="filename">meta-kernel-dev</code> layer.
               Because all the kernel <code class="filename">.bbappend</code> files are parsed during the 
               build process regardless of whether you are using them or not, you should either 
               comment out the <code class="filename">COMPATIBLE_MACHINE</code> statements in all 
               unused <code class="filename">.bbappend</code> files, or simply remove (or rename) all the files 
               except the one your are using for the build 
               (i.e. <code class="filename">linux-yocto_3.2.bbappend</code> in this example).</p><p>If you do not make one of these two adjustments, your machine will be compatible
               with all the kernel recipes in the <code class="filename">meta-kernel-dev</code> layer. 
               When your machine is comapatible with all the kernel recipes, the build attempts
               to build all kernels in the layer.
               You could end up with build errors blocking your work.</p></div></div><div class="section" title="B.1.8. Building and Booting the Modified QEMU Kernel Image"><div class="titlepage"><div><div><h3 class="title"><a id="building-and-booting-the-modified-qemu-kernel-image"></a>B.1.8. Building and Booting the Modified QEMU Kernel Image</h3></div></div></div><p>
                Next, you need to build the modified image.
                Do the following:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Your environment should be set up since you previously sourced
                        the <code class="filename">oe-init-build-env</code> script.
                        If it isn't, source the script again from <code class="filename">poky</code>.
                        </p><pre class="literallayout">
     $ cd ~/poky
     $ source oe-init-build-env
                        </pre><p>
                        </p></li><li class="listitem"><p>Be sure old images are cleaned out by running the 
                        <code class="filename">cleanall</code> BitBake task as follows from your build directory:
                        </p><pre class="literallayout">
     $ bitbake -c cleanall linux-yocto
                        </pre><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>Never remove any files by hand from the <code class="filename">tmp/deploy</code>
                        directory insided the build directory.
                        Always use the BitBake <code class="filename">cleanall</code> task to clear
                        out previous builds.</div></li><li class="listitem"><p>Next, build the kernel image using this command:
                        </p><pre class="literallayout">
     $ bitbake -k core-image-minimal
                        </pre></li><li class="listitem"><p>Finally, boot the modified image in the QEMU emulator 
                        using this command:
                        </p><pre class="literallayout">
     $ runqemu qemux86
                        </pre></li></ol></div><p>
            </p><p>
                Log into the machine using <code class="filename">root</code> with no password and then 
                use the following shell command to scroll through the console's boot output.
                </p><pre class="literallayout">
     # dmesg | less
                </pre><p>
            </p><p>
                You should see the results of your <code class="filename">printk</code> statements 
                as part of the output.
            </p></div></div><div class="section" title="B.2. Changing the Kernel Configuration"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="changing-the-kernel-configuration"></a>B.2. Changing the Kernel Configuration</h2></div></div></div><p>
            This example changes the default behavior, which is "on", of the Symmetric 
            Multi-processing Support (<code class="filename">CONFIG_SMP</code>) to "off".  
            It is a simple example that demonstrates how to reconfigure the kernel.
        </p><div class="section" title="B.2.1. Getting Set Up to Run this Example"><div class="titlepage"><div><div><h3 class="title"><a id="getting-set-up-to-run-this-example"></a>B.2.1. Getting Set Up to Run this Example</h3></div></div></div><p>
                If you took the time to work through the example that modifies the kernel source code 
                in "<a class="link" href="#modifying-the-kernel-source-code" title="B.1. Modifying the Kernel Source Code">Modifying the Kernel Source
                Code</a>" you should already have the source directory set up on your 
                host machine.
                If this is the case, go to the next section, which is titled
                "<a class="link" href="#examining-the-default-config-smp-behavior" title="B.2.2. Examining the Default  CONFIG_SMP Behavior">Examining the Default
                <code class="filename">CONFIG_SMP</code> Behavior</a>", and continue with the 
                example.
            </p><p>
                If you don't have the source directory established on your system, 
                you can get them through tarball extraction or by 
                cloning the <code class="filename">poky</code> Git repository.  
                This example uses <code class="filename">poky</code> as the root directory of the 
                <a class="link" href="#source-directory">source directory</a>.
                See the bulleted item
                "<a class="link" href="#local-yp-release">Yocto Project Release</a>"
                for information on how to get these files.
            </p><p>
                Once you have the local copy of the repository set up, 
                you have many development branches from which you can work. 
                From inside the repository you can see the branch names and the tag names used 
                in the upstream Git repository using either of the following commands:
                </p><pre class="literallayout">
     $ cd poky
     $ git branch -a
     $ git tag -l
                </pre><p> 
                This example uses the Yocto Project 1.3 Release code named "1.2+snapshot", 
                which maps to the <code class="filename">1.2+snapshot</code> branch in the repository. 
                The following commands create and checkout the local <code class="filename">1.2+snapshot</code>
                branch:
                </p><pre class="literallayout">
     $ git checkout -b 1.2+snapshot origin/1.2+snapshot
     Branch 1.2+snapshot set up to track remote branch 1.2+snapshot from origin.
     Switched to a new branch '1.2+snapshot'
                </pre><p>
            </p><p>
                Next, you need to build the default <code class="filename">qemux86</code> image that you 
                can boot using QEMU.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    Because a full build can take hours, you should check two variables in the 
                    <code class="filename">build</code> directory that is created after you source the 
                    <code class="filename">oe-init-build-env</code> script.
                    You can find these variables
                    <code class="filename">BB_NUMBER_THREADS</code> and <code class="filename">PARALLEL_MAKE</code>
                    in the <code class="filename">build/conf</code> directory in the 
                    <code class="filename">local.conf</code> configuration file.
                    By default, these variables are commented out.
                    If your host development system supports multi-core and multi-thread capabilities,
                    you can uncomment these statements and set the variables to significantly shorten
                    the full build time.
                    As a guideline, set both the <code class="filename">BB_NUMBER_THREADS</code> and the 
                    <code class="filename">PARALLEL_MAKE</code> variables to twice the number 
                    of cores your machine supports.
                </div><p>
                The following two commands <code class="filename">source</code> the build environment setup script
                and build the default <code class="filename">qemux86</code> image.
                If necessary, the script creates the build directory:
                </p><pre class="literallayout">
     $ cd ~/poky
     $ source oe-init-build-env

          ### Shell environment set up for builds. ###

     You can now run 'bitbake &lt;target&gt;'

     Common targets are:
         core-image-minimal
         core-image-sato
         meta-toolchain
         meta-toolchain-sdk
         adt-installer
         meta-ide-support

     You can also run generated qemu images with a command like 'runqemu qemux86'
                </pre><p>
            </p><p>
                The following <code class="filename">bitbake</code> command starts the build:
                </p><pre class="literallayout">
     $ bitbake -k core-image-minimal
                </pre><p>
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>Be sure to check the settings in the <code class="filename">local.conf</code>
                before starting the build.</div><p>
            </p></div><div class="section" title="B.2.2. Examining the Default  CONFIG_SMP Behavior"><div class="titlepage"><div><div><h3 class="title"><a id="examining-the-default-config-smp-behavior"></a>B.2.2. Examining the Default  <code class="filename">CONFIG_SMP</code> Behavior</h3></div></div></div><p>
                By default, <code class="filename">CONFIG_SMP</code> supports multiple processor machines.
                To see this default setting from within the QEMU emulator, boot your image using 
                the emulator as follows:
                </p><pre class="literallayout">
     $ runqemu qemux86 qemuparams="-smp 4"
                </pre><p>
            </p><p>
                Login to the machine using <code class="filename">root</code> with no password.
                After logging in, enter the following command to see how many processors are 
                being supported in the emulator.
                The emulator reports support for the number of processors you specified using 
                the <code class="filename">-smp</code> option, four in this case:
                </p><pre class="literallayout">
     # cat /proc/cpuinfo | grep processor 
     processor       : 0
     processor       : 1
     processor       : 2
     processor       : 3
     #
                </pre><p>
                To check the setting for <code class="filename">CONFIG_SMP</code>, you can use the 
                following command:
                </p><pre class="literallayout">
     zcat /proc/config.gz | grep CONFIG_SMP
                </pre><p>
                The console returns the following showing that multi-processor machine support
                is set:
                </p><pre class="literallayout">
     CONFIG_SMP=y
                </pre><p>
                Logout of the emulator using the <code class="filename">exit</code> command and 
                then close it down.
            </p></div><div class="section" title="B.2.3. Changing the  CONFIG_SMP Configuration Using  menuconfig"><div class="titlepage"><div><div><h3 class="title"><a id="changing-the-config-smp-configuration-using-menuconfig"></a>B.2.3. Changing the  <code class="filename">CONFIG_SMP</code> Configuration Using  <code class="filename">menuconfig</code></h3></div></div></div><p>
                The <code class="filename">menuconfig</code> tool provides an interactive method with which
                to set kernel configurations.
                You need to run <code class="filename">menuconfig</code> inside the Yocto BitBake environment.
                Thus, the environment must be set up using the <code class="filename">oe-init-build-env</code>
                script found in the build directory.
                If you have not sourced this script do so with the following commands:
                </p><pre class="literallayout">
     $ cd ~/poky
     $ source oe-init-build-env
                </pre><p>
            </p><p>
                After setting up the environment to run <code class="filename">menuconfig</code>, you are ready 
                to use the tool to interactively change the kernel configuration.
                In this example, we are basing our changes on the <code class="filename">linux-yocto-3.2</code>
                kernel.
                The OpenEmbedded build system recognizes this kernel as 
                <code class="filename">linux-yocto</code>.
                Thus, the following commands from the shell in which you previously sourced the 
                environment initialization script cleans the shared state cache and the 
                <a class="link" href="#var-WORKDIR" target="_top"><code class="filename">WORKDIR</code></a>
                directory and then builds and launches <code class="filename">menuconfig</code>:
                </p><pre class="literallayout">
     $ bitbake linux-yocto -c menuconfig
                </pre><p>
            </p><p>
                Once <code class="filename">menuconfig</code> launches, navigate through the user interface
                to find the <code class="filename">CONFIG_SMP</code> configuration setting.
                You can find it at <code class="filename">Processor Type and Features</code>.
                The configuration selection is 
                <code class="filename">Symmetric Multi-processing Support</code>.
                After using the arrow keys to highlight this selection, press "n" to turn it off.
                Then, exit out and save your selections.
            </p><p>
                Once you save the selection, the <code class="filename">.config</code> configuration file
                is updated. 
                This is the file that the build system uses to configure the Yocto Project kernel
                when it is built. 
                You can find and examine this file in the build directory. 
                This example uses the following:
                </p><pre class="literallayout">
     ~/poky/build/tmp/work/qemux86-poky-linux/linux-yocto-3.2.11+git1+84f...
        ...656ed30-r1/linux-qemux86-standard-build
                </pre><p>
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    The previous example directory is artificially split and many of the characters 
                    in the actual filename are omitted in order to make it more readable.
                    Also, depending on the kernel you are using, the exact pathname might differ 
                    slightly.
                </div><p>
            </p><p>
                Within the <code class="filename">.config</code> file, you can see the following setting:
                </p><pre class="literallayout">
     # CONFIG_SMP is not set
                </pre><p>
            </p><p>
                A good method to isolate changed configurations is to use a combination of the 
                <code class="filename">menuconfig</code> tool and simple shell commands.
                Before changing configurations with <code class="filename">menuconfig</code>, copy the 
                existing <code class="filename">.config</code> and rename it to something else,
                use <code class="filename">menuconfig</code> to make 
                as many changes an you want and save them, then compare the renamed configuration 
                file against the newly created file.
                You can use the resulting differences as your base to create configuration fragments
                to permanently save in your kernel layer.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    Be sure to make a copy of the <code class="filename">.config</code> and don't just
                    rename it. 
                    The build system needs an existing <code class="filename">.config</code>
                    from which to work.
                </div><p>
            </p></div><div class="section" title="B.2.4. Recompiling the Kernel and Testing the New Configuration"><div class="titlepage"><div><div><h3 class="title"><a id="recompiling-the-kernel-and-testing-the-new-configuration"></a>B.2.4. Recompiling the Kernel and Testing the New Configuration</h3></div></div></div><p>
                At this point, you are ready to recompile your kernel image with 
                the new setting in effect using the BitBake command below:
                </p><pre class="literallayout">
     $ bitbake linux-yocto
                </pre><p>
            </p><p>
                Now run the QEMU emulator and pass it the same multi-processor option as before:
                </p><pre class="literallayout">
     $ runqemu qemux86 qemuparams="-smp 4"
                </pre><p>
            </p><p>
                Login to the machine using <code class="filename">root</code> with no password
                and test for the number of processors the kernel supports:
                </p><pre class="literallayout">
     # cat /proc/cpuinfo | grep processor 
     processor       : 0
     #
                </pre><p>
            </p><p>
                From the output, you can see that the kernel no longer supports multi-processor systems.
                The output indicates support for a single processor.  You can verify the 
                <code class="filename">CONFIG_SMP</code> setting by using this command:
                </p><pre class="literallayout">
     zcat /proc/config.gz | grep CONFIG_SMP
                </pre><p>
                The console returns the following output:
                </p><pre class="literallayout">
     # CONFIG_SMP is not set
                </pre><p>
                You have successfully reconfigured the kernel.
            </p></div></div><div class="section" title="B.3. Adding Kernel Recipes"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="adding-kernel-recipes"></a>B.3. Adding Kernel Recipes</h2></div></div></div><p>
            A future release of this manual will present an example that adds kernel recipes, which provide 
            new functionality to the kernel.
        </p><p>
            </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="180"><tr style="height: 270px"><td align="center"><img src="figures/wip.png" align="middle" width="180" /></td></tr></table><p>
        </p></div></div>

</div>

<table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="100%"><tr><td align="left"><img src="figures/adt-title.png" align="left" width="100%" /></td></tr></table>

    <div xml:lang="en" class="book" lang="en"><div class="titlepage"><div><div><h1 class="title"><a id="adt-manual"></a></h1></div><div><div class="authorgroup">
            <div class="author"><h3 class="author"><span class="firstname">Jessica</span> <span class="surname">Zhang</span></h3><div class="affiliation">
                    <span class="orgname">Intel Corporation<br /></span>
                </div><code class="email">&lt;<a class="email" href="mailto:jessica.zhang@intel.com">jessica.zhang@intel.com</a>&gt;</code></div>
        </div></div><div><p class="copyright">Copyright © 2010-2012 Linux Foundation</p></div><div><div class="legalnotice" title="Legal Notice"><a id="id1499739"></a>
      <p>
        Permission is granted to copy, distribute and/or modify this document under 
        the terms of the <a class="ulink" href="http://creativecommons.org/licenses/by-sa/2.0/uk/" target="_top">Creative Commons Attribution-Share Alike 2.0 UK: England &amp; Wales</a> as published by Creative Commons.
      </p>
      <div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
          Due to production processes, there could be differences between the Yocto Project
          documentation bundled in the release tarball and the 
          Yocto Project Application Developer's Guide on
          the <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project</a> website.
          For the latest version of this manual, see the manual on the website.
      </div>

    </div></div><div><div class="revhistory"><table border="1" width="100%" summary="Revision history"><tr><th align="left" valign="top" colspan="2"><b>Revision History</b></th></tr>
            <tr><td align="left">Revision 1.0</td><td align="left">6 April 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.0 Release.</td></tr>
            <tr><td align="left">Revision 1.0.1</td><td align="left">23 May 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.0.1 Release.</td></tr>
            <tr><td align="left">Revision 1.1</td><td align="left">6 October 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.1 Release.</td></tr>
            <tr><td align="left">Revision 1.2</td><td align="left">April 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.2 Release.</td></tr>
            <tr><td align="left">Revision 1.3</td><td align="left">Sometime in 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.3 Release.</td></tr>
        </table></div></div></div><hr /></div>
    

    <div class="chapter" title="Chapter 1. Introduction"><div class="titlepage"><div><div><h2 class="title"><a id="adt-intro"></a>Chapter 1. Introduction</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#adt-intro-section">1.1. The Application Development Toolkit (ADT)</a></span></dt><dd><dl><dt><span class="section"><a href="#the-cross-toolchain">1.1.1. The Cross-Toolchain</a></span></dt><dt><span class="section"><a href="#sysroot">1.1.2. Sysroot</a></span></dt><dt><span class="section"><a href="#eclipse-overview">1.1.3. Eclipse Yocto Plug-in</a></span></dt><dt><span class="section"><a href="#the-qemu-emulator">1.1.4. The QEMU Emulator</a></span></dt><dt><span class="section"><a href="#user-space-tools">1.1.5. User-Space Tools</a></span></dt></dl></dd></dl></div><p>
    Welcome to the Yocto Project Application Developer's Guide.  
    This manual provides information that lets you begin developing applications 
    using the Yocto Project.
</p><p>
    The Yocto Project provides an application development environment based on 
    an Application Development Toolkit (ADT) and the availability of stand-alone
    cross-development toolchains and other tools.
    This manual describes the ADT and how you can configure and install it,
    how to access and use the cross-development toolchains, how to 
    customize the development packages installation,
    how to use command line development for both Autotools-based and Makefile-based projects, 
    and an introduction to the Eclipse Yocto Plug-in. 
</p><div class="section" title="1.1. The Application Development Toolkit (ADT)"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="adt-intro-section"></a>1.1. The Application Development Toolkit (ADT)</h2></div></div></div><p>
        Part of the Yocto Project development solution is an Application Development 
        Toolkit (ADT).
        The ADT provides you with a custom-built, cross-development 
        platform suited for developing a user-targeted product application.
    </p><p>
        Fundamentally, the ADT consists of the following:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>An architecture-specific cross-toolchain and matching 
                sysroot both built by the OpenEmbedded build system, which uses Poky.
                The toolchain and sysroot are based on a metadata configuration and extensions, 
                which allows you to cross-develop on the host machine for the target hardware.
                </p></li><li class="listitem"><p>The Eclipse IDE Yocto Plug-in.</p></li><li class="listitem"><p>The Quick EMUlator (QEMU), which lets you simulate target hardware.
                </p></li><li class="listitem"><p>Various user-space tools that greatly enhance your application 
                development experience.</p></li></ul></div><p>
    </p><div class="section" title="1.1.1. The Cross-Toolchain"><div class="titlepage"><div><div><h3 class="title"><a id="the-cross-toolchain"></a>1.1.1. The Cross-Toolchain</h3></div></div></div><p>
            The cross-toolchain consists of a cross-compiler, cross-linker, and cross-debugger 
            that are used to develop user-space applications for targeted hardware.
            This toolchain is created either by running the ADT Installer script or 
            through a build directory that is based on your metadata 
            configuration or extension for your targeted device.  
            The cross-toolchain works with a matching target sysroot.
        </p></div><div class="section" title="1.1.2. Sysroot"><div class="titlepage"><div><div><h3 class="title"><a id="sysroot"></a>1.1.2. Sysroot</h3></div></div></div><p>
            The matching target sysroot contains needed headers and libraries for generating 
            binaries that run on the target architecture.  
            The sysroot is based on the target root filesystem image that is built by 
            the OpenEmbedded build system Poky and uses the same metadata configuration 
            used to build the cross-toolchain.
        </p></div><div class="section" title="1.1.3. Eclipse Yocto Plug-in"><div class="titlepage"><div><div><h3 class="title"><a id="eclipse-overview"></a>1.1.3. Eclipse Yocto Plug-in</h3></div></div></div><p>
            The Eclipse IDE is a popular development environment and it fully supports 
            development using the Yocto Project.  
            When you install and configure the Eclipse Yocto Project Plug-in into 
            the Eclipse IDE, you maximize your Yocto Project experience.  
            Installing and configuring the Plug-in results in an environment that 
            has extensions specifically designed to let you more easily develop software.  
            These extensions allow for cross-compilation, deployment, and execution of 
            your output into a QEMU emulation session.  
            You can also perform cross-debugging and profiling.  
            The environment also supports a suite of tools that allows you to perform 
            remote profiling, tracing, collection of power data, collection of 
            latency data, and collection of performance data.
        </p><p>
            For information about the application development workflow that uses the Eclipse
            IDE and for a detailed example of how to install and configure the Eclipse
            Yocto Project Plug-in, see the 
            "<a class="link" href="#adt-eclipse" target="_top">Working Within Eclipse</a>" section
            of the Yocto Project Development Manual.
        </p></div><div class="section" title="1.1.4. The QEMU Emulator"><div class="titlepage"><div><div><h3 class="title"><a id="the-qemu-emulator"></a>1.1.4. The QEMU Emulator</h3></div></div></div><p>
            The QEMU emulator allows you to simulate your hardware while running your 
            application or image.
            QEMU is made available a number of ways:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>If you use the ADT Installer script to install ADT, you can 
                    specify whether or not to install QEMU.</p></li><li class="listitem"><p>If you have downloaded a Yocto Project release and unpacked 
                    it to create a source directory and you have sourced  
                    the environment setup script, QEMU is installed and automatically 
                    available.</p></li><li class="listitem"><p>If you have installed the cross-toolchain 
                    tarball and you have sourcing the toolchain's setup environment script, QEMU
                    is also installed and automatically available.</p></li></ul></div><p>
        </p></div><div class="section" title="1.1.5. User-Space Tools"><div class="titlepage"><div><div><h3 class="title"><a id="user-space-tools"></a>1.1.5. User-Space Tools</h3></div></div></div><p>
            User-space tools are included as part of the distribution.  
            You will find these tools helpful during development.  
            The tools include LatencyTOP, PowerTOP, OProfile, Perf, SystemTap, and Lttng-ust.  
            These tools are common development tools for the Linux platform.
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>LatencyTOP:</em></span> LatencyTOP focuses on latency 
                    that causes skips in audio,
                    stutters in your desktop experience, or situations that overload your server 
                    even when you have plenty of CPU power left.  
                    You can find out more about LatencyTOP at 
                    <a class="ulink" href="http://www.latencytop.org/" target="_top">http://www.latencytop.org/</a>.</p></li><li class="listitem"><p><span class="emphasis"><em>PowerTOP:</em></span> Helps you determine what   
                    software is using the most power.  
                    You can find out more about PowerTOP at 
                    <a class="ulink" href="http://www.linuxpowertop.org/" target="_top">http://www.linuxpowertop.org/</a>.</p></li><li class="listitem"><p><span class="emphasis"><em>OProfile:</em></span> A system-wide profiler for Linux 
                    systems that is capable of profiling all running code at low overhead.  
                    You can find out more about OProfile at 
                    <a class="ulink" href="http://oprofile.sourceforge.net/about/" target="_top">http://oprofile.sourceforge.net/about/</a>.</p></li><li class="listitem"><p><span class="emphasis"><em>Perf:</em></span> Performance counters for Linux used 
                    to keep track of certain types of hardware and software events.  
                    For more information on these types of counters see 
                    <a class="ulink" href="https://perf.wiki.kernel.org/" target="_top">https://perf.wiki.kernel.org/</a> and click 
                    on “Perf tools.”</p></li><li class="listitem"><p><span class="emphasis"><em>SystemTap:</em></span> A free software infrastructure 
                    that simplifies information gathering about a running Linux system.  
                    This information helps you diagnose performance or functional problems.  
                    SystemTap is not available as a user-space tool through the Eclipse IDE Yocto Plug-in.  
                    See <a class="ulink" href="http://sourceware.org/systemtap" target="_top">http://sourceware.org/systemtap</a> for more information 
                    on SystemTap.</p></li><li class="listitem"><p><span class="emphasis"><em>Lttng-ust:</em></span> A User-space Tracer designed to 
                    provide detailed information on user-space activity.  
                    See <a class="ulink" href="http://lttng.org/ust" target="_top">http://lttng.org/ust</a> for more information on Lttng-ust.
                    </p></li></ul></div><p>
        </p></div></div></div>

    <div class="chapter" title="Chapter 2. Preparing for Application Development"><div class="titlepage"><div><div><h2 class="title"><a id="adt-prepare"></a>Chapter 2. Preparing for Application Development</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#installing-the-adt">2.1. Installing the ADT and Toolchains</a></span></dt><dd><dl><dt><span class="section"><a href="#using-the-adt-installer">2.1.1. Using the ADT Installer</a></span></dt><dt><span class="section"><a href="#using-an-existing-toolchain-tarball">2.1.2. Using a Cross-Toolchain Tarball</a></span></dt><dt><span class="section"><a href="#using-the-toolchain-from-within-the-build-tree">2.1.3. Using BitBake and the Build Directory</a></span></dt></dl></dd><dt><span class="section"><a href="#setting-up-the-cross-development-environment">2.2. Setting Up the Cross-Development Environment</a></span></dt><dt><span class="section"><a href="#securing-kernel-and-filesystem-images">2.3. Securing Kernel and Filesystem Images</a></span></dt><dd><dl><dt><span class="section"><a href="#getting-the-images">2.3.1. Getting the Images</a></span></dt><dt><span class="section"><a href="#extracting-the-root-filesystem">2.3.2. Extracting the Root Filesystem</a></span></dt></dl></dd></dl></div><p>
    In order to develop applications, you need set up your host development system.
    Several ways exist that allow you to install cross-development tools, QEMU, the  
    Eclipse Yocto Plug-in, and other tools.
    This chapter describes how to prepare for application development.
</p><div class="section" title="2.1. Installing the ADT and Toolchains"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="installing-the-adt"></a>2.1. Installing the ADT and Toolchains</h2></div></div></div><p>
        The following list describes installation methods that set up varying degrees of tool
        availabiltiy on your system.
        Regardless of the installation method you choose,
        you must <code class="filename">source</code> the cross-toolchain
        environment setup script before you use a toolchain.
        See the "<a class="link" href="#setting-up-the-cross-development-environment" title="2.2. Setting Up the Cross-Development Environment">Setting Up the 
        Cross-Development Environment</a>" section for more information.
    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>Avoid mixing installation methods when installing toolchains for different architectures.
        For example, avoid using the ADT Installer to install some toolchains and then hand-installing
        cross-development toolchains from downloaded tarballs to install toolchains
        for different architectures. 
        Mixing installation methods can result in situations where the ADT Installer becomes
        unreliable and might not install the toolchain.</p><p>If you must mix installation methods, you might avoid problems by deleting 
        <code class="filename">/var/lib/opkg</code>, thus purging the <code class="filename">opkg</code> package 
        metadata</p></div><p>
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Use the ADT Installer Script:</em></span>
                This method is the recommended way to install the ADT because it
                automates much of the process for you.
                For example, you can configure the installation to install the QEMU emulator
                and the user-space NFS, specify which root filesystem profiles to download, 
                and define the target sysroot location.</p></li><li class="listitem"><p><span class="emphasis"><em>Use an Existing Toolchain Tarball:</em></span>
                Using this method, you select and download an architecture-specific
                toolchain tarball and then hand-install the toolchain.
                If you use this method, you just get the cross-toolchain and QEMU - you do not 
                get any of the other mentioned benefits had you run the ADT Installer script.</p></li><li class="listitem"><p><span class="emphasis"><em>Use the Toolchain from within the Build Directory:</em></span>
                If you already have a 
                <a class="link" href="#build-directory" target="_top">build directory</a>, 
                you can build the cross-toolchain within the directory.
                However, like the previous method mentioned, you only get the cross-toolchain and QEMU - you 
                do not get any of the other benefits without taking separate steps.</p></li></ul></div><p>
    </p><div class="section" title="2.1.1. Using the ADT Installer"><div class="titlepage"><div><div><h3 class="title"><a id="using-the-adt-installer"></a>2.1.1. Using the ADT Installer</h3></div></div></div><p>
            To run the ADT Installer, you need to first get the ADT Installer tarball and then run the ADT
            Installer Script.
        </p><div class="section" title="2.1.1.1. Getting the ADT Installer Tarball"><div class="titlepage"><div><div><h4 class="title"><a id="getting-the-adt-installer-tarball"></a>2.1.1.1. Getting the ADT Installer Tarball</h4></div></div></div><p>
                The ADT Installer is contained in the ADT Installer tarball.
                You can download the tarball into any directory from the 
                <a class="ulink" href="http://downloads.yoctoproject.org/releases" target="_top">Index of Releases</a>, specifically
                at  
                <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/adt_installer" target="_top">http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/adt_installer</a>.
                Or, you can use BitBake to generate the tarball inside the existing 
                <a class="link" href="#build-directory" target="_top">build directory</a>.
            </p><p>
                If you use BitBake to generate the ADT Installer tarball, you must 
                <code class="filename">source</code> the environment setup script 
                (<code class="filename">oe-init-build-env</code>) located 
                in the source directory before running the <code class="filename">bitbake</code>
                command that creates the tarball.
            </p><p>
                The following example commands download the Poky tarball, set up the 
                <a class="link" href="#source-directory" target="_top">source directory</a>, 
                set up the environment while also creating the default build directory, 
                and run the <code class="filename">bitbake</code> command that results in the tarball 
                <code class="filename">~/yocto-project/build/tmp/deploy/sdk/adt_installer.tar.bz2</code>:
                </p><pre class="literallayout">
     $ cd ~
     $ mkdir yocto-project
     $ cd yocto-project
     $ wget http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/poky-1.2+snapshot-8.0.tar.bz2
     $ tar xjf poky-1.2+snapshot-8.0.tar.bz2
     $ source poky-1.2+snapshot-8.0/oe-init-build-env
     $ bitbake adt-installer
                </pre><p>
            </p></div><div class="section" title="2.1.1.2. Configuring and Running the ADT Installer Script"><div class="titlepage"><div><div><h4 class="title"><a id="configuring-and-running-the-adt-installer-script"></a>2.1.1.2. Configuring and Running the ADT Installer Script</h4></div></div></div><p>
                Before running the ADT Installer script, you need to unpack the tarball.
                You can unpack the tarball in any directory you wish.
                For example, this command copies the ADT Installer tarball from where 
                it was built into the home directory and then unpacks the tarball into 
                a top-level directory named <code class="filename">adt-installer</code>:
                </p><pre class="literallayout">
     $ cd ~
     $ cp ~/poky/build/tmp/deploy/sdk/adt_installer.tar.bz2 $HOME
     $ tar -xjf adt_installer.tar.bz2
                </pre><p>
                Unpacking it creates the directory <code class="filename">adt-installer</code>, 
                which contains the ADT Installer script (<code class="filename">adt_installer</code>)
                and its configuration file (<code class="filename">adt_installer.conf</code>).
            </p><p>
                Before you run the script, however, you should examine the ADT Installer configuration 
                file and be sure you are going to get what you want.  
                Your configurations determine which kernel and filesystem image are downloaded.
            </p><p>  
                The following list describes the configurations you can define for the ADT Installer.  
                For configuration values and restrictions, see the comments in  
                the <code class="filename">adt-installer.conf</code> file:

                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename">YOCTOADT_REPO</code>: This area 
                        includes the IPKG-based packages and the root filesystem upon which 
                        the installation is based.  
                        If you want to set up your own IPKG repository pointed to by 
                        <code class="filename">YOCTOADT_REPO</code>, you need to be sure that the 
                        directory structure follows the same layout as the reference directory 
                        set up at <a class="ulink" href="http://adtrepo.yoctoproject.org" target="_top">http://adtrepo.yoctoproject.org</a>.  
                        Also, your repository needs to be accessible through HTTP.</p></li><li class="listitem"><p><code class="filename">YOCTOADT_TARGETS</code>: The machine 
                        target architectures for which you want to set up cross-development 
                        environments.</p></li><li class="listitem"><p><code class="filename">YOCTOADT_QEMU</code>: Indicates whether 
                        or not to install the emulator QEMU.</p></li><li class="listitem"><p><code class="filename">YOCTOADT_NFS_UTIL</code>: Indicates whether 
                        or not to install user-mode NFS.  
                        If you plan to use the Eclipse IDE Yocto plug-in against QEMU, 
                        you should install NFS.
                        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>To boot QEMU images using our userspace NFS server, you need 
                            to be running <code class="filename">portmap</code> or <code class="filename">rpcbind</code>. 
                            If you are running <code class="filename">rpcbind</code>, you will also need to add the 
                            <code class="filename">-i</code> option when <code class="filename">rpcbind</code> starts up. 
                            Please make sure you understand the security implications of doing this. 
                            You might also have to modify your firewall settings to allow 
                            NFS booting to work.</div></li><li class="listitem"><p><code class="filename">YOCTOADT_ROOTFS_&lt;arch&gt;</code>: The root 
                        filesystem images you want to download from the 
                        <code class="filename">YOCTOADT_IPKG_REPO</code> repository.</p></li><li class="listitem"><p><code class="filename">YOCTOADT_TARGET_SYSROOT_IMAGE_&lt;arch&gt;</code>: The 
                        particular root filesystem used to extract and create the target sysroot.
                        The value of this variable must have been specified with 
                        <code class="filename">YOCTOADT_ROOTFS_&lt;arch&gt;</code>.
                        For example, if you downloaded both <code class="filename">minimal</code> and 
                        <code class="filename">sato-sdk</code> images by setting 
                        <code class="filename">YOCTOADT_ROOTFS_&lt;arch&gt;</code>
                        to "minimal sato-sdk", then <code class="filename">YOCTOADT_ROOTFS_&lt;arch&gt;</code>
                        must be set to either <code class="filename">minimal</code> or 
                        <code class="filename">sato-sdk</code>.</p></li><li class="listitem"><p><code class="filename">YOCTOADT_TARGET_SYSROOT_LOC_&lt;arch&gt;</code>: The 
                        location on the development host where the target sysroot is created.
                        </p></li></ul></div><p>
            </p><p>
                After you have configured the <code class="filename">adt_installer.conf</code> file, 
                run the installer using the following command.
                Be sure that you are not trying to use cross-compilation tools. 
                When you run the installer, the environment must use a 
                host <code class="filename">gcc</code>:
                </p><pre class="literallayout">
     $ ./adt_installer
                </pre><p>
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                The ADT Installer requires the <code class="filename">libtool</code> package to complete.  
                If you install the recommended packages as described in  
                "<a class="link" href="#packages" target="_top">The Packages</a>"
                section of the Yocto Project Quick Start, then you will have libtool installed.
            </div><p>
                Once the installer begins to run, you are asked whether you want to run in 
                interactive or silent mode.  
                If you want to closely monitor the installation, choose “I” for interactive 
                mode rather than “S” for silent mode.  
                Follow the prompts from the script to complete the installation.
            </p><p>
                Once the installation completes, the ADT, which includes the cross-toolchain, is installed.
                You will notice environment setup files for the cross-toolchain in 
                <code class="filename">/opt/poky/1.3</code>,
                and image tarballs in the <code class="filename">adt-installer</code>
                directory according to your installer configurations, and the target sysroot located
                according to the <code class="filename">YOCTOADT_TARGET_SYSROOT_LOC_&lt;arch&gt;</code> variable
                also in your configuration file.
            </p></div></div><div class="section" title="2.1.2. Using a Cross-Toolchain Tarball"><div class="titlepage"><div><div><h3 class="title"><a id="using-an-existing-toolchain-tarball"></a>2.1.2. Using a Cross-Toolchain Tarball</h3></div></div></div><p>
            If you want to simply install the cross-toolchain by hand, you can do so by using an existing 
            cross-toolchain tarball.  
            If you use this method to install the cross-toolchain and you still need to install the target 
            sysroot, you will have to install sysroot separately.
        </p><p>
            Follow these steps:
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Go to  
                    <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/toolchain/" target="_top">http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/toolchain/</a> 
                    and find the folder that matches your host development system 
                    (i.e. <code class="filename">i686</code> for 32-bit machines or 
                    <code class="filename">x86-64</code> for 64-bit machines).</p></li><li class="listitem"><p>Go into that folder and download the toolchain tarball whose name 
                    includes the appropriate target architecture.
                    For example, if your host development system is an Intel-based 64-bit system and 
                    you are going to use your cross-toolchain for an Intel-based 32-bit target, go into the 
                    <code class="filename">x86_64</code> folder and download the following tarball:
                    </p><pre class="literallayout">
     poky-eglibc-x86_64-i586-toolchain-gmae-1.3.tar.bz2
                    </pre><p>
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>As an alternative to steps one and two, you can build the toolchain tarball 
                        if you have a <a class="link" href="#build-directory" target="_top">build directory</a>.
                        If you need GMAE, you should use the <code class="filename">bitbake meta-toolchain-gmae</code>
                        command. 
                        The resulting tarball will support such development.
                        However, if you are not concerned with GMAE, 
                        you can generate the tarball using <code class="filename">bitbake meta-toolchain</code>.</p><p>Use the appropriate <code class="filename">bitbake</code> command only after you have 
                        sourced the <code class="filename">oe-build-init-env</code> script located in the source
                        directory.  
                        When the <code class="filename">bitbake</code> command completes, the tarball will 
                        be in <code class="filename">tmp/deploy/sdk</code> in the build directory.
                        </p></div></li><li class="listitem"><p>Make sure you are in the root directory with root privileges and then expand 
                    the tarball.  
                    The tarball expands into <code class="filename">/opt/poky/1.3</code>.
                    Once the tarball is expanded, the cross-toolchain is installed.
                    You will notice environment setup files for the cross-toolchain in the directory.
                    </p></li></ol></div><p>
        </p></div><div class="section" title="2.1.3. Using BitBake and the Build Directory"><div class="titlepage"><div><div><h3 class="title"><a id="using-the-toolchain-from-within-the-build-tree"></a>2.1.3. Using BitBake and the Build Directory</h3></div></div></div><p>
            A final way of making the cross-toolchain available is to use BitBake 
            to generate the toolchain within an existing 
            <a class="link" href="#build-directory" target="_top">build directory</a>.
            This method does not install the toolchain into the 
            <code class="filename">/opt</code> directory.
            As with the previous method, if you need to install the target sysroot, you must 
            do that separately as well.
        </p><p>
            Follow these steps to generate the toolchain into the build directory:
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Source the environment setup script 
                    <code class="filename">oe-init-build-env</code> located in the 
                    <a class="link" href="#source-directory" target="_top">source directory</a>.
                    </p></li><li class="listitem"><p>At this point, you should be sure that the 
                    <a class="link" href="#var-MACHINE" target="_top"><code class="filename">MACHINE</code></a> variable 
                    in the <code class="filename">local.conf</code> file found in the 
                    <code class="filename">conf</code> directory of the build directory
                    is set for the target architecture.
                    Comments within the <code class="filename">local.conf</code> file list the values you 
                    can use for the <code class="filename">MACHINE</code> variable.  
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>You can populate the build directory with the cross-toolchains for more 
                        than a single architecture.  
                        You just need to edit the <code class="filename">MACHINE</code> variable in the 
                        <code class="filename">local.conf</code> file and re-run the BitBake 
                        command.</div></li><li class="listitem"><p>Run <code class="filename">bitbake meta-ide-support</code> to complete the 
                    cross-toolchain generation.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>If you change out of your working directory after you 
                        <code class="filename">source</code> the environment setup script and before you run
                        the <code class="filename">bitbake</code> command, the command might not work. 
                        Be sure to run the <code class="filename">bitbake</code> command immediately 
                        after checking or editing the <code class="filename">local.conf</code> but without 
                        changing out of your working directory.</div><p>
                    Once the <code class="filename">bitbake</code> command finishes, 
                    the cross-toolchain is generated and populated within the build directory.
                    You will notice environment setup files for the cross-toolchain in the 
                    build directory in the <code class="filename">tmp</code> directory.
                    Setup script filenames contain the strings <code class="filename">environment-setup</code>.
                    </p></li></ol></div><p>
        </p></div></div><div class="section" title="2.2. Setting Up the Cross-Development Environment"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="setting-up-the-cross-development-environment"></a>2.2. Setting Up the Cross-Development Environment</h2></div></div></div><p>
        Before you can develop using the cross-toolchain, you need to set up the 
        cross-development environment by sourcing the toolchain's environment setup script.  
        If you used the ADT Installer or hand-installed cross-toolchain,
        then you can find this script in the <code class="filename">/opt/poky/1.3</code>
        directory.  
        If you installed the toolchain in the 
        <a class="link" href="#build-directory" target="_top">build directory</a>, 
        you can find the environment setup 
        script for the toolchain in the build directory's <code class="filename">tmp</code> directory.
    </p><p> 
        Be sure to run the environment setup script that matches the architecture for 
        which you are developing.  
        Environment setup scripts begin with the string “<code class="filename">environment-setup</code>”
        and include as part of their name the architecture.  
        For example, the toolchain environment setup script for a 64-bit IA-based architecture would 
        be the following: 
        </p><pre class="literallayout">
     /opt/poky/1.3/environment-setup-x86_64-poky-linux
        </pre><p>
    </p></div><div class="section" title="2.3. Securing Kernel and Filesystem Images"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="securing-kernel-and-filesystem-images"></a>2.3. Securing Kernel and Filesystem Images</h2></div></div></div><p>
        You will need to have a kernel and filesystem image to boot using your 
        hardware or the QEMU emulator.
        Furthermore, if you plan on booting your image using NFS or you want to use the root filesystem
        as the target sysroot, you need to extract the root filesystem.
    </p><div class="section" title="2.3.1. Getting the Images"><div class="titlepage"><div><div><h3 class="title"><a id="getting-the-images"></a>2.3.1. Getting the Images</h3></div></div></div><p>
            To get the kernel and filesystem images, you either have to build them or download
            pre-built versions.
            You can find examples for both these situations in the 
            "<a class="link" href="#test-run" target="_top">A Quick Test Run</a>" section of   
            the Yocto Project Quick Start.
        </p><p> 
            The Yocto Project ships basic kernel and filesystem images for several 
            architectures (<code class="filename">x86</code>, <code class="filename">x86-64</code>, 
            <code class="filename">mips</code>, <code class="filename">powerpc</code>, and <code class="filename">arm</code>) 
            that you can use unaltered in the QEMU emulator.  
            These kernel images reside in the release 
            area - <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines" target="_top">http://downloads.yoctoproject.org/releases/yocto/yocto-1.3/machines</a>
            and are ideal for experimentation using Yocto Project.
            For information on the image types you can build using the OpenEmbedded build system, 
            see the
            "<a class="link" href="#ref-images" target="_top">Images</a>" chapter in  
            the Yocto Project Reference Manual.
        </p><p>
            If you plan on remotely deploying and debugging your application from within the 
            Eclipse IDE, you must have an image that contains the Yocto Target Communication
            Framework (TCF) agent (<code class="filename">tcf-agent</code>). 
            By default, the Yocto Project provides only one type pre-built image that contains the 
            <code class="filename">tcf-agent</code>.
            And, those images are SDK (e.g.<code class="filename">core-image-sato-sdk</code>).
        </p><p>
            If you want to use a different image type that contains the <code class="filename">tcf-agent</code>, 
            you can do so one of two ways:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Modify the <code class="filename">conf/local.conf</code> configuration in 
                    the <a class="link" href="#build-directory" target="_top">build directory</a>
                    and then rebuild the image.
                    With this method, you need to modify the 
                    <a class="link" href="#var-EXTRA_IMAGE_FEATURES" target="_top"><code class="filename">EXTRA_IMAGE_FEATURES</code></a>
                    variable to have the value of "tools-debug" before rebuilding the image. 
                    Once the image is rebuilt, the <code class="filename">tcf-agent</code> will be included
                    in the image and is launched automatically after the boot.</p></li><li class="listitem"><p>Manually build the <code class="filename">tcf-agent</code>.
                    To build the agent, follow these steps:
                    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Be sure the ADT is installed as described in the 
                            "<a class="link" href="#installing-the-adt" title="2.1. Installing the ADT and Toolchains">Installing the ADT and Toolchains</a>" section.
                            </p></li><li class="listitem"><p>Set up the cross-development environment as described in the 
                            "<a class="link" href="#setting-up-the-cross-development-environment" title="2.2. Setting Up the Cross-Development Environment">Setting 
                            Up the Cross-Development Environment</a>" section.</p></li><li class="listitem"><p>Get the <code class="filename">tcf-agent</code> source code using
                            the following commands:
                            </p><pre class="literallayout">
     $ git clone http://git.eclipse.org/gitroot/tcf/org.eclipse.tcf.agent.git
     $ cd agent
                            </pre></li><li class="listitem"><p>Modify the <code class="filename">Makefile.inc</code> file
                            for the cross-compilation environment by setting the 
                            <code class="filename">OPSYS</code> and 
                            <a class="link" href="#var-MACHINE" target="_top"><code class="filename">MACHINE</code></a>
                            variables according to your target.</p></li><li class="listitem"><p>Use the cross-development tools to build the 
                            <code class="filename">tcf-agent</code>.  
                            Before you "Make" the file, be sure your cross-tools are set up first.
                            See the "<a class="link" href="#makefile-based-projects" title="4.2. Makefile-Based Projects">Makefile-Based Projects</a>"
                            section for information on how to make sure the cross-tools are set up
                            correctly.</p><p>If the build is successful, the <code class="filename">tcf-agent</code> output will 
                            be <code class="filename">obj/$(OPSYS)/$(MACHINE)/Debug/agent</code>.</p></li><li class="listitem"><p>Deploy the agent into the image's root filesystem.</p></li></ol></div><p>
                </p></li></ul></div><p>
        </p></div><div class="section" title="2.3.2. Extracting the Root Filesystem"><div class="titlepage"><div><div><h3 class="title"><a id="extracting-the-root-filesystem"></a>2.3.2. Extracting the Root Filesystem</h3></div></div></div><p>
            You must extract the root filesystem if you want to boot the image using NFS
            or you want to use the root filesystem as the target sysroot.
            For example, the Eclipse IDE environment with the Eclipse Yocto Plug-in installed allows you 
            to use QEMU to boot under NFS.
            Another example is if you want to develop your target application using the
            root filesystem as the target sysroot. 
        </p><p> 
            To extract the root filesystem, first <code class="filename">source</code>
            the cross-development environment setup script and then 
            use the <code class="filename">runqemu-extract-sdk</code> command on the 
            filesystem image. 
            For example, the following commands set up the environment and then extract
            the root filesystem from a previously built filesystem image tarball named  
            <code class="filename">core-image-sato-sdk-qemux86-2011091411831.rootfs.tar.bz2</code>.
            The example extracts the root filesystem into the <code class="filename">$HOME/qemux86-sato</code>
            directory:
            </p><pre class="literallayout">
     $ source $HOME/poky/build/tmp/environment-setup-i586-poky-linux
     $ runqemu-extract-sdk \
        tmp/deploy/images/core-image-sato-sdk-qemux86-2011091411831.rootfs.tar.bz2 \
        $HOME/qemux86-sato
            </pre><p>
            In this case, you could now point to the target sysroot at 
            <code class="filename">$HOME/qemux86-sato</code>.
        </p></div></div></div>

    <div class="chapter" title="Chapter 3. Optionally Customizing the Development Packages Installation"><div class="titlepage"><div><div><h2 class="title"><a id="adt-package"></a>Chapter 3. Optionally Customizing the Development Packages Installation</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#package-management-systems">3.1. Package Management Systems</a></span></dt><dt><span class="section"><a href="#configuring-the-pms">3.2. Configuring the PMS</a></span></dt></dl></div><p>
        Because the Yocto Project is suited for embedded Linux development, it is 
        likely that you will need to customize your development packages installation.  
        For example, if you are developing a minimal image, then you might not need 
        certain packages (e.g. graphics support packages).  
        Thus, you would like to be able to remove those packages from your target sysroot.
    </p><div class="section" title="3.1. Package Management Systems"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="package-management-systems"></a>3.1. Package Management Systems</h2></div></div></div><p>
        The OpenEmbedded build system supports the generation of sysroot files using 
        three different Package Management Systems (PMS):
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>OPKG:</em></span> A less well known PMS whose use 
                originated in the OpenEmbedded and OpenWrt embedded Linux projects.  
                This PMS works with files packaged in an <code class="filename">.ipk</code> format.
                See <a class="ulink" href="http://en.wikipedia.org/wiki/Opkg" target="_top">http://en.wikipedia.org/wiki/Opkg</a> for more 
                information about OPKG.</p></li><li class="listitem"><p><span class="emphasis"><em>RPM:</em></span> A more widely known PMS intended for GNU/Linux 
                distributions.  
                This PMS works with files packaged in an <code class="filename">.rms</code> format.
                The build system currently installs through this PMS by default.  
                See <a class="ulink" href="http://en.wikipedia.org/wiki/RPM_Package_Manager" target="_top">http://en.wikipedia.org/wiki/RPM_Package_Manager</a>
                for more information about RPM.</p></li><li class="listitem"><p><span class="emphasis"><em>Debian:</em></span> The PMS for Debian-based systems 
                is built on many PMS tools.  
                The lower-level PMS tool <code class="filename">dpkg</code> forms the base of the Debian PMS.  
                For information on dpkg see 
                <a class="ulink" href="http://en.wikipedia.org/wiki/Dpkg" target="_top">http://en.wikipedia.org/wiki/Dpkg</a>.</p></li></ul></div><p>
    </p></div><div class="section" title="3.2. Configuring the PMS"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="configuring-the-pms"></a>3.2. Configuring the PMS</h2></div></div></div><p>
        Whichever PMS you are using, you need to be sure that the 
        <a class="link" href="#var-PACKAGE_CLASSES" target="_top"><code class="filename">PACKAGE_CLASSES</code></a>
        variable in the <code class="filename">conf/local.conf</code>
        file is set to reflect that system.  
        The first value you choose for the variable specifies the package file format for the root
        filesystem at sysroot.
        Additional values specify additional formats for convenience or testing.  
        See the configuration file for details.
    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
        For build performance information related to the PMS, see
        <a class="link" href="#ref-classes-package" target="_top">Packaging - <code class="filename">package*.bbclass</code></a>
        in the Yocto Project Reference Manual.
    </div><p>
        As an example, consider a scenario where you are using OPKG and you want to add 
        the <code class="filename">libglade</code> package to the target sysroot.
    </p><p>
        First, you should generate the <code class="filename">ipk</code> file for the 
        <code class="filename">libglade</code> package and add it 
        into a working <code class="filename">opkg</code> repository.  
        Use these commands:
        </p><pre class="literallayout">
     $ bitbake libglade
     $ bitbake package-index
        </pre><p>
    </p><p>
        Next, source the environment setup script found in the 
        <a class="link" href="#source-directory" target="_top">source directory</a>.  
        Follow that by setting up the installation destination to point to your 
        sysroot as <code class="filename">&lt;sysroot_dir&gt;</code>.  
        Finally, have an OPKG configuration file <code class="filename">&lt;conf_file&gt;</code>
        that corresponds to the <code class="filename">opkg</code> repository you have just created. 
        The following command forms should now work:
        </p><pre class="literallayout">
     $ opkg-cl –f &lt;conf_file&gt; -o &lt;sysroot_dir&gt; update
     $ opkg-cl –f &lt;cconf_file&gt; -o &lt;sysroot_dir&gt; \
        --force-overwrite install libglade
     $ opkg-cl –f &lt;cconf_file&gt; -o &lt;sysroot_dir&gt; \
        --force-overwrite install libglade-dbg
     $ opkg-cl –f &lt;conf_file&gt; -o &lt;sysroot_dir&gt; \
        --force-overwrite install libglade-dev
        </pre><p>
    </p></div></div>

    <div class="chapter" title="Chapter 4. Using the Command Line"><div class="titlepage"><div><div><h2 class="title"><a id="using-the-command-line"></a>Chapter 4. Using the Command Line</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#autotools-based-projects">4.1. Autotools-Based Projects</a></span></dt><dt><span class="section"><a href="#makefile-based-projects">4.2. Makefile-Based Projects</a></span></dt></dl></div><p>
        Recall that earlier the manual discussed how to use an existing toolchain 
        tarball that had been installed into <code class="filename">/opt/poky</code>, 
        which is outside of the build directory 
        (see the section "<a class="link" href="#using-an-existing-toolchain-tarball" title="2.1.2. Using a Cross-Toolchain Tarball">Using an Existing 
        Toolchain Tarball)</a>".  
        And, that sourcing your architecture-specific environment setup script 
        initializes a suitable cross-toolchain development environment.  
        During the setup, locations for the compiler, QEMU scripts, QEMU binary, 
        a special version of <code class="filename">pkgconfig</code> and other useful 
        utilities are added to the <code class="filename">PATH</code> variable.
        Variables to assist <code class="filename">pkgconfig</code> and <code class="filename">autotools</code> 
        are also defined so that, 
        for example, <code class="filename">configure.sh</code> can find pre-generated 
        test results for tests that need target hardware on which to run.  
        These conditions allow you to easily use the toolchain outside of the 
        OpenEmbedded build environment on both autotools-based projects and 
        Makefile-based projects.
    </p><div class="section" title="4.1. Autotools-Based Projects"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="autotools-based-projects"></a>4.1. Autotools-Based Projects</h2></div></div></div><p>
        For an Autotools-based project, you can use the cross-toolchain by just 
        passing the appropriate host option to <code class="filename">configure.sh</code>.
        The host option you use is derived from the name of the environment setup 
        script in <code class="filename">/opt/poky</code> resulting from unpacking the 
        cross-toolchain tarball.
        For example, the host option for an ARM-based target that uses the GNU EABI 
        is <code class="filename">armv5te-poky-linux-gnueabi</code>.
        Note that the name of the script is 
        <code class="filename">environment-setup-armv5te-poky-linux-gnueabi</code>.
        Thus, the following command works:
        </p><pre class="literallayout">
     $ configure --host=armv5te-poky-linux-gnueabi \
        --with-libtool-sysroot=&lt;sysroot-dir&gt;
        </pre><p>
    </p><p>
        This single command updates your project and rebuilds it using the appropriate 
        cross-toolchain tools.
    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
        If <code class="filename">configure</code> script results in problems recognizing the 
        <code class="filename">--with-libtool-sysroot=&lt;sysroot-dir&gt;</code> option, 
        regenerate the script to enable the support by doing the following and then 
        re-running the script:
        <pre class="literallayout">
     $ libtoolize --automake
     $ aclocal -I ${OECORE_NATIVE_SYSROOT}/usr/share/aclocal \
        [-I &lt;dir_containing_your_project-specific_m4_macros&gt;]
     $ autoconf
     $ autoheader
     $ automake -a
        </pre></div></div><div class="section" title="4.2. Makefile-Based Projects"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="makefile-based-projects"></a>4.2. Makefile-Based Projects</h2></div></div></div><p>
        For a Makefile-based project, you use the cross-toolchain by making sure 
        the tools are used.  
        You can do this as follows:
        </p><pre class="literallayout">
     CC=arm-poky-linux-gnueabi-gcc
     LD=arm-poky-linux-gnueabi-ld
     CFLAGS=”${CFLAGS} --sysroot=&lt;sysroot-dir&gt;”
     CXXFLAGS=”${CXXFLAGS} --sysroot=&lt;sysroot-dir&gt;</pre><p>
    </p></div></div>



</div>

<table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="100%"><tr><td align="left"><img src="figures/bsp-title.png" align="left" width="100%" /></td></tr></table>

    <div xml:lang="en" class="book" lang="en"><div class="titlepage"><div><div><h1 class="title"><a id="bsp-guide"></a></h1></div><div><div class="authorgroup">
            <div class="author"><h3 class="author"><span class="firstname">Tom</span> <span class="surname">Zanussi</span></h3><div class="affiliation">
                    <span class="orgname">Intel Corporation<br /></span>
                </div><code class="email">&lt;<a class="email" href="mailto:tom.zanussi@intel.com">tom.zanussi@intel.com</a>&gt;</code></div>
            <div class="author"><h3 class="author"><span class="firstname">Richard</span> <span class="surname">Purdie</span></h3><div class="affiliation">
                    <span class="orgname">Linux Foundation<br /></span>
                </div><code class="email">&lt;<a class="email" href="mailto:richard.purdie@linuxfoundation.org">richard.purdie@linuxfoundation.org</a>&gt;</code></div>
        </div></div><div><p class="copyright">Copyright © 2010-2012 Linux Foundation</p></div><div><div class="legalnotice" title="Legal Notice"><a id="id1501714"></a>
      <p>
        Permission is granted to copy, distribute and/or modify this document under 
        the terms of the <a class="ulink" href="http://creativecommons.org/licenses/by-nc-sa/2.0/uk/" target="_top">Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England &amp; Wales</a> as published by Creative Commons.
      </p>
      <div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
          Due to production processes, there could be differences between the Yocto Project
          documentation bundled in the release tarball and the 
          Yocto Project Board Support Package (BSP) Developer's Guide on
          the <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project</a> website.
          For the latest version of this manual, see the manual on the website.
      </div>
    </div></div><div><div class="revhistory"><table border="1" width="100%" summary="Revision history"><tr><th align="left" valign="top" colspan="2"><b>Revision History</b></th></tr>
            <tr><td align="left">Revision 0.9</td><td align="left">24 November 2010</td></tr><tr><td align="left" colspan="2">The initial document draft released with the Yocto Project 0.9 Release.</td></tr>
            <tr><td align="left">Revision 1.0</td><td align="left">6 April 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.0 Release.</td></tr>
            <tr><td align="left">Revision 1.0.1</td><td align="left">23 May 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.0.1 Release.</td></tr>
            <tr><td align="left">Revision 1.1</td><td align="left">6 October 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.1 Release.</td></tr>
            <tr><td align="left">Revision 1.2</td><td align="left">April 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.2 Release.</td></tr>
            <tr><td align="left">Revision 1.3</td><td align="left">Sometime in 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.3 Release.</td></tr>
        </table></div></div></div><hr /></div>
    

    <div class="chapter" title="Chapter 1. Board Support Packages (BSP) - Developer's Guide"><div class="titlepage"><div><div><h2 class="title"><a id="bsp"></a>Chapter 1. Board Support Packages (BSP) - Developer's Guide</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#bsp-layers">1.1. BSP Layers</a></span></dt><dt><span class="section"><a href="#bsp-filelayout">1.2. Example Filesystem Layout</a></span></dt><dd><dl><dt><span class="section"><a href="#bsp-filelayout-license">1.2.1. License Files</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-readme">1.2.2. README File</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-readme-sources">1.2.3. README.sources File</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-binary">1.2.4. Pre-built User Binaries</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-layer">1.2.5. Layer Configuration File</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-machine">1.2.6. Hardware Configuration Options</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-misc-recipes">1.2.7. Miscellaneous Recipe Files</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-core-recipes">1.2.8. Core Recipe Files</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-recipes-graphics">1.2.9. Display Support Files</a></span></dt><dt><span class="section"><a href="#bsp-filelayout-kernel">1.2.10. Linux Kernel Configuration</a></span></dt></dl></dd><dt><span class="section"><a href="#requirements-and-recommendations-for-released-bsps">1.3. Requirements and Recommendations for Released BSPs</a></span></dt><dd><dl><dt><span class="section"><a href="#released-bsp-requirements">1.3.1. Released BSP Requirements</a></span></dt><dt><span class="section"><a href="#released-bsp-recommendations">1.3.2. Released BSP Recommendations</a></span></dt></dl></dd><dt><span class="section"><a href="#customizing-a-recipe-for-a-bsp">1.4. Customizing a Recipe for a BSP</a></span></dt><dt><span class="section"><a href="#bsp-licensing-considerations">1.5. BSP Licensing Considerations</a></span></dt><dt><span class="section"><a href="#using-the-yocto-projects-bsp-tools">1.6. Using the Yocto Project's BSP Tools</a></span></dt><dd><dl><dt><span class="section"><a href="#common-features">1.6.1. Common Features</a></span></dt><dt><span class="section"><a href="#creating-a-new-bsp-layer-using-the-yocto-bsp-script">1.6.2. Creating a new BSP Layer Using the yocto-bsp Script</a></span></dt><dt><span class="section"><a href="#managing-kernel-patches-and-config-items-with-yocto-kernel">1.6.3. Managing Kernel Patches and Config Items with yocto-kernel</a></span></dt></dl></dd></dl></div><p>
            A Board Support Package (BSP) is a collection of information that
            defines how to support a particular hardware device, set of devices, or 
            hardware platform. 
            The BSP includes information about the hardware features 
            present on the device and kernel configuration information along with any 
            additional hardware drivers required.
            The BSP also lists any additional software 
            components required in addition to a generic Linux software stack for both 
            essential and optional platform features.
        </p><p>
            This chapter (or document if you are reading the BSP Developer's Guide) 
            talks about BSP Layers, defines a structure for components
            so that BSPs follow a commonly understood layout, discusses how to customize
            a recipe for a BSP, addresses BSP licensing, and provides information that
            shows you how to create and manage a 
            <a class="link" href="#bsp-layers" title="1.1. BSP Layers">BSP Layer</a> using two Yocto Project 
            <a class="link" href="#using-the-yocto-projects-bsp-tools" title="1.6. Using the Yocto Project's BSP Tools">BSP Tools</a>.
        </p><div class="section" title="1.1. BSP Layers"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="bsp-layers"></a>1.1. BSP Layers</h2></div></div></div><p>
                The BSP consists of a file structure inside a base directory.
                Collectively, you can think of the base directory and the file structure 
                as a BSP Layer.
                BSP Layers use the following naming convention:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;
                </pre><p>
                "bsp_name" is a placeholder for the machine or platform name.
            </p><p>
                The layer's base directory (<code class="filename">meta-&lt;bsp_name&gt;</code>) is the root 
                of the BSP Layer.
                This root is what you add to the 
                <a class="link" href="#var-BBLAYERS" target="_top"><code class="filename">BBLAYERS</code></a>
                variable in the <code class="filename">conf/bblayers.conf</code> file found in the 
                <a class="link" href="#build-directory" target="_top">build directory</a>.
                Adding the root allows the OpenEmbedded build system to recognize the BSP 
                definition and from it build an image.
                Here is an example:
                </p><pre class="literallayout">
     BBLAYERS = " \
        /usr/local/src/yocto/meta \
        /usr/local/src/yocto/meta-yocto \
        /usr/local/src/yocto/meta-&lt;bsp_name&gt; \
        "
                </pre><p>
            </p><p>
                Some BSPs require additional layers on
                top of the BSP's root layer in order to be functional.
                For these cases, you also need to add those layers to the
                <code class="filename">BBLAYERS</code> variable in order to build the BSP.  
                You must also specify in the "Dependencies" section of the BSP's
                <code class="filename">README</code> file any requirements for additional 
                layers and, preferably, any
                build instructions that might be contained elsewhere
                in the <code class="filename">README</code> file.
            </p><p>
                Some layers function as a layer to hold other BSP layers.
                An example of this type of layer is the <code class="filename">meta-intel</code> layer.  
                The <code class="filename">meta-intel</code> layer contains over 10 individual BSP layers.
            </p><p>
                For more detailed information on layers, see the 
                "<a class="link" href="#understanding-and-creating-layers" target="_top">Understanding and Creating Layers</a>" 
                section of the Yocto Project Development Manual.
                You can also see the detailed examples in the appendices of the
                Yocto Project Development Manual.
            </p></div><div class="section" title="1.2. Example Filesystem Layout"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="bsp-filelayout"></a>1.2. Example Filesystem Layout</h2></div></div></div><p>
                Providing a common form allows end-users to understand and become familiar 
                with the layout.  
                A common format also encourages standardization of software support of hardware.
            </p><p>
                The proposed form does have elements that are specific to the  
                OpenEmbedded build system. 
                It is intended that this information can be 
                used by other build systems besides the OpenEmbedded build system 
                and that it will be simple
                to extract information and convert it to other formats if required.
                The OpenEmbedded build system, through its standard layers mechanism, can directly 
                accept the format described as a layer.
                The BSP captures all 
                the hardware-specific details in one place in a standard format, which is 
                useful for any person wishing to use the hardware platform regardless of 
                the build system they are using.
            </p><p>
                The BSP specification does not include a build system or other tools -
                it is concerned with the hardware-specific components only. 
                At the end-distribution point, you can ship the BSP combined with a build system
                and other tools. 
                However, it is important to maintain the distinction that these
                are separate components that happen to be combined in certain end products.
            </p><p>
                Before looking at the common form for the file structure inside a BSP Layer, 
                you should be aware that some requirements do exist in order for a BSP to 
                be considered compliant with the Yocto Project.
                For that list of requirements, see the
                "<a class="link" href="#released-bsp-requirements" title="1.3.1. Released BSP Requirements">Released BSP Requirements</a>"
                section.
            </p><p>
                Below is the common form for the file structure inside a BSP Layer.
                While you can use this basic form for the standard, realize that the actual structures
                for specific BSPs could differ. 

                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/                                
     meta-&lt;bsp_name&gt;/&lt;bsp_license_file&gt;
     meta-&lt;bsp_name&gt;/README
     meta-&lt;bsp_name&gt;/README.sources
     meta-&lt;bsp_name&gt;/binary/&lt;bootable_images&gt;
     meta-&lt;bsp_name&gt;/conf/layer.conf 
     meta-&lt;bsp_name&gt;/conf/machine/*.conf
     meta-&lt;bsp_name&gt;/recipes-bsp/*
     meta-&lt;bsp_name&gt;/recipes-core/*
     meta-&lt;bsp_name&gt;/recipes-graphics/*            
     meta-&lt;bsp_name&gt;/recipes-kernel/linux/linux-yocto_&lt;kernel_rev&gt;.bbappend
                </pre><p>
            </p><p>
                Below is an example of the Crown Bay BSP:

                </p><pre class="literallayout">
     meta-crownbay/COPYING.MIT
     meta-crownbay/README
     meta-crownbay/README.sources
     meta-crownbay/binary/
     meta-crownbay/conf/
     meta-crownbay/conf/layer.conf
     meta-crownbay/conf/machine/
     meta-crownbay/conf/machine/crownbay.conf
     meta-crownbay/conf/machine/crownbay-noemgd.conf
     meta-crownbay/recipes-bsp/
     meta-crownbay/recipes-bsp/formfactor/
     meta-crownbay/recipes-bsp/formfactor/formfactor_0.0.bbappend
     meta-crownbay/recipes-bsp/formfactor/formfactor/
     meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/
     meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/machconfig
     meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/
     meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/machconfig
     meta-crownbay/recipes-core/
     meta-crownbay/recipes-core/tasks/
     meta-crownbay/recipes-core/tasks/task-core-tools-profile.bbappend
     meta-crownbay/recipes-graphics/
     meta-crownbay/recipes-graphics/xorg-xserver/
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config_0.1.bbappend
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/xorg.conf
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd/
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd/xorg.conf
     meta-crownbay/recipes-kernel/
     meta-crownbay/recipes-kernel/linux/
     meta-crownbay/recipes-kernel/linux/linux-yocto-rt_3.0.bbappend
     meta-crownbay/recipes-kernel/linux/linux-yocto_2.6.37.bbappend
     meta-crownbay/recipes-kernel/linux/linux-yocto_3.0.bbappend
                </pre><p>
            </p><p>
                The following sections describe each part of the proposed BSP format.
            </p><div class="section" title="1.2.1. License Files"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-license"></a>1.2.1. License Files</h3></div></div></div><p>
                You can find these files in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/&lt;bsp_license_file&gt;
                </pre><p>
            </p><p>
                These optional files satisfy licensing requirements for the BSP.
                The type or types of files here can vary depending on the licensing requirements.
                For example, in the Crown Bay BSP all licensing requirements are handled with the 
                <code class="filename">COPYING.MIT</code> file.  
            </p><p>
                Licensing files can be MIT, BSD, GPLv*, and so forth.
                These files are recommended for the BSP but are optional and totally up to the BSP developer.
            </p></div><div class="section" title="1.2.2. README File"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-readme"></a>1.2.2. README File</h3></div></div></div><p>
                You can find this file in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/README
                </pre><p>
            </p><p>
                This file provides information on how to boot the live images that are optionally 
                included in the <code class="filename">binary/</code> directory.
                The <code class="filename">README</code> file also provides special information needed for 
                building the image.
            </p><p>
                At a minimum, the <code class="filename">README</code> file must
                contain a list of dependencies, such as the names of
                any other layers on which the BSP depends and the name of
                the BSP maintainer with his or her contact information.
            </p></div><div class="section" title="1.2.3. README.sources File"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-readme-sources"></a>1.2.3. README.sources File</h3></div></div></div><p>
                You can find this file in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/README.sources
                </pre><p>
            </p><p>
                This file provides information on where to locate the BSP source files.
                For example, information provides where to find the sources that comprise
                the images shipped with the BSP.
                Information is also included to help you find the metadata used to generate the images
                that ship with the BSP.
            </p></div><div class="section" title="1.2.4. Pre-built User Binaries"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-binary"></a>1.2.4. Pre-built User Binaries</h3></div></div></div><p>
                You can find these files in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/binary/&lt;bootable_images&gt;
                </pre><p>
            </p><p>
                This optional area contains useful pre-built kernels and user-space filesystem 
                images appropriate to the target system.
                This directory typically contains graphical (e.g. sato) and minimal live images 
                when the BSP tarball has been created and made available in the 
                <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project</a> website. 
                You can use these kernels and images to get a system running and quickly get started 
                on development tasks.
            </p><p> 
                The exact types of binaries present are highly hardware-dependent.
                However, a README file should be present in the BSP Layer that explains how to use 
                the kernels and images with the target hardware. 
                If pre-built binaries are present, source code to meet licensing requirements must also 
                exist in some form.
            </p></div><div class="section" title="1.2.5. Layer Configuration File"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-layer"></a>1.2.5. Layer Configuration File</h3></div></div></div><p>
                You can find this file in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/conf/layer.conf
                </pre><p>
            </p><p>
                The <code class="filename">conf/layer.conf</code> file identifies the file structure as a  
                layer, identifies the  
                contents of the layer, and contains information about how the build
                system should use it. 
                Generally, a standard boilerplate file such as the following works.
                In the following example, you would replace "<code class="filename">bsp</code>" and 
                "<code class="filename">_bsp</code>" with the actual name
                of the BSP (i.e. <code class="filename">&lt;bsp_name&gt;</code> from the example template).
            </p><p>
               </p><pre class="literallayout">
     # We have a conf and classes directory, add to BBPATH
     BBPATH := "${BBPATH}:${LAYERDIR}"

     # We have a recipes directory, add to BBFILES
     BBFILES := "${BBFILES} ${LAYERDIR}/recipes-*/*.bb \
                 ${LAYERDIR}/recipes-*/*.bbappend"

     BBFILE_COLLECTIONS += "bsp"
     BBFILE_PATTERN_bsp := "^${LAYERDIR}/"
     BBFILE_PRIORITY_bsp = "6"
                </pre><p>
            </p><p>
                To illustrate the string substitutions, here are the last three statements from the Crown 
                Bay <code class="filename">conf/layer.conf</code> file:
               </p><pre class="literallayout">
     BBFILE_COLLECTIONS += "crownbay"
     BBFILE_PATTERN_crownbay := "^${LAYERDIR}/"
     BBFILE_PRIORITY_crownbay = "6"
                </pre><p>
            </p><p>
                This file simply makes BitBake aware of the recipes and configuration directories.
                The file must exist so that the OpenEmbedded build system can recognize the BSP.
            </p></div><div class="section" title="1.2.6. Hardware Configuration Options"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-machine"></a>1.2.6. Hardware Configuration Options</h3></div></div></div><p>
                You can find these files in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/conf/machine/*.conf
                </pre><p>
            </p><p>
                The machine files bind together all the information contained elsewhere
                in the BSP into a format that the build system can understand. 
                If the BSP supports multiple machines, multiple machine configuration files
                can be present. 
                These filenames correspond to the values to which users have set the 
                <a class="link" href="#var-MACHINE" target="_top"><code class="filename">MACHINE</code></a> variable.
            </p><p>
                These files define things such as the kernel package to use
                (<a class="link" href="#var-PREFERRED_PROVIDER" target="_top"><code class="filename">PREFERRED_PROVIDER</code></a>
                of virtual/kernel), the hardware drivers to
                include in different types of images, any special software components
                that are needed, any bootloader information, and also any special image
                format requirements.
            </p><p>
                Each BSP Layer requires at least one machine file.
                However, you can supply more than one file.
                For example, in the Crown Bay BSP shown earlier in this section, the 
                <code class="filename">conf/machine</code> directory contains two configuration files:
                <code class="filename">crownbay.conf</code> and <code class="filename">crownbay-noemgd.conf</code>.
                The <code class="filename">crownbay.conf</code> file is used for the Crown Bay BSP
                that supports the <span class="trademark">Intel</span>® Embedded
                Media and Graphics Driver (<span class="trademark">Intel</span>®
                EMGD), while the <code class="filename">crownbay-noemgd.conf</code> file is used for the 
                Crown Bay BSP that does not support the <span class="trademark">Intel</span>®
                EMGD.
            </p><p>
                This <code class="filename">crownbay.conf</code> file could also include
                a hardware "tuning" file that is commonly used to
                define the package architecture and specify 
                optimization flags, which are carefully chosen to give best
                performance on a given processor.
            </p><p>
                Tuning files are found in the <code class="filename">meta/conf/machine/include</code>
                directory within the 
                <a class="link" href="#source-directory" target="_top">source directory</a>.
                Tuning files can also reside in the BSP Layer itself.  
                For example, the <code class="filename">ia32-base.inc</code> file resides in the 
                <code class="filename">meta-intel</code> BSP Layer in <code class="filename">conf/machine/include</code>.
            </p><p>
                To use an include file, you simply include them in the machine configuration file. 
                For example, the Crown Bay BSP <code class="filename">crownbay.conf</code> has the 
                following statements:
                </p><pre class="literallayout">
     include conf/machine/include/tune-atom.inc
     include conf/machine/include/ia32-base.inc
                </pre><p>
            </p></div><div class="section" title="1.2.7. Miscellaneous Recipe Files"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-misc-recipes"></a>1.2.7. Miscellaneous Recipe Files</h3></div></div></div><p>
                You can find these files in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/recipes-bsp/*
                </pre><p> 
            </p><p>
                This optional directory contains miscellaneous recipe files for the BSP.
                Most notably would be the formfactor files.
                For example, in the Crown Bay BSP there is the 
                <code class="filename">formfactor_0.0.bbappend</code> file, which is an append file used 
                to augment the recipe that starts the build.  
                Furthermore, there are machine-specific settings used during the build that are
                defined by the <code class="filename">machconfig</code> files.
                In the Crown Bay example, two <code class="filename">machconfig</code> files exist:
                one that supports the 
                <span class="trademark">Intel</span>® Embedded
                Media and Graphics Driver (<span class="trademark">Intel</span>®
                EMGD) and one that does not:
                </p><pre class="literallayout">
     meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/machconfig
     meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/machconfig
     meta-crownbay/recipes-bsp/formfactor/formfactor_0.0.bbappend
                </pre><p>
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
                If a BSP does not have a formfactor entry, defaults are established according to
                the formfactor configuration file that is installed by the main 
                formfactor recipe 
                <code class="filename">meta/recipes-bsp/formfactor/formfactor_0.0.bb</code>, 
                which is found in the 
                <a class="link" href="#source-directory" target="_top">source directory</a>.
            </p></div></div><div class="section" title="1.2.8. Core Recipe Files"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-core-recipes"></a>1.2.8. Core Recipe Files</h3></div></div></div><p>
                You can find these files in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/recipes-core/*
                </pre><p> 
            </p><p>
                This directory contains recipe files that are almost always necessary to build a 
                useful, working Linux image.
                Thus, the term "core" is used to group these recipes.
                For example, in the Crown Bay BSP there is the 
                <code class="filename">task-core-tools-profile.bbappend</code> file, which is an append file used 
                to recommend that the 
                <a class="ulink" href="http://sourceware.org/systemtap/wiki" target="_top">SystemTap</a>
                package be included as a package when the image is built.
            </p></div><div class="section" title="1.2.9. Display Support Files"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-recipes-graphics"></a>1.2.9. Display Support Files</h3></div></div></div><p>
                You can find these files in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/recipes-graphics/*            
                </pre><p>
            </p><p>
                This optional directory contains recipes for the BSP if it has 
                special requirements for graphics support.
                All files that are needed for the BSP to support a display are kept here. 
                For example, the Crown Bay BSP contains two versions of the 
                <code class="filename">xorg.conf</code> file.
                The version in <code class="filename">crownbay</code> builds a BSP that supports the 
                <span class="trademark">Intel</span>® Embedded Media Graphics Driver (EMGD),
                while the version in <code class="filename">crownbay-noemgd</code> builds 
                a BSP that supports Video Electronics Standards Association (VESA) graphics only:
                </p><pre class="literallayout">
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config_0.1.bbappend
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/xorg.conf
     meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd/xorg.conf
                </pre><p>
            </p></div><div class="section" title="1.2.10. Linux Kernel Configuration"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-filelayout-kernel"></a>1.2.10. Linux Kernel Configuration</h3></div></div></div><p>
                You can find these files in the BSP Layer at:
                </p><pre class="literallayout">
     meta-&lt;bsp_name&gt;/recipes-kernel/linux/linux-yocto_*.bbappend
                </pre><p>
            </p><p>
                These files append your specific changes to the main kernel recipe you are using.
            </p><p>
                For your BSP, you typically want to use an existing Yocto Project kernel recipe found in the 
                <a class="link" href="#source-directory" target="_top">source directory</a> 
                at <code class="filename">meta/recipes-kernel/linux</code>.
                You can append your specific changes to the kernel recipe by using a
                similarly named append file, which is located in the BSP Layer (e.g. 
                the <code class="filename">meta-&lt;bsp_name&gt;/recipes-kernel/linux</code> directory).
            </p><p>
                Suppose you are using the <code class="filename">linux-yocto_3.4.bb</code> recipe to build
                the kernel.
                In other words, you have selected the kernel in your 
                <code class="filename">&lt;bsp_name&gt;.conf</code> file by adding the following statements:
                </p><pre class="literallayout">
     PREFERRED_PROVIDER_virtual/kernel ?= "linux-yocto"
     PREFERRED_VERSION_linux-yocto = "3.4%"
                </pre><p>
                You would use the <code class="filename">linux-yocto_3.4.bbappend</code> file to append 
                specific BSP settings to the kernel, thus configuring the kernel for your particular BSP.
            </p><p>
                As an example, look at the existing Crown Bay BSP.
                The append file used is:
                </p><pre class="literallayout">
     meta-crownbay/recipes-kernel/linux/linux-yocto_3.4.bbappend
                </pre><p>
                The following listing shows the file.
                Be aware that the actual commit ID strings in this example listing might be different
                than the actual strings in the file from the <code class="filename">meta-intel</code>
                Git source repository.
                </p><pre class="literallayout">
     FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

     COMPATIBLE_MACHINE_crownbay = "crownbay"
     KMACHINE_crownbay  = "crownbay"
     KBRANCH_crownbay  = "standard/default/crownbay"

     COMPATIBLE_MACHINE_crownbay-noemgd = "crownbay-noemgd"
     KMACHINE_crownbay-noemgd  = "crownbay"
     KBRANCH_crownbay-noemgd  = "standard/default/crownbay"

     SRCREV_machine_pn-linux-yocto_crownbay ?= "48101e609711fcfe8d5e737a37a5a69f4bd57d9a"
     SRCREV_meta_pn-linux-yocto_crownbay ?= "5b4c9dc78b5ae607173cc3ddab9bce1b5f78129b"

     SRCREV_machine_pn-linux-yocto_crownbay-noemgd ?= "48101e609711fcfe8d5e737a37a5a69f4bd57d9a"
     SRCREV_meta_pn-linux-yocto_crownbay-noemgd ?= "5b4c9dc78b5ae607173cc3ddab9bce1b5f78129b"
                </pre><p>
                This append file contains statements used to support the Crown Bay BSP for both 
                <span class="trademark">Intel</span>® EMGD and the VESA graphics.
                The build process, in this case, recognizes and uses only the statements that 
                apply to the defined machine name - <code class="filename">crownbay</code> in this case.
                So, the applicable statements in the <code class="filename">linux-yocto_3.4.bbappend</code> 
                file are follows:
                </p><pre class="literallayout">
     FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

     COMPATIBLE_MACHINE_crownbay = "crownbay"
     KMACHINE_crownbay  = "crownbay"
     KBRANCH_crownbay  = "standard/default/crownbay"

     SRCREV_machine_pn-linux-yocto_crownbay ?= "48101e609711fcfe8d5e737a37a5a69f4bd57d9a"
     SRCREV_meta_pn-linux-yocto_crownbay ?= "5b4c9dc78b5ae607173cc3ddab9bce1b5f78129b"
                </pre><p>
                The append file defines <code class="filename">crownbay</code> as the 
                <a class="link" href="#var-COMPATIBLE_MACHINE" target="_top"><code class="filename">COMPATIBLE_MACHINE</code></a>
                and uses the 
                <a class="link" href="#var-KMACHINE" target="_top"><code class="filename">KMACHINE</code></a> variable to 
                ensure the machine name used by the OpenEmbedded build system maps to the  
                machine name used by the Linux Yocto kernel.
                The file also uses the optional 
                <a class="link" href="#var-KBRANCH" target="_top"><code class="filename">KBRANCH</code></a> variable
                to ensure the build process uses the <code class="filename">standard/default/crownbay</code>
                kernel branch.
                Finally, the append file points to the specific top commits in the 
                <a class="link" href="#source-directory" target="_top">source directory</a> Git 
                repository and the <code class="filename">meta</code> Git repository branches to identify the 
                exact kernel needed to build the Crown Bay BSP.
            </p><p>
                One thing missing in this particular BSP, which you will typically need when 
                developing a BSP, is the kernel configuration file (<code class="filename">.config</code>) for your BSP.
                When developing a BSP, you probably have a kernel configuration file or a set of kernel
                configuration files that, when taken together, define the kernel configuration for your BSP.
                You can accomplish this definition by putting the configurations in a file or a set of files 
                inside a directory located at the same level as your kernel's append file and having the same 
                name as the kernel's main recipe file.
                With all these conditions met, simply reference those files in a 
                <code class="filename">SRC_URI</code> statement in the append file.
            </p><p>
                For example, suppose you had a some configuration options in a file called 
                <code class="filename">network_configs.cfg</code>.  
                You can place that file inside a directory named <code class="filename">/linux-yocto</code> and then add 
                a <code class="filename">SRC_URI</code> statement such as the following to the append file.
                When the OpenEmbedded build system builds the kernel, the configuration options are 
                picked up and applied.
                </p><pre class="literallayout">
     SRC_URI += "file://network_configs.cfg"
                </pre><p>
            </p><p>
                To group related configurations into multiple files, you perform a similar procedure. 
                Here is an example that groups separate configurations specifically for Ethernet and graphics
                into their own files and adds the configurations
                by using a <code class="filename">SRC_URI</code> statement like the following in your append file:
                </p><pre class="literallayout">
     SRC_URI += "file://myconfig.cfg \
            file://eth.cfg \
            file://gfx.cfg"
                </pre><p>
            </p><p>
                The <code class="filename">FILESEXTRAPATHS</code> variable is in boilerplate form in the 
                previous example in order to make it easy to do that.
                This variable must be in your layer or BitBake will not find the patches or 
                configurations even if you have them in your <code class="filename">SRC_URI</code>.
                The <code class="filename">FILESEXTRAPATHS</code> variable enables the build process to
                find those configuration files.
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
                    Other methods exist to accomplish grouping and defining configuration options.
                    For example, if you are working with a local clone of the kernel repository, 
                    you could checkout the kernel's <code class="filename">meta</code> branch, make your changes, 
                    and then push the changes to the local bare clone of the kernel.
                    The result is that you directly add configuration options to the  
                    <code class="filename">meta</code> branch for your BSP.
                    The configuration options will likely end up in that location anyway if the BSP gets 
                    added to the Yocto Project. 
                    For an example showing how to change the BSP configuration, see the
                    "<a class="link" href="#changing-the-bsp-configuration" target="_top">Changing the BSP Configuration</a>" 
                    section in the Yocto Project Development Manual.
                    For a better understanding of working with a local clone of the kernel repository
                    and a local bare clone of the kernel, see the
                    "<a class="link" href="#modifying-the-kernel-source-code" target="_top">Modifying the Kernel
                    Source Code</a>" section also in the Yocto Project Development Manual.
                </p><p>
                    In general, however, the Yocto Project maintainers take care of moving the 
                    <code class="filename">SRC_URI</code>-specified 
                    configuration options to the kernel's <code class="filename">meta</code> branch.
                    Not only is it easier for BSP developers to not have to worry about putting those 
                   configurations in the branch, but having the maintainers do it allows them to apply 
                    'global' knowledge about the kinds of common configuration options multiple BSPs in 
                    the tree are typically using.  
                    This allows for promotion of common configurations into common features.
                </p></div></div></div><div class="section" title="1.3. Requirements and Recommendations for Released BSPs"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="requirements-and-recommendations-for-released-bsps"></a>1.3. Requirements and Recommendations for Released BSPs</h2></div></div></div><p>
                Certain requirements exist for a released BSP to be considered
                compliant with the Yocto Project.
                Additionally, a single recommendation also exists. 
                This section describes the requirements and recommendation for
                released BSPs.
            </p><div class="section" title="1.3.1. Released BSP Requirements"><div class="titlepage"><div><div><h3 class="title"><a id="released-bsp-requirements"></a>1.3.1. Released BSP Requirements</h3></div></div></div><p>
                    Before looking at BSP requirements, you should consider the following:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The requirements here assume the BSP layer is a well-formed, "legal"
                            layer that can be added to the Yocto Project.
                            For guidelines on creating a layer that meets these base requirements, see the
                            "<a class="link" href="#bsp-layers" title="1.1. BSP Layers">BSP Layers</a>" and the 
                            "<a class="link" href="#understanding-and-creating-layers" target="_top">Understanding
                            and Creating Layers"</a> in the Yocto Project Development Manual.</p></li><li class="listitem"><p>The requirements in this section apply regardless of how you 
                            ultimately package a BSP.
                            You should consult the packaging and distribution guidelines for your
                            specific release process. 
                            For an example of packaging and distribution requirements, see the 
                            <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Third_Party_BSP_Release_Process" target="_top">Third 
                            Party BSP Release Process</a> wiki page.</p></li><li class="listitem"><p>The requirements for the BSP as it is made available to a developer
                            are completely independent of the released form of the BSP. 
                            For example, the BSP metadata can be contained within a Git repository
                            and could have a directory structure completely different from what appears
                            in the officially released BSP layer.</p></li><li class="listitem"><p>It is not required that specific packages or package 
                            modifications exist in the BSP layer, beyond the requirements for general 
                            compliance with the Yocto Project.
                            For example, no requirement exists dictating that a specific kernel or 
                            kernel version be used in a given BSP.</p></li></ul></div><p>
                </p><p>
                    Following are the requirements for a released BSP that conforms to the 
                    Yocto Project:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Layer Name:</em></span>
                            The BSP must have a layer name that follows the Yocto
                            Project standards.  
                            For information on BSP layer names, see the
                            "<a class="link" href="#bsp-layers" title="1.1. BSP Layers">BSP Layers</a>" section.
                            </p></li><li class="listitem"><p><span class="emphasis"><em>File System Layout:</em></span>
                            When possible, use the same directory names in your 
                            BSP layer as listed in the <code class="filename">recipes.txt</code> file.
                            In particular, you should place recipes 
                            (<code class="filename">.bb</code> files) and recipe
                            modifications (<code class="filename">.bbappend</code> files) into  
                            <code class="filename">recipes-*</code> subdirectories by functional area 
                            as outlined in <code class="filename">recipes.txt</code>.
                            If you cannot find a category in <code class="filename">recipes.txt</code>
                            to fit a particular recipe, you can make up your own 
                            <code class="filename">recipe-*</code> subdirectory.
                            You can find <code class="filename">recipes.txt</code> in the
                            <code class="filename">meta</code> directory of the 
                            <a class="link" href="#source-directory" target="_top">source directory</a>, 
                            or in the OpenEmbedded Core Layer
                            (<code class="filename">openembedded-core</code>) found at 
                            <a class="ulink" href="http://git.openembedded.org/openembedded-core/tree/meta" target="_top">http://git.openembedded.org/openembedded-core/tree/meta</a>.
                            </p><p>Within any particular <code class="filename">recipes-*</code> category, the layout
                            should match what is found in the OpenEmbedded Core
                            Git repository (<code class="filename">openembedded-core</code>)
                            or the source directory (<code class="filename">poky</code>).
                            In other words, make sure you place related files in appropriately
                            related <code class="filename">recipes-*</code> subdirectories specific to the
                            recipe's function, or within a subdirectory containing a set of closely-related
                            recipes.  
                            The recipes themselves should follow the general guidelines
                            for recipes used in the Yocto Project found in the 
                            <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Recipe_%26_Patch_Style_Guide" target="_top">Yocto
                            Recipe and Patch Style Guide</a>.</p></li><li class="listitem"><p><span class="emphasis"><em>License File:</em></span>
                            You must include a license file in the 
                            <code class="filename">meta-&lt;bsp_name&gt;</code> directory.
                            This license covers the BSP metadata as a whole.
                            You must specify which license to use since there is no 
                            default license if one is not specified.
                            See the 
                            <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fishriver/COPYING.MIT" target="_top"><code class="filename">COPYING.MIT</code></a>
                            file for the Fish River BSP in the <code class="filename">meta-fishriver</code> BSP layer 
                            as an example.</p></li><li class="listitem"><p><span class="emphasis"><em>README File:</em></span>
                            You must include a <code class="filename">README</code> file in the 
                            <code class="filename">meta-&lt;bsp_name&gt;</code> directory.
                            See the 
                            <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fishriver/README" target="_top"><code class="filename">README</code></a>
                            file for the Fish River BSP in the <code class="filename">meta-fishriver</code> BSP layer 
                            as an example.</p><p>At a minimum, the <code class="filename">README</code> file should 
                            contain the following:
                            </p><div class="itemizedlist"><ul class="itemizedlist" type="circle"><li class="listitem"><p>A brief description about the hardware the BSP 
                                    targets.</p></li><li class="listitem"><p>A list of all the dependencies a 
                                    on which a BSP layer depends.
                                    These dependencies are typically a list of required layers needed 
                                    to build the BSP.
                                    However, the dependencies should also contain information regarding 
                                    any other dependencies the BSP might have.</p></li><li class="listitem"><p>Any required special licensing information.
                                    For example, this information includes information on 
                                    special variables needed to satisfy a EULA,
                                    or instructions on information needed to build or distribute
                                    binaries built from the BSP metadata.</p></li><li class="listitem"><p>The name and contact information for the 
                                    BSP layer maintainer.
                                    This is the person to whom patches and questions should
                                    be sent.</p></li><li class="listitem"><p>Instructions on how to build the BSP using the BSP 
                                    layer.</p></li><li class="listitem"><p>Instructions on how to boot the BSP build from 
                                    the BSP layer.</p></li><li class="listitem"><p>Instructions on how to boot the binary images 
                                    contained in the <code class="filename">/binary</code> directory, 
                                    if present.</p></li><li class="listitem"><p>Information on any known bugs or issues that users 
                                    should know about when either building or booting the BSP 
                                    binaries.</p></li></ul></div></li><li class="listitem"><p><span class="emphasis"><em>README.sources File:</em></span>
                            You must include a <code class="filename">README.sources</code> in the 
                            <code class="filename">meta-&lt;bsp_name&gt;</code> directory.
                            This file specifies exactly where you can find the sources used to 
                            generate the binary images contained in the 
                            <code class="filename">/binary</code> directory, if present.
                            See the 
                            <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fishriver/README.sources" target="_top"><code class="filename">README.sources</code></a>
                            file for the Fish River BSP in the <code class="filename">meta-fishriver</code> BSP layer 
                            as an example.</p></li><li class="listitem"><p><span class="emphasis"><em>Layer Configuration File:</em></span>
                            You must include a <code class="filename">conf/layer.conf</code> in the
                            <code class="filename">meta-&lt;bsp_name&gt;</code> directory.
                            This file identifies the <code class="filename">meta-&lt;bsp_name&gt;</code>
                            BSP layer as a layer to the build system.</p></li><li class="listitem"><p><span class="emphasis"><em>Machine Configuration File:</em></span>
                            You must include a <code class="filename">conf/machine/&lt;bsp_name&gt;.conf</code>
                            in the <code class="filename">meta-&lt;bsp_name&gt;</code> directory.
                            This configuration file defines a machine target that can be built
                            using the BSP layer.
                            Multiple machine configuration files define variations of machine 
                            configurations that are supported by the BSP.
                            If a BSP supports more multiple machine variations, you need to 
                            adequately describe each variation in the BSP 
                            <code class="filename">README</code> file.
                            Do not use multiple machine configuration files to describe disparate
                            hardware. 
                            Multiple machine configuration files should describe very similar targets.
                            If you do have very different targets, you should create a separate
                            BSP.
                            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>It is completely possible for a developer to structure the 
                            working repository as a conglomeration of unrelated BSP
                            files, and to possibly generate specifically targeted 'release' BSPs 
                            from that directory using scripts or some other mechanism.  
                            Such considerations are outside the scope of this document.</div><p>
                            </p></li></ul></div><p>
                </p></div><div class="section" title="1.3.2. Released BSP Recommendations"><div class="titlepage"><div><div><h3 class="title"><a id="released-bsp-recommendations"></a>1.3.2. Released BSP Recommendations</h3></div></div></div><p>
                    Following are recommendations for a released BSP that conforms to the 
                    Yocto Project:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Bootable Images:</em></span>
                            BSP releases 
                            can contain one or more bootable images.
                            Including bootable images allows users to easily try out the BSP
                            on their own hardware.</p><p>In some cases, it might not be convenient to include a 
                            bootable image. 
                            In this case, you might want to make two versions of the 
                            BSP available: one that contains binary images, and one
                            that does not.
                            The version that does not contain bootable images avoids 
                            unnecessary download times for users not interested in the images.
                            </p><p>If you need to distribute a BSP and include bootable images or build kernel and
                            filesystems meant to allow users to boot the BSP for evaluation
                            purposes, you should put the images and artifacts within a 
                            <code class="filename">binary/</code> subdirectory located in the 
                            <code class="filename">meta-&lt;bsp_name&gt;</code> directory.
                            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>If you do include a bootable image as part of the BSP and the image
                            was built by software covered by the GPL or other open source licenses,
                            it is your responsibility to understand
                            and meet all licensing requirements, which could include distribution
                            of source files.</div></li><li class="listitem"><p><span class="emphasis"><em>Use a Yocto Linux Kernel:</em></span>
                            Kernel recipes in the BSP should be based on a Yocto Linux kernel. 
                            Basing your recipes on these kernels reduces the costs for maintaining 
                            the BSP and increases its scalability.
                            See the <code class="filename">Yocto Linux Kernel</code> category in the 
                            <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top"><code class="filename">Yocto Source Repositories</code></a>
                            for these kernels.</p></li></ul></div><p>
                </p></div></div><div class="section" title="1.4. Customizing a Recipe for a BSP"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="customizing-a-recipe-for-a-bsp"></a>1.4. Customizing a Recipe for a BSP</h2></div></div></div><p>
               If you plan on customizing a recipe for a particular BSP, you need to do the
               following:
               </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Include within the BSP layer a <code class="filename">.bbappend</code>
                       file for the modified recipe.</p></li><li class="listitem"><p>Place the BSP-specific file in the BSP's recipe
                       <code class="filename">.bbappend</code> file path under a directory named
                       after the machine.</p></li></ul></div><p>
           </p><p>
               To better understand this, consider an example that customizes a recipe by adding 
               a BSP-specific configuration file named <code class="filename">interfaces</code> to the 
               <code class="filename">netbase_4.47.bb</code> recipe for machine "xyz".
               Do the following:
               </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Edit the <code class="filename">netbase_4.47.bbappend</code> file so that it 
                       contains the following:
                       </p><pre class="literallayout">
     FILESEXTRAPATHS_prepend := "${THISDIR}/files:"
     PRINC := "${@int(PRINC) + 2}"
                       </pre></li><li class="listitem"><p>Create and place the new <code class="filename">interfaces</code> 
                       configuration file in the BSP's layer here:
                       </p><pre class="literallayout">
     meta-xyz/recipes-core/netbase/files/xyz/interfaces
                       </pre></li></ol></div><p>
            </p></div><div class="section" title="1.5. BSP Licensing Considerations"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="bsp-licensing-considerations"></a>1.5. BSP Licensing Considerations</h2></div></div></div><p>
                In some cases, a BSP contains separately licensed Intellectual Property (IP)
                for a component or components.
                For these cases, you are required to accept the terms of a commercial or other 
                type of license that requires some kind of explicit End User License Agreement (EULA).  
                Once the license is accepted, the OpenEmbedded build system can then build and 
                include the corresponding component in the final BSP image.
                If the BSP is available as a pre-built image, you can download the image after
                agreeing to the license or EULA.
            </p><p>
                You could find that some separately licensed components that are essential 
                for normal operation of the system might not have an unencumbered (or free)
                substitute.
                Without these essential components, the system would be non-functional.
                Then again, you might find that other licensed components that are simply 
                'good-to-have' or purely elective do have an unencumbered, free replacement 
                component that you can use rather than agreeing to the separately licensed component.
                Even for components essential to the system, you might find an unencumbered component 
                that is not identical but will work as a less-capable version of the 
                licensed version in the BSP recipe.
            </p><p>
                For cases where you can substitute a free component and still
                maintain the system's functionality, the Yocto Project website's
                <a class="ulink" href="http://www.yoctoproject.org/download/all?keys=&amp;download_type=1&amp;download_version=" target="_top">BSP
                Download Page</a> makes available de-featured BSPs
                that are completely free of any IP encumbrances. 
                For these cases, you can use the substitution directly and
                without any further licensing requirements.  
                If present, these fully de-featured BSPs are named appropriately
                different as compared to the names of the respective
                encumbered BSPs.  
                If available, these substitutions are your
                simplest and most preferred options.  
                Use of these substitutions of course assumes the resulting functionality meets
                system requirements.
            </p><p>
                If however, a non-encumbered version is unavailable or
                it provides unsuitable functionality or quality, you can use an encumbered
                version.
            </p><p> 
                A couple different methods exist within the OpenEmbedded build system to 
                satisfy the licensing requirements for an encumbered BSP.  
                The following list describes them in order of preference:
	        </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Use the <code class="filename">LICENSE_FLAGS</code> variable
                        to define the recipes that have commercial or other types of
                        specially-licensed packages:</em></span>  
                        For each of those recipes, you can 
                        specify a matching license string in a
                        <code class="filename">local.conf</code> variable named 
                        <code class="filename">LICENSE_FLAGS_WHITELIST</code>.
                        Specifying the matching license string signifies that you agree to the license.
                        Thus, the build system can build the corresponding recipe and include 
                        the component in the image.
                        See the 
                        "<a class="link" href="#enabling-commercially-licensed-recipes" target="_top">Enabling 
                        Commercially Licensed Recipes</a>" section in the Yocto Project Reference
                        Manual for details on how to use these variables.</p><p>If you build as you normally would, without
		        specifying any recipes in the
		        <code class="filename">LICENSE_FLAGS_WHITELIST</code>, the build stops and
		        provides you with the list of recipes that you have
		        tried to include in the image that need entries in
		        the <code class="filename">LICENSE_FLAGS_WHITELIST</code>.  
		        Once you enter the appropriate license flags into the whitelist,
		        restart the build to continue where it left off.
		        During the build, the prompt will not appear again
		        since you have satisfied the requirement.</p><p>Once the appropriate license flags are on the white list
		        in the <code class="filename">LICENSE_FLAGS_WHITELIST</code> variable, you 
		        can build the encumbered image with no change at all
		        to the normal build process.</p></li><li class="listitem"><p><span class="emphasis"><em>Get a pre-built version of the BSP:</em></span>
                        You can get this type of BSP by visiting the Yocto Project website's
                        <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">Download</a>
                        page and clicking on "BSP Downloads".
                        You can download BSP tarballs that contain proprietary components
                        after agreeing to the licensing
                        requirements of each of the individually encumbered
                        packages as part of the download process.  
                        Obtaining the BSP this way allows you to access an encumbered
                        image immediately after agreeing to the
                        click-through license agreements presented by the
                        website.  
                        Note that if you want to build the image
                        yourself using the recipes contained within the BSP
                        tarball, you will still need to create an
                        appropriate <code class="filename">LICENSE_FLAGS_WHITELIST</code> to match the
                        encumbered recipes in the BSP.</p></li></ol></div><p>
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                Pre-compiled images are bundled with
                a time-limited kernel that runs for a
                predetermined amount of time (10 days) before it forces
                the system to reboot.  
                This limitation is meant to discourage direct redistribution
                of the image.
                You must eventually rebuild the image if you want to remove this restriction.
            </div></div><div class="section" title="1.6. Using the Yocto Project's BSP Tools"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="using-the-yocto-projects-bsp-tools"></a>1.6. Using the Yocto Project's BSP Tools</h2></div></div></div><p>
                The Yocto Project includes a couple of tools that enable
                you to create a <a class="link" href="#bsp-layers" title="1.1. BSP Layers">BSP layer</a> 
                from scratch and do basic configuration and maintenance 
                of the kernel without ever looking at a metadata file.
                These tools are <code class="filename">yocto-bsp</code> and <code class="filename">yocto-kernel</code>,
                respectively. 
	    </p><p>
                The following sections describe the common location and help features as well 
                as details for the <code class="filename">yocto-bsp</code> and <code class="filename">yocto-kernel</code> 
                tools.
            </p><div class="section" title="1.6.1. Common Features"><div class="titlepage"><div><div><h3 class="title"><a id="common-features"></a>1.6.1. Common Features</h3></div></div></div><p>
                    Designed to have a  command interface somewhat like 
                    <a class="link" href="#git" target="_top">Git</a>, each
                    tool is structured as a set of sub-commands under a
                    top-level command.
                    The top-level command (<code class="filename">yocto-bsp</code>
                    or <code class="filename">yocto-kernel</code>) itself does
                    nothing but invoke or provide help on the sub-commands
                    it supports.
                </p><p>
                    Both tools reside in the <code class="filename">scripts/</code> subdirectory 
                    of the <a class="link" href="#source-directory" target="_top">source directory</a>.
                    Consequently, to use the scripts, you must <code class="filename">source</code> the 
                    environment just as you would when invoking a build:
                    </p><pre class="literallayout">
     $ source oe-init-build-env [build_dir]
                    </pre><p>
                </p><p>
                    The most immediately useful function is to get help on both tools.
                    The built-in help system makes it easy to drill down at
                    any time and view the syntax required for any specific command.
                    Simply enter the name of the command, or the command along with 
                    <code class="filename">help</code> to display a list of the available sub-commands. 
                    Here is an example:
                    </p><pre class="literallayout">
     $ yocto-bsp
     $ yocto-bsp help

     Usage:

     Create a customized Yocto BSP layer.

     usage: yocto-bsp [--version] [--help] COMMAND [ARGS]

     The most commonly used 'yocto-bsp' commands are:
     create            Create a new Yocto BSP
     list              List available values for options and BSP properties

     See 'yocto-bsp help COMMAND' for more information on a specific command.


     Options:
     --version    show program's version number and exit
     -h, --help   show this help message and exit
     -D, --debug  output debug information
                    </pre><p>
                </p><p>
                    Similarly, entering just the name of a sub-command shows the detailed usage 
                    for that sub-command:
                    </p><pre class="literallayout">
     $ yocto-bsp create

     Usage:

     Create a new Yocto BSP
     usage: yocto-bsp create &lt;bsp-name&gt; &lt;karch&gt; [-o &lt;DIRNAME&gt; | --outdir &lt;DIRNAME&gt;]
             [-i &lt;JSON PROPERTY FILE&gt; | --infile &lt;JSON PROPERTY_FILE&gt;]

                 This command creates a Yocto BSP based on the specified parameters.
                 The new BSP will be a new BSP layer contained by default within
                 the top-level directory specified as 'meta-bsp-name'.  The -o option
                 can be used to place the BSP layer in a directory with a different
                 name and location.

                 ...
                    </pre><p>
                </p><p>
                    For any sub-command, you can also use the word 'help' just before the 
                    sub-command to get more extensive documentation:
                    </p><pre class="literallayout">
     $ yocto-bsp help create

     NAME
     yocto-bsp create - Create a new Yocto BSP

     SYNOPSIS
     yocto-bsp create &lt;bsp-name&gt; &lt;karch&gt; [-o &lt;DIRNAME&gt; | --outdir &lt;DIRNAME&gt;]
             [-i &lt;JSON PROPERTY FILE&gt; | --infile &lt;JSON PROPERTY_FILE&gt;]

     DESCRIPTION
     This command creates a Yocto BSP based on the specified
     parameters.  The new BSP will be a new Yocto BSP layer contained
     by default within the top-level directory specified as
     'meta-bsp-name'.  The -o option can be used to place the BSP layer
     in a directory with a different name and location.
			    
     The value of the 'karch' parameter determines the set of files
     that will be generated for the BSP, along with the specific set of
     'properties' that will be used to fill out the BSP-specific
     portions of the BSP.
			    
     ...
			    
     NOTE: Once created, you should add your new layer to your
     bblayers.conf file in order for it to be subsequently seen and
     modified by the yocto-kernel tool.
			    
     NOTE for x86- and x86_64-based BSPs: The generated BSP assumes the
     presence of the of the meta-intel layer, so you should also have a
     meta-intel layer present and added to your bblayers.conf as well.
                    </pre><p>
                </p><p>
                    Now that you know where these two commands reside and how to access information 
                    on them, you should find it relatively straightforward to discover the commands 
                    necessary to create a BSP and perform basic kernel maintenance on that BSP using
                    the tools.
                    The next sections provide a concrete starting point to expand on a few points that 
                    might not be immediately obvious or that could use further explanation.
                </p></div><div class="section" title="1.6.2. Creating a new BSP Layer Using the yocto-bsp Script"><div class="titlepage"><div><div><h3 class="title"><a id="creating-a-new-bsp-layer-using-the-yocto-bsp-script"></a>1.6.2. Creating a new BSP Layer Using the yocto-bsp Script</h3></div></div></div><p>
                    The <code class="filename">yocto-bsp</code> script creates a new 
                    <a class="link" href="#bsp-layers" title="1.1. BSP Layers">BSP layer</a> for any architecture supported 
                    by the Yocto Project, as well as QEMU versions of the same.
                    The default mode of the script's operation is to prompt you for information needed 
                    to generate the BSP layer.
                    For the current set of BSPs, the script prompts you for various important
                    parameters such as:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>which kernel to use</p></li><li class="listitem"><p>which branch of that kernel to use (or re-use)</p></li><li class="listitem"><p>whether or not to use X, and if so, which drivers to use</p></li><li class="listitem"><p>whether to turn on SMP</p></li><li class="listitem"><p>whether the BSP has a keyboard</p></li><li class="listitem"><p>whether the BSP has a touchscreen</p></li><li class="listitem"><p>any remaining configurable items associated with the BSP</p></li></ul></div><p>
                </p><p>
                    You use the <code class="filename">yocto-bsp create</code> sub-command to create 
                    a new BSP layer. 
                    This command requires you to specify a particular architecture on which to 
                    base the BSP.
                    Assuming you have sourced the environment, you can use the 
                    <code class="filename">yocto-bsp list karch</code> sub-command to list the
                    architectures available for BSP creation as follows:
                    </p><pre class="literallayout">
     $ yocto-bsp list karch
     Architectures available:
         arm
         powerpc
         i386
         mips
         x86_64
         qemu
                    </pre><p>
                </p><p>
                    The remainder of this section presents an example that uses  
                    <code class="filename">myarm</code> as the machine name and <code class="filename">qemu</code>
                    as the machine architecture.
                    Of the available architectures, <code class="filename">qemu</code> is the only architecture
                    that causes the script to prompt you further for an actual architecture.
                    In every other way, this architecture is representative of how creating a BSP for
                    a 'real' machine would work.
                    The reason the example uses this architecture is because it is an emulated architecture
                    and can easily be followed without requiring actual hardware.
                </p><p>
                    As the <code class="filename">yocto-bsp create</code> command runs, default values for 
                    the prompts appear in brackets.
                    Pressing enter without supplying anything on the command line or pressing enter
                    and providing an invalid response causes the script to accept the default value.
                </p><p>
                    Following is the complete example:
                    </p><pre class="literallayout">
     $ yocto-bsp create myarm qemu
     Which qemu architecture would you like to use? [default: x86]
             1) common 32-bit x86
             2) common 64-bit x86
             3) common 32-bit ARM
             4) common 32-bit PowerPC
             5) common 32-bit MIPS
     3
     Would you like to use the default (3.2) kernel? (Y/n)
     Do you need a new machine branch for this BSP (the alternative is to re-use an existing branch)? [Y/n]
     Getting branches from remote repo git://git.yoctoproject.org/linux-yocto-3.2...
     Please choose a machine branch to base this BSP on =&gt; [default: standard/default/common-pc]
             1) base
             2) standard/base
             3) standard/default/arm-versatile-926ejs
             4) standard/default/base
             5) standard/default/beagleboard
             6) standard/default/cedartrailbsp (copy).xml
             7) standard/default/common-pc-64/base
             8) standard/default/common-pc-64/jasperforest
             9) standard/default/common-pc-64/romley
             10) standard/default/common-pc-64/sugarbay
             11) standard/default/common-pc/atom-pc
             12) standard/default/common-pc/base
             13) standard/default/crownbay
             14) standard/default/emenlow
             15) standard/default/fishriver
             16) standard/default/fri2
             17) standard/default/fsl-mpc8315e-rdb
             18) standard/default/mti-malta32-be
             19) standard/default/mti-malta32-le
             20) standard/default/preempt-rt
             21) standard/default/qemu-ppc32
             22) standard/default/routerstationpro
             23) standard/preempt-rt/base
             24) standard/preempt-rt/qemu-ppc32
             25) standard/preempt-rt/routerstationpro
             26) standard/tiny
     3
     Do you need SMP support? (Y/n)
     Does your BSP have a touchscreen? (y/N)
     Does your BSP have a keyboard? (Y/n)
     New qemu BSP created in meta-myarm
                    </pre><p>
                    Let's take a closer look at the example now:
                    </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>For the <code class="filename">qemu</code> architecture, 
                            the script first prompts you for which emulated architecture to use.
                            In the example, we use the <code class="filename">arm</code> architecture.
                            </p></li><li class="listitem"><p>The script then prompts you for the kernel.
                            The default kernel is 3.2 and is acceptable.  
                            So, the example accepts the default.
                            If you enter 'n', the script prompts you to further enter the kernel
                            you do want to use (e.g. 3.0, 3.2_preempt-rt, etc.).</p></li><li class="listitem"><p>Next, the script asks whether you would like to have a new 
                            branch created especially for your BSP in the local 
                            <a class="link" href="#local-kernel-files" target="_top">Linux Yocto Kernel</a> 
                            Git repository .
                            If not, then the script re-uses an existing branch.</p><p>In this example, the default (or 'yes') is accepted.
                            Thus, a new branch is created for the BSP rather than using a common, shared
                            branch.
                            The new branch is the branch committed to for any patches you might later add. 
                            The reason a new branch is the default is that typically
                            new BSPs do require BSP-specific patches.
                            The tool thus assumes that most of time a new branch is required.
                            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>In the current implementation, creation or re-use of a branch does 
                            not actually matter.
                            The reason is because the generated BSPs assume that patches and 
                            configurations live in recipe-space, which is something that can be done 
                            with or without a dedicated branch.  
                            Generated BSPs, however, are different.
                            This difference becomes significant once the tool's 'publish' functionality 
                            is implemented.</div></li><li class="listitem"><p>Regardless of which choice is made in the previous step, 
                            you are now given the opportunity to select a particular machine branch on
                            which to base your new BSP-specific machine branch on 
                            (or to re-use if you had elected to not create a new branch).  
                            Because this example is generating an <code class="filename">arm</code> BSP, the example 
                            uses <code class="filename">#3</code> at the prompt, which selects the arm-versatile branch.
                            </p></li><li class="listitem"><p>The remainder of the prompts are routine. 
                            Defaults are accepted for each.</p></li><li class="listitem"><p>By default, the script creates the new BSP Layer in the 
                            <a class="link" href="#build-directory" target="_top">build directory</a>.
                            </p></li></ol></div><p> 
                </p><p>
                    Once the BSP Layer is created, you must add it to your 
                    <code class="filename">bblayers.conf</code> file.
                    Here is an example:
                    </p><pre class="literallayout">
     BBLAYERS = " \
        /usr/local/src/yocto/meta \
        /usr/local/src/yocto/meta-yocto \
        /usr/local/src/yocto/meta-myarm \
        "
                    </pre><p> 
                    Adding the layer to this file allows the build system to build the BSP and 
                    the <code class="filename">yocto-kernel</code> tool to be able to find the layer and 
                    other metadata it needs on which to operate.
                </p></div><div class="section" title="1.6.3. Managing Kernel Patches and Config Items with yocto-kernel"><div class="titlepage"><div><div><h3 class="title"><a id="managing-kernel-patches-and-config-items-with-yocto-kernel"></a>1.6.3. Managing Kernel Patches and Config Items with yocto-kernel</h3></div></div></div><p>
                    Assuming you have created a <a class="link" href="#bsp-layers" title="1.1. BSP Layers">BSP Layer</a> using
                    <a class="link" href="#creating-a-new-bsp-layer-using-the-yocto-bsp-script" title="1.6.2. Creating a new BSP Layer Using the yocto-bsp Script">
                    <code class="filename">yocto-bsp</code></a> and you added it to your
                    <a class="link" href="#var-BBLAYERS" target="_top"><code class="filename">BBLAYERS</code></a>
                    variable in the <code class="filename">bblayers.conf</code> file, you can now use
                    the <code class="filename">yocto-kernel</code> script to add patches and configuration
                    items to the BSP's kernel.
                </p><p>
                    The <code class="filename">yocto-kernel</code> script allows you to add, remove, and list patches
                    and kernel config settings to a BSP's kernel 
                    <code class="filename">.bbappend</code> file.
                    All you need to do is use the appropriate sub-command.
                    Recall that the easiest way to see exactly what sub-commands are available
                    is to use the <code class="filename">yocto-kernel</code> built-in help as follows:
                    </p><pre class="literallayout">
     $ yocto-kernel
     Usage:

     Modify and list Yocto BSP kernel config items and patches.

     usage: yocto-kernel [--version] [--help] COMMAND [ARGS]

     The most commonly used 'yocto-kernel' commands are:
     config list       List the modifiable set of bare kernel config options for a BSP
     config add        Add or modify bare kernel config options for a BSP 
     config rm         Remove bare kernel config options from a BSP
     patch list        List the patches associated with a BSP
     patch add         Patch the Yocto kernel for a BSP
     patch rm          Remove patches from a BSP

     See 'yocto-kernel help COMMAND' for more information on a specific command.
                    </pre><p>
                </p><p>
                    The <code class="filename">yocto-kernel patch add</code> sub-command allows you to add a 
                    patch to a BSP.  
                    The following example adds two patches to the <code class="filename">myarm</code> BSP:
                    </p><pre class="literallayout">
     $ yocto-kernel patch add myarm ~/test.patch
     Added patches:
             test.patch

     $ yocto-kernel patch add myarm ~/yocto-testmod.patch
     Added patches:
             yocto-testmod.patch
                    </pre><p>
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>Although the previous example adds patches one at a time, it is possible
                    to add multiple patches at the same time.</div><p>
                </p><p>
                    You can verify patches have been added by using the 
                    <code class="filename">yocto-kernel patch list</code> sub-command.
                    Here is an example:
                    </p><pre class="literallayout">
     $ yocto-kernel patch list myarm
     The current set of machine-specific patches for myarm is:
             1) test.patch
             2) yocto-testmod.patch
                    </pre><p>
                </p><p>
                    You can also use the <code class="filename">yocto-kernel</code> script to
                    remove a patch using the <code class="filename">yocto-kernel patch rm</code> sub-command.
                    Here is an example:
                    </p><pre class="literallayout">
     $ yocto-kernel patch rm myarm
     Specify the patches to remove:
             1) test.patch
             2) yocto-testmod.patch
     1
     Removed patches:
             test.patch
                    </pre><p>
                </p><p>
                    Again, using the <code class="filename">yocto-kernel patch list</code> sub-command,
                    you can verify that the patch was in fact removed:
                    </p><pre class="literallayout">
     $ yocto-kernel patch list myarm
     The current set of machine-specific patches for myarm is:
             1) yocto-testmod.patch
                    </pre><p>
                </p><p>
                    In a completely similar way, you can use the <code class="filename">yocto-kernel config add</code>
                    sub-command to add one or more kernel config item settings to a BSP.
                    The following commands add a couple of config items to the 
                    <code class="filename">myarm</code> BSP:
                    </p><pre class="literallayout">
     $ yocto-kernel config add myarm CONFIG_MISC_DEVICES=y
     Added items:
             CONFIG_MISC_DEVICES=y

     $ yocto-kernel config add myarm KCONFIG_YOCTO_TESTMOD=y
     Added items:
             CONFIG_YOCTO_TESTMOD=y
                    </pre><p>
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>Although the previous example adds config items one at a time, it is possible
                    to add multiple config items at the same time.</div><p>
                </p><p>
                    You can list the config items now associated with the BSP.
                    Doing so shows you the config items you added as well as others associated
                    with the BSP:
                    </p><pre class="literallayout">
     $ yocto-kernel config list myarm
     The current set of machine-specific kernel config items for myarm is:
             1) CONFIG_MISC_DEVICES=y
             2) CONFIG_YOCTO_TESTMOD=y
                    </pre><p>
                </p><p>
                    Finally, you can remove one or more config items using the 
                    <code class="filename">yocto-kernel config rm</code> sub-command in a manner
                    completely analogous to <code class="filename">yocto-kernel patch rm</code>.
                </p></div></div></div>



</div>

<table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="100%"><tr><td align="left"><img src="figures/kernel-title.png" align="left" width="100%" /></td></tr></table>

    <div xml:lang="en" class="book" lang="en"><div class="titlepage"><div><div><h1 class="title"><a id="kernel-manual"></a></h1></div><div><div class="authorgroup">
            <div class="author"><h3 class="author"><span class="firstname">Bruce</span> <span class="surname">Ashfield</span></h3><div class="affiliation">
                    <span class="orgname">Wind River Corporation<br /></span>
                </div><code class="email">&lt;<a class="email" href="mailto:bruce.ashfield@windriver.com">bruce.ashfield@windriver.com</a>&gt;</code></div>
        </div></div><div><p class="copyright">Copyright © 2010-2012 Linux Foundation</p></div><div><div class="legalnotice" title="Legal Notice"><a id="id1504523"></a>
      <p>
        Permission is granted to copy, distribute and/or modify this document under 
        the terms of the <a class="ulink" href="http://creativecommons.org/licenses/by-sa/2.0/uk/" target="_top">Creative Commons Attribution-Share Alike 2.0 UK: England &amp; Wales</a> as published by Creative Commons.
      </p>
      <div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
          Due to production processes, there could be differences between the Yocto Project
          documentation bundled in the release tarball and the
          Yocto Project Kernel Architecture and Use Manual on
          the <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project</a> website.
          For the latest version of this manual, see the manual on the website.
      </div>
    </div></div><div><div class="revhistory"><table border="1" width="100%" summary="Revision history"><tr><th align="left" valign="top" colspan="2"><b>Revision History</b></th></tr>
            <tr><td align="left">Revision 0.9</td><td align="left">24 November 2010</td></tr><tr><td align="left" colspan="2">The initial document draft released with the Yocto Project 0.9 Release.</td></tr>
            <tr><td align="left">Revision 1.0</td><td align="left">6 April 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.0 Release.</td></tr>
            <tr><td align="left">Revision 1.0.1</td><td align="left">23 May 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.0.1 Release.</td></tr>
            <tr><td align="left">Revision 1.1</td><td align="left">6 October 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.1 Release.</td></tr>
            <tr><td align="left">Revision 1.2</td><td align="left">April 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.2 Release.</td></tr>
            <tr><td align="left">Revision 1.3</td><td align="left">Sometime in 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.3 Release.</td></tr>
        </table></div></div></div><hr /></div>
    

    <div class="chapter" title="Chapter 1. Yocto Project Kernel Architecture and Use Manual"><div class="titlepage"><div><div><h2 class="title"><a id="kernel-doc-intro"></a>Chapter 1. Yocto Project Kernel Architecture and Use Manual</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#kernel-intro-section">1.1. Introduction</a></span></dt></dl></div><div class="section" title="1.1. Introduction"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="kernel-intro-section"></a>1.1. Introduction</h2></div></div></div><p>
        The Yocto Project presents kernels as a fully patched, history-clean Git
        repositories. 
        Each repository represents selected features, board support,
        and configurations extensively tested by the Yocto Project. 
        Yocto Project kernels allow the end user to leverage community
        best practices to seamlessly manage the development, build and debug cycles.
    </p><p>
        This manual describes Yocto Project kernels by providing information
        on history, organization, benefits, and use.
        The manual consists of two sections:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Concepts:</em></span> Describes concepts behind a kernel.
                You will understand how a kernel is organized and why it is organized in 
                the way it is.  You will understand the benefits of a kernel's organization 
                and the mechanisms used to work with the kernel and how to apply it in your 
                design process.</p></li><li class="listitem"><p><span class="emphasis"><em>Using a Kernel:</em></span> Describes best practices 
                and "how-to" information
                that lets you put a kernel to practical use.  
                Some examples are how to examine changes in a branch and how to 
                save kernel modifications.</p></li></ul></div><p>
    </p><p>
        For more information on the Linux kernel, see the following links:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The Linux Foundation's guide for kernel development
                process - <a class="ulink" href="http://ldn.linuxfoundation.org/book/1-a-guide-kernel-development-process" target="_top">http://ldn.linuxfoundation.org/book/1-a-guide-kernel-development-process</a></p></li><li class="listitem"><p>A fairly encompassing guide on Linux kernel development - 
                <a class="ulink" href="http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob_plain;f=Documentation/HOWTO;hb=HEAD" target="_top">http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob_plain;f=Documentation/HOWTO;hb=HEAD</a></p></li></ul></div><p>
    </p><p>
        For more discussion on the Yocto Project kernel, you can see these sections
        in the Yocto Project Development Manual:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>
                "<a class="link" href="#kernel-overview" target="_top">Kernel Overview</a>"</p></li><li class="listitem"><p>
                "<a class="link" href="#kernel-modification-workflow" target="_top">Kernel Modification Workflow</a>"
                </p></li><li class="listitem"><p> 
                "<a class="link" href="#dev-manual-kernel-appendix" target="_top">Kernel Modification Example</a>"</p></li></ul></div><p>
    </p><p> 
        For general information on the Yocto Project, visit the website at
        <a class="ulink" href="http://www.yoctoproject.org" target="_top">http://www.yoctoproject.org</a>.
    </p></div></div>

    <div class="chapter" title="Chapter 2. Yocto Project Kernel Concepts"><div class="titlepage"><div><div><h2 class="title"><a id="kernel-concepts"></a>Chapter 2. Yocto Project Kernel Concepts</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#concepts-org">2.1. Introduction</a></span></dt><dt><span class="section"><a href="#kernel-goals">2.2. Kernel Goals</a></span></dt><dt><span class="section"><a href="#kernel-big-picture">2.3. Yocto Project Kernel Development and Maintenance Overview</a></span></dt><dt><span class="section"><a href="#kernel-architecture">2.4. Kernel Architecture</a></span></dt><dd><dl><dt><span class="section"><a href="#architecture-overview">2.4.1. Overview</a></span></dt><dt><span class="section"><a href="#branching-and-workflow">2.4.2. Branching Strategy and Workflow</a></span></dt><dt><span class="section"><a href="#source-code-manager-git">2.4.3. Source Code Manager - Git</a></span></dt></dl></dd><dt><span class="section"><a href="#kernel-configuration">2.5. Kernel Configuration</a></span></dt><dt><span class="section"><a href="#kernel-tools">2.6. Kernel Tools</a></span></dt></dl></div><div class="section" title="2.1. Introduction"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="concepts-org"></a>2.1. Introduction</h2></div></div></div><p>
        This chapter provides conceptual information about the kernel:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Kernel Goals</p></li><li class="listitem"><p>Kernel Development and Maintenance Overview</p></li><li class="listitem"><p>Kernel Architecture</p></li><li class="listitem"><p>Kernel Tools</p></li></ul></div><p>
    </p></div><div class="section" title="2.2. Kernel Goals"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="kernel-goals"></a>2.2. Kernel Goals</h2></div></div></div><p>
            The complexity of embedded kernel design has increased dramatically. 
            Whether it is managing multiple implementations of a particular feature or tuning and
            optimizing board specific features, both flexibility and maintainability are key concerns. 
            The Linux kernels available through the Yocto Project are presented with the embedded
            developer's needs in mind and have evolved to assist in these key concerns. 
            For example, prior methods such as applying hundreds of patches to an extracted
            tarball have been replaced with proven techniques that allow easy inspection,
            bisection and analysis of changes. 
            Application of these techniques also creates a platform for performing integration and 
            collaboration with the thousands of upstream development projects.
        </p><p>
            With all these considerations in mind, the Yocto Project's kernel and development team
            strives to attain these goals:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Allow the end user to leverage community best practices to seamlessly 
            manage the development, build and debug cycles.</p></li><li class="listitem"><p>Create a platform for performing integration and collaboration with the 
            thousands of upstream development projects that exist.</p></li><li class="listitem"><p>Provide mechanisms that support many different work flows, front-ends and 
            management techniques.</p></li><li class="listitem"><p>Deliver the most up-to-date kernel possible while still ensuring that 
            the baseline kernel is the most stable official release.</p></li><li class="listitem"><p>Include major technological features as part of the Yocto Project's 
            upward revision strategy.</p></li><li class="listitem"><p>Present a kernel Git repository that, similar to the upstream 
            <code class="filename">kernel.org</code> tree, 
            has a clear and continuous history.</p></li><li class="listitem"><p>Deliver a key set of supported kernel types, where each type is tailored 
            to meet a specific use (e.g. networking, consumer, devices, and so forth).</p></li><li class="listitem"><p>Employ a Git branching strategy that, from a developer's point of view,
            results in a linear path from the baseline <code class="filename">kernel.org</code>, 
            through a select group of features and
            ends with their BSP-specific commits.</p></li></ul></div><p>
        </p></div><div class="section" title="2.3. Yocto Project Kernel Development and Maintenance Overview"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="kernel-big-picture"></a>2.3. Yocto Project Kernel Development and Maintenance Overview</h2></div></div></div><p>
            Kernels available through the Yocto Project, like other kernels, are based off the Linux 
            kernel releases from <a class="ulink" href="http://www.kernel.org" target="_top">http://www.kernel.org</a>.  
            At the beginning of a major development cycle, the Yocto Project team
            chooses its kernel based on factors such as release timing, the anticipated release 
            timing of final upstream <code class="filename">kernel.org</code> versions, and Yocto Project 
            feature requirements.
            Typically, the kernel chosen is in the
            final stages of development by the community.
            In other words, the kernel is in the release
            candidate or "rc" phase and not yet a final release. 
            But, by being in the final stages of external development, the team knows that the 
            <code class="filename">kernel.org</code> final release will clearly be within the early stages of 
            the Yocto Project development window.
        </p><p>
            This balance allows the team to deliver the most up-to-date kernel
            as possible, while still ensuring that the team has a stable official release for
            the baseline Linux kernel version.
        </p><p>
            The ultimate source for kernels available through the Yocto Project are released kernels 
            from <code class="filename">kernel.org</code>.
            In addition to a foundational kernel from <code class="filename">kernel.org</code>, the  
            kernels available contain a mix of important new mainline
            developments, non-mainline developments (when there is no alternative),
            Board Support Package (BSP) developments,
            and custom features.
            These additions result in a commercially released Yocto Project Linux kernel that caters 
            to specific embedded designer needs for targeted hardware.
        </p><p>
            Once a kernel is officially released, the Yocto Project team goes into 
            their next development cycle, or upward revision (uprev) cycle, while still 
            continuing maintenance on the released kernel.
            It is important to note that the most sustainable and stable way
            to include feature development upstream is through a kernel uprev process.
            Back-porting hundreds of individual fixes and minor features from various
            kernel versions is not sustainable and can easily compromise quality.
        </p><p> 
            During the uprev cycle, the Yocto Project team uses an ongoing analysis of
            kernel development, BSP support, and release timing to select the best
            possible <code class="filename">kernel.org</code> version.
            The team continually monitors community kernel
            development to look for significant features of interest.
            The team does consider back-porting large features if they have a significant advantage. 
            User or community demand can also trigger a back-port or creation of new
            functionality in the Yocto Project baseline kernel during the uprev cycle. 
        </p><p>
            Generally speaking, every new kernel both adds features and introduces new bugs.
            These consequences are the basic properties of upstream kernel development and are
            managed by the Yocto Project team's kernel strategy. 
            It is the Yocto Project team's policy to not back-port minor features to the released kernel. 
            They only consider back-porting significant technological jumps - and, that is done 
            after a complete gap analysis. 
            The reason for this policy is that back-porting any small to medium sized change 
            from an evolving kernel can easily create mismatches, incompatibilities and very 
            subtle errors.
        </p><p>
            These policies result in both a stable and a cutting
            edge kernel that mixes forward ports of existing features and significant and critical 
            new functionality. 
            Forward porting functionality in the kernels available through the Yocto Project kernel 
            can be thought of as a "micro uprev."
            The many “micro uprevs” produce a kernel version with a mix of 
            important new mainline, non-mainline, BSP developments and feature integrations. 
            This kernel gives insight into new features and allows focused
            amounts of testing to be done on the kernel, which prevents
            surprises when selecting the next major uprev. 
            The quality of these cutting edge kernels is evolving and the kernels are used in leading edge 
            feature and BSP development.
        </p></div><div class="section" title="2.4. Kernel Architecture"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="kernel-architecture"></a>2.4. Kernel Architecture</h2></div></div></div><p>
            This section describes the architecture of the kernels available through the 
            Yocto Project and provides information
            on the mechanisms used to achieve that architecture.
        </p><div class="section" title="2.4.1. Overview"><div class="titlepage"><div><div><h3 class="title"><a id="architecture-overview"></a>2.4.1. Overview</h3></div></div></div><p>
                As mentioned earlier, a key goal of the Yocto Project is to present the 
                developer with 
                a kernel that has a clear and continuous history that is visible to the user. 
                The architecture and mechanisms used achieve that goal in a manner similar to the 
                upstream <code class="filename">kernel.org</code>.
            </p><p>
                You can think of a Yocto Project kernel as consisting of a baseline Linux kernel with
                added features logically structured on top of the baseline.
                The features are tagged and organized by way of a branching strategy implemented by the 
                source code manager (SCM) Git.
                For information on Git as applied to the Yocto Project, see the
                "<a class="link" href="#git" target="_top">Git</a>" section in the 
                Yocto Project Development Manual.
            </p><p>
                The result is that the user has the ability to see the added features and 
                the commits that make up those features.
                In addition to being able to see added features, the user can also view the history of what 
                made up the baseline kernel.
            </p><p>
                The following illustration shows the conceptual Yocto Project kernel.
            </p><p>
                </p><table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="540"><tr style="height: 630px"><td align="center"><img src="figures/kernel-architecture-overview.png" align="middle" /></td></tr></table><p>
            </p><p>
                In the illustration, the "Kernel.org Branch Point" 
                marks the specific spot (or release) from 
                which the Yocto Project kernel is created.  
                From this point "up" in the tree, features and differences are organized and tagged.
            </p><p>
                The "Yocto Project Baseline Kernel" contains functionality that is common to every kernel
                type and BSP that is organized further up the tree.  
                Placing these common features in the 
                tree this way means features don't have to be duplicated along individual branches of the 
                structure.
            </p><p>
                From the Yocto Project Baseline Kernel, branch points represent specific functionality
                for individual BSPs as well as real-time kernels.
                The illustration represents this through three BSP-specific branches and a real-time 
                kernel branch.  
                Each branch represents some unique functionality for the BSP or a real-time kernel.
            </p><p>
                In this example structure, the real-time kernel branch has common features for all 
                real-time kernels and contains
                more branches for individual BSP-specific real-time kernels.  
                The illustration shows three branches as an example. 
                Each branch points the way to specific, unique features for a respective real-time
                kernel as they apply to a given BSP.
            </p><p>
                The resulting tree structure presents a clear path of markers (or branches) to the 
                developer that, for all practical purposes, is the kernel needed for any given set 
                of requirements.
            </p></div><div class="section" title="2.4.2. Branching Strategy and Workflow"><div class="titlepage"><div><div><h3 class="title"><a id="branching-and-workflow"></a>2.4.2. Branching Strategy and Workflow</h3></div></div></div><p>
                The Yocto Project team creates kernel branches at points where functionality is 
                no longer shared and thus, needs to be isolated.
                For example, board-specific incompatibilities would require different functionality
                and would require a branch to separate the features. 
                Likewise, for specific kernel features, the same branching strategy is used.
            </p><p>
                This branching strategy results in a tree that has features organized to be specific 
                for particular functionality, single kernel types, or a subset of kernel types.  
                This strategy also results in not having to store the same feature twice 
                internally in the tree.
                Rather, the kernel team stores the unique differences required to apply the 
                feature onto the kernel type in question.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    The Yocto Project team strives to place features in the tree such that they can be 
                    shared by all boards and kernel types where possible.
                    However, during development cycles or when large features are merged,
                    the team cannot always follow this practice. 
                    In those cases, the team uses isolated branches to merge features.
                </div><p>
            </p><p>
                BSP-specific code additions are handled in a similar manner to kernel-specific additions. 
                Some BSPs only make sense given certain kernel types.
                So, for these types, the team creates branches off the end of that kernel type for all 
                of the BSPs that are supported on that kernel type.  
                From the perspective of the tools that create the BSP branch, the BSP is really no 
                different than a feature.
                Consequently, the same branching strategy applies to BSPs as it does to features.
                So again, rather than store the BSP twice, the team only stores the unique 
                differences for the BSP across the supported multiple kernels.
            </p><p>
                While this strategy can result in a tree with a significant number of branches, it is
                important to realize that from the developer's point of view, there is a linear
                path that travels from the baseline <code class="filename">kernel.org</code>, through a select
                group of features and ends with their BSP-specific commits.
                In other words, the divisions of the kernel are transparent and are not relevant 
                to the developer on a day-to-day basis.  
                From the developer's perspective, this path is the "master" branch.
                The developer does not need to be aware of the existence of any other branches at all.  
                Of course, there is value in the existence of these branches
                in the tree, should a person decide to explore them. 
                For example, a comparison between two BSPs at either the commit level or at the line-by-line 
                code <code class="filename">diff</code> level is now a trivial operation.
            </p><p>
                Working with the kernel as a structured tree follows recognized community best practices. 
                In particular, the kernel as shipped with the product, should be
                considered an "upstream source" and viewed as a series of
                historical and documented modifications (commits). 
                These modifications represent the development and stabilization done
                by the Yocto Project kernel development team.
            </p><p>
                Because commits only change at significant release points in the product life cycle,
                developers can work on a branch created
                from the last relevant commit in the shipped Yocto Project kernel. 
                As mentioned previously, the structure is transparent to the developer
                because the kernel tree is left in this state after cloning and building the kernel.
            </p></div><div class="section" title="2.4.3. Source Code Manager - Git"><div class="titlepage"><div><div><h3 class="title"><a id="source-code-manager-git"></a>2.4.3. Source Code Manager - Git</h3></div></div></div><p>
                The Source Code Manager (SCM) is Git.
                This SCM is the obvious mechanism for meeting the previously mentioned goals.  
                Not only is it the SCM for <code class="filename">kernel.org</code> but,
                Git continues to grow in popularity and supports many different work flows, 
                front-ends and management techniques.
            </p><p>
                You can find documentation on Git at <a class="ulink" href="http://git-scm.com/documentation" target="_top">http://git-scm.com/documentation</a>.
                You can also get an introduction to Git as it applies to the Yocto Project in the
                "<a class="link" href="#git" target="_top">Git</a>"
                section in the Yocto Project Development Manual. 
                These referenced sections overview Git and describe a minimal set of 
                commands that allows you to be functional using Git.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    You can use as much, or as little, of what Git has to offer to accomplish what
                    you need for your project.
                    You do not have to be a "Git Master" in order to use it with the Yocto Project.
                </div><p>
            </p></div></div><div class="section" title="2.5. Kernel Configuration"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="kernel-configuration"></a>2.5. Kernel Configuration</h2></div></div></div><p>
            Kernel configuration, along with kernel features, defines how a kernel
            image is built for the Yocto Project. 
            Through configuration settings, you can customize a Yocto Project kernel to be
            specific to particular hardware.
            For example, you can specify sound support or networking support.
            This section describes basic concepts behind Kernel configuration within the 
            Yocto Project and references you to other areas for specific configuration
            applications.
        </p><p>
            Conceptually, configuration of a Yocto Project kernel occurs similarly to that needed for any
            Linux kernel.
            The build process for a Yocto Project kernel uses a <code class="filename">.config</code> file, which 
            is created through the Linux Kernel Coinfiguration (LKC) tool.
            You can directly set various configurations in the 
            <code class="filename">.config</code> file by using the <code class="filename">menuconfig</code> 
            tool as built by BitBake.
            You can also define configurations in the file by using configuration fragments.
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                It is not recommended that you edit the <code class="filename">.config</code> file directly.
            </div><p>
            Here are some brief descriptions of the ways you can affect the 
            <code class="filename">.config</code> file:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>The <code class="filename">menuconfig</code> Tool:</em></span> 
                    One of many front-ends that allows you to define kernel configurations.  
                    Some others are <code class="filename">make config</code>, 
                    <code class="filename">make nconfig</code>, and <code class="filename">make gconfig</code>.
                    In the Yocto Project environment, you must use BitBake to build the 
                    <code class="filename">menuconfig</code> tool before you can use it to define
                    configurations:
                    </p><pre class="literallayout">
     $ bitbake linux-yocto -c menuconfig
                    </pre><p>
                    After the tool is built, you can interact with it normally.
                    You can see how <code class="filename">menuconfig</code> is used to change a simple 
                    kernel configuration in the 
                    "<a class="link" href="#changing-the-config-smp-configuration-using-menuconfig" target="_top">Changing the  <code class="filename">CONFIG_SMP</code> Configuration Using  <code class="filename">menuconfig</code></a>" 
                    section of the Yocto Project Development Manual.
                    For general information on <code class="filename">menuconfig</code>, see
                    <a class="ulink" href="http://en.wikipedia.org/wiki/Menuconfig" target="_top">http://en.wikipedia.org/wiki/Menuconfig</a>.
                    </p></li><li class="listitem"><p><span class="emphasis"><em>Configuration Fragments:</em></span> A file with a 
                    list of kernel options just as they would appear syntactically in the 
                    <code class="filename">.config</code> file.
                    Configuration fragments are typically logical groupings and are assembled
                    by the OpenEmbedded build system to produce input used by the LKC
                    that ultimately generates the <code class="filename">.config</code> file.</p><p>The 
                    <code class="filename"><a class="link" href="#var-KERNEL_FEATURES" target="_top">KERNEL_FEATURES</a></code>
                    variable can be used to list configuration fragments.
                    For further discussion on applying configuration fragments, see the 
                    "<a class="link" href="#bsp-filelayout-kernel" target="_top">Linux Kernel Configuration</a>"
                    section in the Yocto Project Board Support Package (BSP) Guide.
                    </p></li></ul></div><p>
        </p></div><div class="section" title="2.6. Kernel Tools"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="kernel-tools"></a>2.6. Kernel Tools</h2></div></div></div><p>
            Since most standard workflows involve moving forward with an existing tree by
            continuing to add and alter the underlying baseline, the tools that manage
            the Yocto Project's kernel construction are largely hidden from the developer to
            present a simplified view of the kernel for ease of use.
        </p><p>
            Fundamentally, the kernel tools that manage and construct the
            Yocto Project kernel accomplish the following:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Group patches into named, reusable features.</p></li><li class="listitem"><p>Allow top-down control of included features.</p></li><li class="listitem"><p>Bind kernel configurations to kernel patches and features.</p></li><li class="listitem"><p>Present a seamless Git repository that blends Yocto Project value 
                    with the <code class="filename">kernel.org</code> history and development.</p></li></ul></div><p>
        </p></div></div>

    <div class="chapter" title="Chapter 3. Working with the Yocto Project Kernel"><div class="titlepage"><div><div><h2 class="title"><a id="kernel-how-to"></a>Chapter 3. Working with the Yocto Project Kernel</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#actions-org">3.1. Introduction</a></span></dt><dt><span class="section"><a href="#tree-construction">3.2. Tree Construction</a></span></dt><dt><span class="section"><a href="#build-strategy">3.3. Build Strategy</a></span></dt><dt><span class="section"><a href="#workflow-examples">3.4. Workflow Examples</a></span></dt><dd><dl><dt><span class="section"><a href="#change-inspection-kernel-changes-commits">3.4.1. Change Inspection: Changes/Commits</a></span></dt><dt><span class="section"><a href="#development-saving-kernel-modifications">3.4.2. Development: Saving Kernel Modifications</a></span></dt><dt><span class="section"><a href="#scm-working-with-the-yocto-project-kernel-in-another-scm">3.4.3. Working with the Yocto Project Kernel in Another SCM</a></span></dt><dt><span class="section"><a href="#bsp-creating">3.4.4. Creating a BSP Based on an Existing Similar BSP</a></span></dt><dt><span class="section"><a href="#tip-dirty-string">3.4.5. "-dirty" String</a></span></dt></dl></dd></dl></div><div class="section" title="3.1. Introduction"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="actions-org"></a>3.1. Introduction</h2></div></div></div><p>
        This chapter describes how to accomplish tasks involving a kernel's tree structure. 
        The information is designed to help the developer that wants to modify the Yocto 
        Project kernel and contribute changes upstream to the Yocto Project.
        The information covers the following:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Tree construction</p></li><li class="listitem"><p>Build strategies</p></li><li class="listitem"><p>Workflow examples</p></li></ul></div><p>
    </p></div><div class="section" title="3.2. Tree Construction"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="tree-construction"></a>3.2. Tree Construction</h2></div></div></div><p>
            This section describes construction of the Yocto Project kernel source repositories 
            as accomplished by the Yocto Project team to create kernel repositories.
            These kernel repositories are found under the heading "Yocto Linux Kernel" at
            <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a>
            and can be shipped as part of a Yocto Project release. 
            The team creates these repositories by
            compiling and executing the set of feature descriptions for every BSP/feature
            in the product. 
            Those feature descriptions list all necessary patches,
            configuration, branching, tagging and feature divisions found in a kernel.
            Thus, the Yocto Project kernel repository (or tree) is built.
        </p><p>
            The existence of this tree allows you to access and clone a particular 
            Yocto Project kernel repository and use it to build images based on their configurations
            and features.
        </p><p>
            You can find the files used to describe all the valid features and BSPs 
            in the Yocto Project kernel in any clone of the Yocto Project kernel source repository 
            Git tree.
            For example, the following command clones the Yocto Project baseline kernel that 
            branched off of <code class="filename">linux.org</code> version 3.4:
            </p><pre class="literallayout">
     $ git clone git://git.yoctoproject.org/linux-yocto-3.4
            </pre><p>
            For another example of how to set up a local Git repository of the Yocto Project
            kernel files, see the 
            "<a class="link" href="#local-kernel-files" target="_top">Yocto Project Kernel</a>" bulleted 
            item in the Yocto Project Development Manual.
        </p><p>  
            Once you have cloned the kernel Git repository on your local machine, you can 
            switch to the <code class="filename">meta</code> branch within the repository.
            Here is an example that assumes the local Git repository for the kernel is in 
            a top-level directory named <code class="filename">linux-yocto-3.4</code>:
            </p><pre class="literallayout">
     $ cd ~/linux-yocto-3.4
     $ git checkout -b meta origin/meta
            </pre><p>
            Once you have checked out and switched to the <code class="filename">meta</code> branch,
            you can see a snapshot of all the kernel configuration and feature descriptions that are 
            used to build that particular kernel repository.
            These descriptions are in the form of <code class="filename">.scc</code> files. 
        </p><p>
            You should realize, however, that browsing your local kernel repository
            for feature descriptions and patches is not an effective way to determine what is in a
            particular kernel branch. 
            Instead, you should use Git directly to discover the changes in a branch.
            Using Git is an efficient and flexible way to inspect changes to the kernel.  
            For examples showing how to use Git to inspect kernel commits, see the following sections
            in this chapter.
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                Ground up reconstruction of the complete kernel tree is an action only taken by the 
                Yocto Project team during an active development cycle.  
                When you create a clone of the kernel Git repository, you are simply making it 
                efficiently available for building and development.
            </div><p>
        </p><p>
            The following steps describe what happens when the Yocto Project Team constructs
            the Yocto Project kernel source Git repository (or tree) found at 
            <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a> given the 
            introduction of a new top-level kernel feature or BSP. 
            These are the actions that effectively create the tree 
            that includes the new feature, patch or BSP:
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>A top-level kernel feature is passed to the kernel build subsystem.
                    Normally, this feature is a BSP for a particular kernel type.</p></li><li class="listitem"><p>The file that describes the top-level feature is located by searching
                    these system directories:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The in-tree kernel-cache directories, which are located
                            in <code class="filename">meta/cfg/kernel-cache</code></p></li><li class="listitem"><p>Areas pointed to by <code class="filename">SRC_URI</code> statements
                            found in recipes</p></li></ul></div><p>
                    For a typical build, the target of the search is a 
                    feature description in an <code class="filename">.scc</code> file
                    whose name follows this format:
                    </p><pre class="literallayout">
     &lt;bsp_name&gt;-&lt;kernel_type&gt;.scc
                    </pre><p>
                </p></li><li class="listitem"><p>Once located, the feature description is either compiled into a simple script
                    of actions, or into an existing equivalent script that is already part of the
                    shipped kernel.</p></li><li class="listitem"><p>Extra features are appended to the top-level feature description. 
                    These features can come from the 
                    <a class="link" href="#var-KERNEL_FEATURES" target="_top"><code class="filename">KERNEL_FEATURES</code></a>
                    variable in recipes.</p></li><li class="listitem"><p>Each extra feature is located, compiled and appended to the script 
                    as described in step three.</p></li><li class="listitem"><p>The script is executed to produce a series of <code class="filename">meta-*</code>
                    directories. 
                    These directories are descriptions of all the branches, tags, patches and configurations that
                    need to be applied to the base Git repository to completely create the
                    source (build) branch for the new BSP or feature.</p></li><li class="listitem"><p>The base repository is cloned, and the actions
                    listed in the <code class="filename">meta-*</code> directories are applied to the 
                    tree.</p></li><li class="listitem"><p>The Git repository is left with the desired branch checked out and any
                    required branching, patching and tagging has been performed.</p></li></ol></div><p>
        </p><p>
            The kernel tree is now ready for developer consumption to be locally cloned,
            configured, and built into a Yocto Project kernel specific to some target hardware. 
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>The generated <code class="filename">meta-*</code> directories add to the kernel 
                as shipped with the Yocto Project release. 
                Any add-ons and configuration data are applied to the end of an existing branch. 
                The full repository generation that is found in the 
                official Yocto Project kernel repositories at
                <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a>
                is the combination of all supported boards and configurations.</p><p>The technique the Yocto Project team uses is flexible and allows for seamless 
                blending of an immutable history with additional patches specific to a 
                deployment. 
                Any additions to the kernel become an integrated part of the branches.</p></div><p>
        </p></div><div class="section" title="3.3. Build Strategy"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="build-strategy"></a>3.3. Build Strategy</h2></div></div></div><p>
            Once a local Git repository of the Yocto Project kernel exists on a development system, 
            you can consider the compilation phase of kernel development - building a kernel image.
            Some prerequisites exist that are validated by the build process before compilation
            starts:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The <code class="filename">SRC_URI</code> points to the kernel Git 
                repository.</p></li><li class="listitem"><p>A BSP build branch exists.
                This branch has the following form:
                </p><pre class="literallayout">
     &lt;kernel_type&gt;/&lt;bsp_name&gt;
                </pre></li></ul></div><p>
            The OpenEmbedded build system makes sure these conditions exist before attempting compilation.
            Other means, however, do exist, such as as bootstrapping a BSP, see 
            the "<a class="link" href="#workflow-examples" title="3.4. Workflow Examples">Workflow Examples</a>".
        </p><p>
            Before building a kernel, the build process verifies the tree 
            and configures the kernel by processing all of the
            configuration "fragments" specified by feature descriptions in the <code class="filename">.scc</code>
            files. 
            As the features are compiled, associated kernel configuration fragments are noted
            and recorded in the <code class="filename">meta-*</code> series of directories in their compilation order. 
            The fragments are migrated, pre-processed and passed to the Linux Kernel
            Configuration subsystem (<code class="filename">lkc</code>) as raw input in the form 
            of a <code class="filename">.config</code> file.
            The <code class="filename">lkc</code> uses its own internal dependency constraints to do the final
            processing of that information and generates the final <code class="filename">.config</code> file 
            that is used during compilation.
        </p><p>
            Using the board's architecture and other relevant values from the board's template,
            kernel compilation is started and a kernel image is produced.
        </p><p>
            The other thing that you notice once you configure a kernel is that
            the build process generates a build tree that is separate from your kernel's local Git 
            source repository tree.
            This build tree has a name that uses the following form, where 
            <code class="filename">${MACHINE}</code> is the metadata name of the machine (BSP) and "kernel_type" is one
            of the Yocto Project supported kernel types (e.g. "standard"):
        </p><pre class="literallayout">
     linux-${MACHINE}-&lt;kernel_type&gt;-build
        </pre><p>
        </p><p>
            The existing support in the <code class="filename">kernel.org</code> tree achieves this 
            default functionality.
        </p><p>
            This behavior means that all the generated files for a particular machine or BSP are now in 
            the build tree directory.  
            The files include the final <code class="filename">.config</code> file, all the <code class="filename">.o</code>
            files, the <code class="filename">.a</code> files, and so forth.
            Since each machine or BSP has its own separate build directory in its own separate branch
            of the Git repository, you can easily switch between different builds.
        </p></div><div class="section" title="3.4. Workflow Examples"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="workflow-examples"></a>3.4. Workflow Examples</h2></div></div></div><p>
            As previously noted, the Yocto Project kernel has built-in Git integration.
            However, these utilities are not the only way to work with the kernel repository.
            The Yocto Project has not made changes to Git or to other tools that
            would invalidate alternate workflows. 
            Additionally, the way the kernel repository is constructed results in using 
            only core Git functionality, thus allowing any number of tools or front ends to use the 
            resulting tree.
        </p><p>
            This section contains several workflow examples.
            Many of the examples use Git commands. 
            You can find Git documentation at 
            <a class="ulink" href="http://git-scm.com/documentation" target="_top">http://git-scm.com/documentation</a>.
            You can find a simple overview of using Git with the Yocto Project in the 
            "<a class="link" href="#git" target="_top">Git</a>"
            section of the Yocto Project Development Manual.
        </p><div class="section" title="3.4.1. Change Inspection: Changes/Commits"><div class="titlepage"><div><div><h3 class="title"><a id="change-inspection-kernel-changes-commits"></a>3.4.1. Change Inspection: Changes/Commits</h3></div></div></div><p>
                A common question when working with a kernel is: 
                "What changes have been applied to this tree?"
            </p><p>
                In projects that have a collection of directories that
                contain patches to the kernel, it is possible to inspect or "grep" the contents 
                of the directories to get a general feel for the changes. 
                This sort of patch inspection is not an efficient way to determine what has been 
                done to the kernel.
                The reason it is inefficient is because there are many optional patches that are 
                selected based on the kernel type and the feature description.
                Additionally, patches could exist in directories that are not included in the search.
            </p><p>
                A more efficient way to determine what has changed in the branch is to use
                Git and inspect or search the kernel tree. 
                This method gives you a full view of not only the source code modifications, 
                but also provides the reasons for the changes.
            </p><div class="section" title="3.4.1.1. What Changed in a Kernel?"><div class="titlepage"><div><div><h4 class="title"><a id="what-changed-in-a-kernel"></a>3.4.1.1. What Changed in a Kernel?</h4></div></div></div><p>
                    Following are a few examples that show how to use Git commands to examine changes.
                    Because Git repositories in the Yocto Project do not break existing Git
                    functionality, and because there exists many permutations of these types of 
                    Git commands, many methods exist by which you can discover changes.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                        In the following examples, unless you provide a commit range, 
                        <code class="filename">kernel.org</code> history is blended with Yocto Project
                        kernel changes.
                        You can form ranges by using branch names from the kernel tree as the 
                        upper and lower commit markers with the Git commands.  
                        You can see the branch names through the web interface to the 
                        Yocto Project source repositories at 
                        <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi" target="_top">http://git.yoctoproject.org/cgit.cgi</a>.
                        For example, the branch names for the <code class="filename">linux-yocto-3.4</code>
                        kernel repository can be seen at
                        <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/linux-yocto-3.4/refs/heads" target="_top">http://git.yoctoproject.org/cgit.cgi/linux-yocto-3.4/refs/heads</a>.
                    </div><p>
                    To see a full range of the changes, use the 
                    <code class="filename">git whatchanged</code> command and specify a commit range
                    for the branch (<code class="filename">&lt;commit&gt;..&lt;commit&gt;</code>).
                </p><p>
                    Here is an example that looks at what has changed in the 
                    <code class="filename">emenlow</code> branch of the 
                    <code class="filename">linux-yocto-3.4</code> kernel.  
                    The lower commit range is the commit associated with the 
                    <code class="filename">standard/base</code> branch, while 
                    the upper commit range is the commit associated with the 
                    <code class="filename">standard/emenlow</code> branch.
                    </p><pre class="literallayout">
     $ git whatchanged origin/standard/base..origin/standard/emenlow
                    </pre><p>
                </p><p>
                    To see a summary of changes use the <code class="filename">git log</code> command.
                    Here is an example using the same branches:
                    </p><pre class="literallayout">
     $ git log --oneline origin/standard/base..origin/standard/emenlow
                    </pre><p>
                    The <code class="filename">git log</code> output might be more useful than
                    the <code class="filename">git whatchanged</code> as you get
                    a short, one-line summary of each change and not the entire commit.
                </p><p>
                    If you want to see code differences associated with all the changes, use
                    the <code class="filename">git diff</code> command.
                    Here is an example:
                    </p><pre class="literallayout">
     $ git diff origin/standard/base..origin/standard/emenlow
                    </pre><p>
                </p><p>
                    You can see the commit log messages and the text differences using the 
                    <code class="filename">git show</code> command: 
                    Here is an example:
                    </p><pre class="literallayout">
     $ git show origin/standard/base..origin/standard/emenlow
                    </pre><p>
                </p><p>
                    You can create individual patches for each change by using the 
                    <code class="filename">git format-patch</code> command.
                    Here is an example that that creates patch files for each commit and 
                    places them in your <code class="filename">Documents</code> directory:
                    </p><pre class="literallayout">
     $ git format-patch -o $HOME/Documents origin/standard/base..origin/standard/emenlow
                    </pre><p>
                </p></div><div class="section" title="3.4.1.2. Show a Particular Feature or Branch Change"><div class="titlepage"><div><div><h4 class="title"><a id="show-a-particular-feature-or-branch-change"></a>3.4.1.2. Show a Particular Feature or Branch Change</h4></div></div></div><p>
                    Developers use tags in the Yocto Project kernel tree to divide changes for significant 
                    features or branches. 
                    Once you know a particular tag, you can use Git commands 
                    to show changes associated with the tag and find the branches that contain
                    the feature.  
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                        Because BSP branch, <code class="filename">kernel.org</code>, and feature tags are all 
                        present, there could be many tags.
                    </div><p>
                    The <code class="filename">git show &lt;tag&gt;</code> command shows changes that are tagged by 
                    a feature.
                    Here is an example that shows changes tagged by the <code class="filename">systemtap</code>
                    feature:
                    </p><pre class="literallayout">
     $ git show systemtap
                    </pre><p>
                    You can use the <code class="filename">git branch --contains &lt;tag&gt;</code> command
                    to show the branches that contain a particular feature.
                    This command shows the branches that contain the <code class="filename">systemtap</code>
                    feature:
                    </p><pre class="literallayout">
     $ git branch --contains systemtap
                    </pre><p>
                </p><p>
                    You can use many other comparisons to isolate BSP and kernel changes.
                    For example, you can compare against <code class="filename">kernel.org</code> tags 
                    such as the <code class="filename">v3.4</code> tag.
                </p></div></div><div class="section" title="3.4.2. Development: Saving Kernel Modifications"><div class="titlepage"><div><div><h3 class="title"><a id="development-saving-kernel-modifications"></a>3.4.2. Development: Saving Kernel Modifications</h3></div></div></div><p>
                Another common operation is to build a BSP supplied by the Yocto Project, make some
                changes, rebuild, and then test. 
                Those local changes often need to be exported, shared or otherwise maintained.
            </p><p>
                Since the Yocto Project kernel source tree is backed by Git, this activity is
                much easier as compared to with previous releases. 
                Because Git tracks file modifications, additions and deletions, it is easy 
                to modify the code and later realize that you need to save the changes.
                It is also easy to determine what has changed. 
                This method also provides many tools to commit, undo and export those modifications.
            </p><p>
                This section and its sub-sections, describe general application of Git's 
                <code class="filename">push</code> and <code class="filename">pull</code> commands, which are used to 
                get your changes upstream or source your code from an upstream repository.  
                The Yocto Project provides scripts that help you work in a collaborative development 
                environment.  
                For information on these scripts, see the
                "<a class="link" href="#pushing-a-change-upstream" target="_top">Using Scripts to Push a Change 
                Upstream and Request a Pull</a>" and   
                "<a class="link" href="#submitting-a-patch" target="_top">Using Email to Submit a Patch</a>" 
                sections in the Yocto Project Development Manual.
            </p><p>
                There are many ways to save kernel modifications.
                The technique employed
                depends on the destination for the patches:
   
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Bulk storage</p></li><li class="listitem"><p>Internal sharing either through patches or by using Git</p></li><li class="listitem"><p>External submissions</p></li><li class="listitem"><p>Exporting for integration into another Source Code
                        Manager (SCM)</p></li></ul></div><p>
            </p><p>
                Because of the following list of issues, the destination of the patches also influences 
                the method for gathering them:

                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Bisectability</p></li><li class="listitem"><p>Commit headers</p></li><li class="listitem"><p>Division of subsystems for separate submission or review</p></li></ul></div><p>
            </p><div class="section" title="3.4.2.1. Bulk Export"><div class="titlepage"><div><div><h4 class="title"><a id="bulk-export"></a>3.4.2.1. Bulk Export</h4></div></div></div><p>
                    This section describes how you can "bulk" export changes that have not 
                    been separated or divided. 
                    This situation works well when you are simply storing patches outside of the kernel 
                    source repository, either permanently or temporarily, and you are not committing 
                    incremental changes during development.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                        This technique is not appropriate for full integration of upstream submission
                        because changes are not properly divided and do not provide an avenue for per-change
                        commit messages.  
                        Therefore, this example assumes that changes have not been committed incrementally 
                        during development and that you simply must gather and export them.
                    </div><p>
                    </p><pre class="literallayout">
     # bulk export of ALL modifications without separation or division
     # of the changes 

     $ git add .
     $ git commit -s -a -m &lt;msg&gt; 
        or
     $ git commit -s -a # and interact with $EDITOR
                    </pre><p>
                </p><p>
                    The previous operations capture all the local changes in the project source
                    tree in a single Git commit.
                    And, that commit is also stored in the project's source tree.
                </p><p>
                    Once the changes are exported, you can restore them manually using a template
                    or through integration with the <code class="filename">default_kernel</code>.
                </p></div><div class="section" title="3.4.2.2. Incremental/Planned Sharing"><div class="titlepage"><div><div><h4 class="title"><a id="incremental-planned-sharing"></a>3.4.2.2. Incremental/Planned Sharing</h4></div></div></div><p>
                    This section describes how to save modifications when you are making incremental
                    commits or practicing planned sharing.
                    The examples in this section assume that you have incrementally committed 
                    changes to the tree during development and now need to export them.  
                    The sections that follow
                    describe how you can export your changes internally through either patches or by
                    using Git commands.
                </p><p>
                    During development, the following commands are of interest.
                    For full Git documentation, refer to the Git documentation at  
                    <a class="ulink" href="http://github.com" target="_top">http://github.com</a>.

                    </p><pre class="literallayout">
     # edit a file
     $ vi &lt;path&gt;/file
     # stage the change
     $ git add &lt;path&gt;/file
     # commit the change
     $ git commit -s
     # remove a file
     $ git rm &lt;path&gt;/file
     # commit the change
     $ git commit -s

     ... etc.
                    </pre><p>
                </p><p>
                    Distributed development with Git is possible when you use a universally 
                    agreed-upon unique commit identifier (set by the creator of the commit) that maps to a
                    specific change set with a specific parent.  
                    This identifier is created for you when
                    you create a commit, and is re-created when you amend, alter or re-apply
                    a commit.  
                    As an individual in isolation, this is of no interest.
                    However, if you
                    intend to share your tree with normal Git <code class="filename">push</code> and 
                    <code class="filename">pull</code> operations for
                    distributed development, you should consider the ramifications of changing a
                    commit that you have already shared with others.
                </p><p>
                    Assuming that the changes have not been pushed upstream, or pulled into
                    another repository, you can update both the commit content and commit messages 
                    associated with development by using the following commands:

                    </p><pre class="literallayout">
     $ Git add &lt;path&gt;/file
     $ Git commit --amend
     $ Git rebase or Git rebase -i
                    </pre><p>
                </p><p>   
                    Again, assuming that the changes have not been pushed upstream, and that
                    no pending works-in-progress exist (use <code class="filename">git status</code> to check), then
                    you can revert (undo) commits by using the following commands:

                    </p><pre class="literallayout">
     # remove the commit, update working tree and remove all
     # traces of the change
     $ git reset --hard HEAD^
     # remove the commit, but leave the files changed and staged for re-commit
     $ git reset --soft HEAD^
     # remove the commit, leave file change, but not staged for commit
     $ git reset --mixed HEAD^
                    </pre><p>
                </p><p>
                    You can create branches, "cherry-pick" changes, or perform any number of Git
                    operations until the commits are in good order for pushing upstream
                    or for pull requests. 
                    After a <code class="filename">push</code> or <code class="filename">pull</code> command, 
                    commits are normally considered
                    "permanent" and you should not modify them.
                    If the commits need to be changed, you can incrementally do so with new commits.
                    These practices follow standard Git workflow and the <code class="filename">kernel.org</code> best 
                    practices, which is recommended.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                        It is recommended to tag or branch before adding changes to a Yocto Project
                        BSP or before creating a new one.
                        The reason for this recommendation is because the branch or tag provides a
                        reference point to facilitate locating and exporting local changes.
                    </div><p>
                </p><div class="section" title="3.4.2.2.1. Exporting Changes Internally by Using Patches"><div class="titlepage"><div><div><h5 class="title"><a id="export-internally-via-patches"></a>3.4.2.2.1. Exporting Changes Internally by Using Patches</h5></div></div></div><p>
                        This section describes how you can extract committed changes from a working directory
                        by exporting them as patches.
                        Once the changes have been extracted, you can use the patches for upstream submission, 
                        place them in a Yocto Project template for automatic kernel patching,
                        or apply them in many other common uses.
                    </p><p>
                        This example shows how to create a directory with sequentially numbered patches.
                        Once the directory is created, you can apply it to a repository using the 
                        <code class="filename">git am</code> command to reproduce the original commit and all 
                        the related information such as author, date, commit log, and so forth.
                        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                            The new commit identifiers (ID) will be generated upon re-application.  
                            This action reflects that the commit is now applied to an underlying commit 
                            with a different ID.
                        </div><p>
                        </p><pre class="literallayout">
     # &lt;first-commit&gt; can be a tag if one was created before development
     # began. It can also be the parent branch if a branch was created
     # before development began.

     $ git format-patch -o &lt;dir&gt; &lt;first commit&gt;..&lt;last commit&gt;
                        </pre><p>
                    </p><p>
                        In other words:
                        </p><pre class="literallayout">
     # Identify commits of interest.

     # If the tree was tagged before development
     $ git format-patch -o &lt;save dir&gt; &lt;tag&gt;

     # If no tags are available
     $ git format-patch -o &lt;save dir&gt; HEAD^  # last commit
     $ git format-patch -o &lt;save dir&gt; HEAD^^ # last 2 commits
     $ git whatchanged # identify last commit
     $ git format-patch -o &lt;save dir&gt; &lt;commit id&gt;
     $ git format-patch -o &lt;save dir&gt; &lt;rev-list&gt;
                        </pre><p>
                    </p></div><div class="section" title="3.4.2.2.2. Exporting Changes Internally by Using Git"><div class="titlepage"><div><div><h5 class="title"><a id="export-internally-via-git"></a>3.4.2.2.2. Exporting Changes Internally by Using Git</h5></div></div></div><p>
                        This section describes how you can export changes from a working directory 
                        by pushing the changes into a master repository or by making a pull request.
                        Once you have pushed the changes to the master repository, you can then 
                        pull those same changes into a new kernel build at a later time.
                    </p><p>
                        Use this command form to push the changes:
                        </p><pre class="literallayout">
     $ git push ssh://&lt;master_server&gt;/&lt;path_to_repo&gt;
        &lt;local_branch&gt;:&lt;remote_branch&gt;
                        </pre><p>
                    </p><p>
                        For example, the following command pushes the changes from your local branch
                        <code class="filename">yocto/standard/common-pc/base</code> to the remote branch with the same name 
                        in the master repository <code class="filename">//git.mycompany.com/pub/git/kernel-3.4</code>.
                        </p><pre class="literallayout">
     $ git push ssh://git.mycompany.com/pub/git/kernel-3.4 \
        yocto/standard/common-pc/base:yocto/standard/common-pc/base
                        </pre><p>
                    </p><p>
                        A pull request entails using the <code class="filename">git request-pull</code> command to compose 
                        an email to the
                        maintainer requesting that a branch be pulled into the master repository, see
                        <a class="ulink" href="http://github.com/guides/pull-requests" target="_top">http://github.com/guides/pull-requests</a> for an example.
                        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                            Other commands such as <code class="filename">git stash</code> or branching can also be used to save
                            changes, but are not covered in this document.
                        </div><p>
                    </p></div></div><div class="section" title="3.4.2.3. Exporting Changes for External (Upstream) Submission"><div class="titlepage"><div><div><h4 class="title"><a id="export-for-external-upstream-submission"></a>3.4.2.3. Exporting Changes for External (Upstream) Submission</h4></div></div></div><p>
                    This section describes how to export changes for external upstream submission.
                    If the patch series is large or the maintainer prefers to pull
                    changes, you can submit these changes by using a pull request.
                    However, it is common to send patches as an email series.
                    This method allows easy review and integration of the changes.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                        Before sending patches for review be sure you understand the
                        community standards for submitting and documenting changes and follow their best practices.  
                        For example, kernel patches should follow standards such as:
                        <div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>
                                <a class="ulink" href="http://linux.yyz.us/patch-format.html" target="_top">http://linux.yyz.us/patch-format.html</a></p></li><li class="listitem"><p>Documentation/SubmittingPatches (in any linux 
                                kernel source tree)</p></li></ul></div></div><p>
                </p><p>
                    The messages used to commit changes are a large part of these standards.
                    Consequently, be sure that the headers for each commit have the required information.
                    For information on how to follow the Yocto Project commit message standards, see the
                    "<a class="link" href="#how-to-submit-a-change" target="_top">How to Submit a 
                    Change</a>" section in the Yocto Project Development Manual.
                </p><p>
                    If the initial commits were not properly documented or do not meet those standards,
                    you can re-base by using the <code class="filename">git rebase -i</code> command to 
                    manipulate the commits and
                    get them into the required format. 
                    Other techniques such as branching and cherry-picking commits are also viable options.
                </p><p>
                    Once you complete the commits, you can generate the email that sends the patches 
                    to the maintainer(s) or lists that review and integrate changes. 
                    The command <code class="filename">git send-email</code> is commonly used to ensure 
                    that patches are properly 
                    formatted for easy application and avoid mailer-induced patch damage.
                </p><p>
                    The following is an example of dumping patches for external submission:
                    </p><pre class="literallayout">
     # dump the last 4 commits 
     $ git format-patch --thread -n -o ~/rr/ HEAD^^^^
     $ git send-email --compose --subject '[RFC 0/N] &lt;patch series summary&gt;' \
      --to foo@yoctoproject.org --to bar@yoctoproject.org \
      --cc list@yoctoproject.org  ~/rr
     # the editor is invoked for the 0/N patch, and when complete the entire
     # series is sent via email for review
                    </pre><p>
                </p></div><div class="section" title="3.4.2.4. Exporting Changes for Import into Another SCM"><div class="titlepage"><div><div><h4 class="title"><a id="export-for-import-into-other-scm"></a>3.4.2.4. Exporting Changes for Import into Another SCM</h4></div></div></div><p>
                    When you want to export changes for import into another
                    Source Code Manager (SCM), you can use any of the previously discussed 
                    techniques.
                    However, if the patches are manually applied to a secondary tree and then 
                    that tree is checked into the SCM, you can lose change information such as 
                    commit logs.
                    This process is not recommended.
                </p><p>
                    Many SCMs can directly import Git commits, or can translate Git patches so that
                    information is not lost. 
                    Those facilities are SCM-dependent and you should use them whenever possible.
                </p></div></div><div class="section" title="3.4.3. Working with the Yocto Project Kernel in Another SCM"><div class="titlepage"><div><div><h3 class="title"><a id="scm-working-with-the-yocto-project-kernel-in-another-scm"></a>3.4.3. Working with the Yocto Project Kernel in Another SCM</h3></div></div></div><p>
                This section describes kernel development in an SCM other than Git, 
                which is not the same as exporting changes to another SCM described earlier.
                For this scenario, you use the OpenEmbedded build system to 
                develop the kernel in a different SCM.
                The following must be true for you to accomplish this:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The delivered Yocto Project kernel must be exported into the second
                        SCM.</p></li><li class="listitem"><p>Development must be exported from that secondary SCM into a 
                        format that can be used by the OpenEmbedded build system.</p></li></ul></div><p>
            </p><div class="section" title="3.4.3.1. Exporting the Delivered Kernel to the SCM"><div class="titlepage"><div><div><h4 class="title"><a id="exporting-delivered-kernel-to-scm"></a>3.4.3.1. Exporting the Delivered Kernel to the SCM</h4></div></div></div><p>
                    Depending on the SCM, it might be possible to export the entire Yocto Project
                    kernel Git repository, branches and all, into a new environment. 
                    This method is preferred because it has the most flexibility and potential to maintain
                    the meta data associated with each commit.
                </p><p>
                    When a direct import mechanism is not available, it is still possible to
                    export a branch (or series of branches) and check them into a new repository.
                </p><p>
                    The following commands illustrate some of the steps you could use to
                    import the <code class="filename">yocto/standard/common-pc/base</code>
                    kernel into a secondary SCM:
                    </p><pre class="literallayout">
     $ git checkout yocto/standard/common-pc/base
     $ cd .. ; echo linux/.git &gt; .cvsignore
     $ cvs import -m "initial import" linux MY_COMPANY start
                    </pre><p>
                </p><p>
                    You could now relocate the CVS repository and use it in a centralized manner. 
                </p><p>
                    The following commands illustrate how you can condense and merge two BSPs into a 
                    second SCM:
                    </p><pre class="literallayout">
     $ git checkout yocto/standard/common-pc/base
     $ git merge yocto/standard/common-pc-64/base
     # resolve any conflicts and commit them
     $ cd .. ; echo linux/.git &gt; .cvsignore
     $ cvs import -m "initial import" linux MY_COMPANY start
                    </pre><p>
                </p></div><div class="section" title="3.4.3.2. Importing Changes for the Build"><div class="titlepage"><div><div><h4 class="title"><a id="importing-changes-for-build"></a>3.4.3.2. Importing Changes for the Build</h4></div></div></div><p>
                    Once development has reached a suitable point in the second development
                    environment, you need to export the changes as patches.
                    To export them, place the changes in a recipe and
                    automatically apply them to the kernel during patching.
                </p></div></div><div class="section" title="3.4.4. Creating a BSP Based on an Existing Similar BSP"><div class="titlepage"><div><div><h3 class="title"><a id="bsp-creating"></a>3.4.4. Creating a BSP Based on an Existing Similar BSP</h3></div></div></div><p>
                This section overviews the process of creating a BSP based on an 
                existing similar BSP.
                The information is introductory in nature and does not provide step-by-step examples. 
                For detailed information on how to create a BSP given an existing similar BSP, see
                the "<a class="link" href="#dev-manual-bsp-appendix" target="_top">BSP Development 
                Example</a>" appendix in the Yocto Project Development Manual, or see the 
                <a class="ulink" href="https://wiki.yoctoproject.org/wiki/Transcript:_creating_one_generic_Atom_BSP_from_another" target="_top">Transcript:_creating_one_generic_Atom_BSP_from_another</a>
                wiki page.
            </p><p>
                The basic steps you need to follow are:
                </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p><span class="emphasis"><em>Make sure you have set up a local source directory:</em></span>
                        You must create a local <a class="link" href="#source-directory" target="_top">source
                        directory</a> by either creating a Git repository (recommended) or 
                        extracting a Yocto Project release tarball.</p></li><li class="listitem"><p><span class="emphasis"><em>Choose an existing BSP available with the Yocto Project:</em></span>
                        Try to map your board features as closely to the features of a BSP that is  
                        already supported and exists in the Yocto Project.  
                        Starting with something as close as possible to your board makes developing 
                        your BSP easier.  
                        You can find all the BSPs that are supported and ship with the Yocto Project 
                        on the Yocto Project's Download page at 
                        <a class="ulink" href="http://www.yoctoproject.org/download" target="_top">http://www.yoctoproject.org/download</a>.</p></li><li class="listitem"><p><span class="emphasis"><em>Be sure you have the Base BSP:</em></span>
                        You need to either have a local Git repository of the base BSP set up or 
                        have downloaded and extracted the files from a release BSP tarball.
                        Either method gives you access to the BSP source files.</p></li><li class="listitem"><p><span class="emphasis"><em>Make a copy of the existing BSP, thus isolating your new 
                        BSP work:</em></span>
                        Copying the existing BSP file structure gives you a new area in which to work.</p></li><li class="listitem"><p><span class="emphasis"><em>Make configuration and recipe changes to your new BSP:</em></span>
                        Configuration changes involve the files in the BSP's <code class="filename">conf</code>
                        directory. 
                        Changes include creating a machine-specific configuration file and editing the 
                        <code class="filename">layer.conf</code> file.  
                        The configuration changes identify the kernel you will be using.
                        Recipe changes include removing, modifying, or adding new recipe files that 
                        instruct the build process on what features to include in the image.</p></li><li class="listitem"><p><span class="emphasis"><em>Prepare for the build:</em></span>
                        Before you actually initiate the build, you need to set up the build environment
                        by sourcing the environment initialization script.  
                        After setting up the environment, you need to make some build configuration 
                        changes to the <code class="filename">local.conf</code> and <code class="filename">bblayers.conf</code>
                        files.</p></li><li class="listitem"><p><span class="emphasis"><em>Build the image:</em></span>
                        The OpenEmbedded build system uses BitBake to create the image. 
                        You need to decide on the type of image you are going to build (e.g. minimal, base, 
                        core, sato, and so forth) and then start the build using the <code class="filename">bitbake</code>
                        command.</p></li></ol></div><p>
            </p></div><div class="section" title="3.4.5. &quot;-dirty&quot; String"><div class="titlepage"><div><div><h3 class="title"><a id="tip-dirty-string"></a>3.4.5. "-dirty" String</h3></div></div></div><p>
                If kernel images are being built with "-dirty" on the end of the version
                string, this simply means that modifications in the source
                directory have not been committed.
                </p><pre class="literallayout">
     $ git status
                </pre><p>
            </p><p>
                You can use the above Git command to report modified, removed, or added files. 
                You should commit those changes to the tree regardless of whether they will be saved, 
                exported, or used.
                Once you commit the changes you need to rebuild the kernel.
            </p><p>
                To brute force pickup and commit all such pending changes, enter the following:
                </p><pre class="literallayout">
     $ git add .
     $ git commit -s -a -m "getting rid of -dirty"
                </pre><p>
            </p><p>
                Next, rebuild the kernel.
            </p></div></div></div>



</div>

<table border="0" summary="manufactured viewport for HTML img" cellspacing="0" cellpadding="0" width="100%"><tr><td align="left"><img src="figures/poky-title.png" align="left" width="100%" /></td></tr></table>

    <div xml:lang="en" class="book" lang="en"><div class="titlepage"><div><div><h1 class="title"><a id="poky-ref-manual"></a></h1></div><div><div class="authorgroup">
            <div class="author"><h3 class="author"><span class="firstname">Richard</span> <span class="surname">Purdie</span></h3><div class="affiliation">
                    <span class="orgname">Linux Foundation<br /></span>
                </div><code class="email">&lt;<a class="email" href="mailto:richard.purdie@linuxfoundation.org">richard.purdie@linuxfoundation.org</a>&gt;</code></div>

        </div></div><div><p class="copyright">Copyright © 2010-2012 Linux Foundation</p></div><div><div class="legalnotice" title="Legal Notice"><a id="id1506919"></a>
      <p>
        Permission is granted to copy, distribute and/or modify this document under 
        the terms of the <a class="ulink" href="http://creativecommons.org/licenses/by-sa/2.0/uk/" target="_top">Creative Commons Attribution-Share Alike 2.0 UK: England &amp; Wales</a> as published by Creative Commons.
      </p>
      <div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
          Due to production processes, there could be differences between the Yocto Project
          documentation bundled in the release tarball and the
          Yocto Project Reference Manual on
          the <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project</a> website.
          For the latest version of this manual, see the manual on the website.
      </div>
    </div></div><div><div class="revhistory"><table border="1" width="100%" summary="Revision history"><tr><th align="left" valign="top" colspan="2"><b>Revision History</b></th></tr>
            <tr><td align="left">Revision 4.0+git</td><td align="left">24 November 2010</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 0.9 Release</td></tr>
            <tr><td align="left">Revision 1.0</td><td align="left">6 April 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.0 Release.</td></tr>
            <tr><td align="left">Revision 1.0.1</td><td align="left">23 May 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.0.1 Release.</td></tr>
            <tr><td align="left">Revision 1.1</td><td align="left">6 October 2011</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.1 Release.</td></tr>
            <tr><td align="left">Revision 1.2</td><td align="left">April 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.2 Release.</td></tr>
            <tr><td align="left">Revision 1.3</td><td align="left">Sometime in 2012</td></tr><tr><td align="left" colspan="2">Released with the Yocto Project 1.3 Release.</td></tr>
        </table></div></div></div><hr /></div>
    

    <div class="chapter" title="Chapter 1. Introduction"><div class="titlepage"><div><div><h2 class="title"><a id="intro"></a>Chapter 1. Introduction</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#intro-welcome">1.1. Introduction</a></span></dt><dt><span class="section"><a href="#intro-manualoverview">1.2. Documentation Overview</a></span></dt><dt><span class="section"><a href="#intro-requirements">1.3. System Requirements</a></span></dt><dt><span class="section"><a href="#intro-getit">1.4. Obtaining the Yocto Project</a></span></dt><dt><span class="section"><a href="#intro-getit-dev">1.5. Development Checkouts</a></span></dt></dl></div><div class="section" title="1.1. Introduction"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="intro-welcome"></a>1.1. Introduction</h2></div></div></div><p>
        This manual provides reference information for the current release of the Yocto Project.
        The Yocto Project is an open-source collaboration project focused on embedded Linux
        developers.
        Amongst other things, the Yocto Project uses the OpenEmbedded build system, which 
        is based on the Poky project, to construct complete Linux images.
        You can find complete introductory and getting started information on the Yocto Project
        by reading the 
        Yocto Project Quick Start.
        For task-based information using the Yocto Project, see the
        Yocto Project Development Manual.
        You can also find lots of information on the Yocto Project on the 
        <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project website</a>.
    </p></div><div class="section" title="1.2. Documentation Overview"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="intro-manualoverview"></a>1.2. Documentation Overview</h2></div></div></div><p>
        This reference manual consists of the following:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#usingpoky" title="Chapter 2. Using the Yocto Project">Using the Yocto Project</a>:</em></span> This chapter
                provides an overview of the components that make up the Yocto Project 
                followed by information about debugging images created in the Yocto Project.
                </p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#technical-details" title="Chapter 3. Technical Details">Technical Details</a>:</em></span> 
                This chapter describes fundamental Yocto Project components as well as an explanation
                behind how the Yocto Project uses shared state (sstate) cache to speed build time.
                </p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#ref-structure" title="Chapter 4. Source Directory Structure">Directory Structure</a>:</em></span> 
                This chapter describes the 
                <a class="link" href="#source-directory" target="_top">source directory</a> created
                either by unpacking a released Yocto Project tarball on your host development system, 
                or by cloning the upstream 
                <a class="link" href="#poky" target="_top">Poky</a> Git repository.
                </p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#ref-bitbake" title="Chapter 5. BitBake">BitBake</a>:</em></span> 
                This chapter provides an overview of the BitBake tool and its role within 
                the Yocto Project.</p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#ref-classes" title="Chapter 6. Classes">Classes</a>:</em></span> 
                This chapter describes the classes used in the Yocto Project.</p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#ref-images" title="Chapter 7. Images">Images</a>:</em></span> 
                This chapter describes the standard images that the Yocto Project supports.
                </p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#ref-features" title="Chapter 8. Reference: Features">Features</a>:</em></span> 
                This chapter describes mechanisms for creating distribution, machine, and image 
                features during the build process using the OpenEmbedded build system.</p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#ref-variables-glos" title="Chapter 9. Variables Glossary">Variables Glossary</a>:</em></span> 
                This chapter presents most variables used by the OpenEmbedded build system, which
                using BitBake.
                Entries describe the function of the variable and how to apply them.
                </p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#ref-varlocality" title="Chapter 10. Variable Context">Variable Context</a>:</em></span> 
                This chapter provides variable locality or context.</p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#faq" title="Chapter 11. FAQ">FAQ</a>:</em></span> 
                This chapter provides answers for commonly asked questions in the Yocto Project
                development environment.</p></li><li class="listitem"><p><span class="emphasis"><em>
                <a class="link" href="#resources" title="Chapter 12. Contributing to the Yocto Project">Contributing to the Yocto Project</a>:</em></span> 
                This chapter provides guidance on how you can contribute back to the Yocto 
                Project.</p></li></ul></div><p>
    </p></div><div class="section" title="1.3. System Requirements"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="intro-requirements"></a>1.3. System Requirements</h2></div></div></div><p>
        For Yocto Project system requirements, see the
        <a class="link" href="#yp-resources" target="_top">
        What You Need and How You Get It</a> section in the Yocto Project Quick Start.
    </p></div><div class="section" title="1.4. Obtaining the Yocto Project"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="intro-getit"></a>1.4. Obtaining the Yocto Project</h2></div></div></div><p>
        The Yocto Project development team makes the Yocto Project available through a number 
        of methods:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Releases:</em></span> Stable, tested releases are available through 
                <a class="ulink" href="http://downloads.yoctoproject.org/releases/yocto/" target="_top">http://downloads.yoctoproject.org/releases/yocto/</a>.</p></li><li class="listitem"><p><span class="emphasis"><em>Nightly Builds:</em></span> These releases are available at
                <a class="ulink" href="http://autobuilder.yoctoproject.org/nightly" target="_top">http://autobuilder.yoctoproject.org/nightly</a>.  
                These builds include Yocto Project releases, meta-toolchain tarballs, and 
                experimental builds.</p></li><li class="listitem"><p><span class="emphasis"><em>Yocto Project Website:</em></span> You can find releases
                of the Yocto Project and supported BSPs at the
                <a class="ulink" href="http://www.yoctoproject.org" target="_top">Yocto Project website</a>.
                Along with these downloads, you can find lots of other information at this site.  
                </p></li></ul></div><p>
    </p></div><div class="section" title="1.5. Development Checkouts"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="intro-getit-dev"></a>1.5. Development Checkouts</h2></div></div></div><p>
        Development using the Yocto Project requires a local 
        <a class="link" href="#source-directory" target="_top">source directory</a>. 
        You can set up the source directory by downloading a Yocto Project release tarball and unpacking it,  
        or by cloning a copy of the upstream
        <a class="link" href="#poky" target="_top">Poky</a> Git repository.
        For information on both these methods, see the
        "<a class="link" href="#getting-setup" target="_top">Getting Setup</a>" 
        section in the Yocto Project Development Manual.
    </p></div></div>

    <div class="chapter" title="Chapter 2. Using the Yocto Project"><div class="titlepage"><div><div><h2 class="title"><a id="usingpoky"></a>Chapter 2. Using the Yocto Project</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#usingpoky-build">2.1. Running a Build</a></span></dt><dd><dl><dt><span class="section"><a href="#build-overview">2.1.1. Build Overview</a></span></dt><dt><span class="section"><a href="#building-an-image-using-gpl-components">2.1.2. Building an Image Using GPL Components</a></span></dt></dl></dd><dt><span class="section"><a href="#usingpoky-install">2.2. Installing and Using the Result</a></span></dt><dt><span class="section"><a href="#usingpoky-debugging">2.3. Debugging Build Failures</a></span></dt><dd><dl><dt><span class="section"><a href="#usingpoky-debugging-taskfailures">2.3.1. Task Failures</a></span></dt><dt><span class="section"><a href="#usingpoky-debugging-taskrunning">2.3.2. Running Specific Tasks</a></span></dt><dt><span class="section"><a href="#usingpoky-debugging-dependencies">2.3.3. Dependency Graphs</a></span></dt><dt><span class="section"><a href="#usingpoky-debugging-bitbake">2.3.4. General BitBake Problems</a></span></dt><dt><span class="section"><a href="#usingpoky-debugging-buildfile">2.3.5. Building with No Dependencies</a></span></dt><dt><span class="section"><a href="#usingpoky-debugging-variables">2.3.6. Variables</a></span></dt><dt><span class="section"><a href="#recipe-logging-mechanisms">2.3.7. Recipe Logging Mechanisms</a></span></dt><dt><span class="section"><a href="#usingpoky-debugging-others">2.3.8. Other Tips</a></span></dt></dl></dd></dl></div><p>
        This chapter describes common usage for the Yocto Project.
        The information is introductory in nature as other manuals in the Yocto Project
        documentation set provide more details on how to use the Yocto Project.
    </p><div class="section" title="2.1. Running a Build"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-build"></a>2.1. Running a Build</h2></div></div></div><p>
        You can find general information on how to build an image using the OpenEmbedded build 
        system in the 
        "<a class="link" href="#building-image" target="_top">Building an Image</a>"
        section of the Yocto Project Quick Start.
        This section provides a summary of the build process and provides information
        for less obvious aspects of the build process.
    </p><div class="section" title="2.1.1. Build Overview"><div class="titlepage"><div><div><h3 class="title"><a id="build-overview"></a>2.1.1. Build Overview</h3></div></div></div><p>
            The first thing you need to do is set up the OpenEmbedded build environment by sourcing
            the environment setup script as follows:
            </p><pre class="literallayout">
     $ source oe-init-build-env [build_dir]
            </pre><p>
        </p><p>
            The <code class="filename">build_dir</code> is optional and specifies the directory the 
            OpenEmbedded build system uses for the build - 
            the <a class="link" href="#build-directory" target="_top">build directory</a>.
            If you do not specify a build directory it defaults to <code class="filename">build</code>
            in your current working directory.
            A common practice is to use a different build directory for different targets. 
            For example, <code class="filename">~/build/x86</code> for a <code class="filename">qemux86</code>
            target, and <code class="filename">~/build/arm</code> for a <code class="filename">qemuarm</code> target.
            See <a class="link" href="#structure-core-script" title="4.1.9. oe-init-build-env">oe-init-build-env</a>
            for more information on this script.
        </p><p>
            Once the build environment is set up, you can build a target using:
            </p><pre class="literallayout">
     $ bitbake &lt;target&gt;
            </pre><p>
        </p><p>
            The <code class="filename">target</code> is the name of the recipe you want to build. 
            Common targets are the images in <code class="filename">meta/recipes-core/images</code>,
            <code class="filename">/meta/recipes-sato/images</code>, etc. all found in the 
            <a class="link" href="#source-directory" target="_top">source directory</a>.
            Or, the target can be the name of a recipe for a specific piece of software such as 
            <span class="application">busybox</span>. 
            For more details about the images the OpenEmbedded build system supports, see the 
            "<a class="link" href="#ref-images" title="Chapter 7. Images">Images</a>" chapter.
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
            Building an image without GNU Public License Version 3 (GPLv3) components is 
            only supported for minimal and base images.
            See the "<a class="link" href="#ref-images" title="Chapter 7. Images">Images</a>" chapter for more information.
        </div></div><div class="section" title="2.1.2. Building an Image Using GPL Components"><div class="titlepage"><div><div><h3 class="title"><a id="building-an-image-using-gpl-components"></a>2.1.2. Building an Image Using GPL Components</h3></div></div></div><p>
            When building an image using GPL components, you need to maintain your original 
            settings and not switch back and forth applying different versions of the GNU
            Public License.  
            If you rebuild using different versions of GPL, dependency errors might occur
            due to some components not being rebuilt.
        </p></div></div><div class="section" title="2.2. Installing and Using the Result"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-install"></a>2.2. Installing and Using the Result</h2></div></div></div><p>
        Once an image has been built, it often needs to be installed. 
        The images and kernels built by the OpenEmbedded build system are placed in the 
        <a class="link" href="#build-directory" target="_top">build directory</a> in 
        <code class="filename">tmp/deploy/images</code>. 
        For information on how to run pre-built images such as <code class="filename">qemux86</code> 
        and <code class="filename">qemuarm</code>, see the
        "<a class="link" href="#using-pre-built" target="_top">Using Pre-Built Binaries and QEMU</a>"
        section in the Yocto Project Quick Start.
        For information about how to install these images, see the documentation for your
        particular board/machine.
    </p></div><div class="section" title="2.3. Debugging Build Failures"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-debugging"></a>2.3. Debugging Build Failures</h2></div></div></div><p>
        The exact method for debugging build failures depends on the nature of the 
        problem and on the system's area from which the bug originates. 
        Standard debugging practices such as comparison against the last 
        known working version with examination of the changes and the re-application of steps 
        to identify the one causing the problem are
        valid for the Yocto Project just as they are for any other system. 
        Even though it is impossible to detail every possible potential failure, 
        this section provides some general tips to aid in debugging.
    </p><div class="section" title="2.3.1. Task Failures"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-debugging-taskfailures"></a>2.3.1. Task Failures</h3></div></div></div><p>The log file for shell tasks is available in 
            <code class="filename">${WORKDIR}/temp/log.do_taskname.pid</code>. 
            For example, the <code class="filename">compile</code> task for the QEMU minimal image for the x86
            machine (<code class="filename">qemux86</code>) might be 
            <code class="filename">tmp/work/qemux86-poky-linux/core-image-minimal-1.0-r0/temp/log.do_compile.20830</code>.
            To see what BitBake runs to generate that log, look at the corresponding 
            <code class="filename">run.do_taskname.pid</code> file located in the same directory.
        </p><p>
            Presently, the output from Python tasks is sent directly to the console.
        </p></div><div class="section" title="2.3.2. Running Specific Tasks"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-debugging-taskrunning"></a>2.3.2. Running Specific Tasks</h3></div></div></div><p>
            Any given package consists of a set of tasks.  
            The standard BitBake behavior in most cases is: <code class="filename">fetch</code>, 
            <code class="filename">unpack</code>, 
            <code class="filename">patch</code>, <code class="filename">configure</code>,
            <code class="filename">compile</code>, <code class="filename">install</code>, <code class="filename">package</code>,
            <code class="filename">package_write</code>, and <code class="filename">build</code>. 
            The default task is <code class="filename">build</code> and any tasks on which it depends 
            build first.
            Some tasks exist, such as <code class="filename">devshell</code>, that are not part of the
            default build chain.  
            If you wish to run a task that is not part of the default build chain, you can use the 
            <code class="filename">-c</code> option in BitBake as follows:
            </p><pre class="literallayout">
     $ bitbake matchbox-desktop -c devshell
            </pre><p>
        </p><p>
            If you wish to rerun a task, use the <code class="filename">-f</code> force option. 
            For example, the following sequence forces recompilation after changing files in the 
            working directory.
            </p><pre class="literallayout">
     $ bitbake matchbox-desktop
               .
               .
        [make some changes to the source code in the working directory]
               .
               .
     $ bitbake matchbox-desktop -c compile -f
     $ bitbake matchbox-desktop
            </pre><p>
        </p><p>
            This sequence first builds <code class="filename">matchbox-desktop</code> and then recompiles it.
            The last command reruns all tasks (basically the packaging tasks) after the compile.
            BitBake recognizes that the <code class="filename">compile</code> task was rerun and therefore 
            understands that the other tasks also need to be run again.
        </p><p>
            You can view a list of tasks in a given package by running the
            <code class="filename">listtasks</code> task as follows:
            </p><pre class="literallayout">
     $ bitbake matchbox-desktop -c listtasks
            </pre><p>
            The results are in the file <code class="filename">${WORKDIR}/temp/log.do_listtasks</code>.
        </p></div><div class="section" title="2.3.3. Dependency Graphs"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-debugging-dependencies"></a>2.3.3. Dependency Graphs</h3></div></div></div><p>
            Sometimes it can be hard to see why BitBake wants to build some other packages before a given 
            package you have specified.
            The <code class="filename">bitbake -g targetname</code> command creates the 
            <code class="filename">depends.dot</code>, <code class="filename">package-depends.dot</code>,
            and <code class="filename">task-depends.dot</code> files in the current directory. 
            These files show the package and task dependencies and are useful for debugging problems.
            You can use the <code class="filename">bitbake -g -u depexp targetname</code> command to 
            display the results in a more human-readable form.
        </p></div><div class="section" title="2.3.4. General BitBake Problems"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-debugging-bitbake"></a>2.3.4. General BitBake Problems</h3></div></div></div><p>
            You can see debug output from BitBake by using the <code class="filename">-D</code> option.
            The debug output gives more information about what BitBake
            is doing and the reason behind it. 
            Each <code class="filename">-D</code> option you use increases the logging level.
            The most common usage is <code class="filename">-DDD</code>.
        </p><p>
            The output from <code class="filename">bitbake -DDD -v targetname</code> can reveal why
            BitBake chose a certain version of a package or why BitBake
            picked a certain provider.
            This command could also help you in a situation where you think BitBake did something 
            unexpected.
        </p></div><div class="section" title="2.3.5. Building with No Dependencies"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-debugging-buildfile"></a>2.3.5. Building with No Dependencies</h3></div></div></div><p>
            If you really want to build a specific <code class="filename">.bb</code> file, you can use
            the command form <code class="filename">bitbake -b &lt;somepath/somefile.bb&gt;</code>. 
            This command form does not check for dependencies so you should use it
            only when you know its dependencies already exist. 
            You can also specify fragments of the filename.
            In this case, BitBake checks for a unique match.
        </p></div><div class="section" title="2.3.6. Variables"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-debugging-variables"></a>2.3.6. Variables</h3></div></div></div><p>
            The <code class="filename">-e</code> option dumps the resulting environment for
            either the configuration (no package specified) or for a
            specific package when specified; or <code class="filename">-b recipename</code>
            to show the environment from parsing a single recipe file only.
        </p></div><div class="section" title="2.3.7. Recipe Logging Mechanisms"><div class="titlepage"><div><div><h3 class="title"><a id="recipe-logging-mechanisms"></a>2.3.7. Recipe Logging Mechanisms</h3></div></div></div><p>
            Best practices exist while writing recipes that both log build progress and 
            act on build conditions such as warnings and errors. 
            Both Python and Bash language bindings exist for the logging mechanism:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Python:</em></span> For Python functions, BitBake
                    supports several loglevels: <code class="filename">bb.fatal</code>, 
                    <code class="filename">bb.error</code>, <code class="filename">bb.warn</code>,
                    <code class="filename">bb.note</code>, <code class="filename">bb.plain</code>,
                    and <code class="filename">bb.debug</code>.</p></li><li class="listitem"><p><span class="emphasis"><em>Bash:</em></span> For Bash functions, the same set 
                    of loglevels exist and are accessed with a similar syntax:
                    <code class="filename">bbfatal</code>, <code class="filename">bberror</code>, 
                    <code class="filename">bbwarn</code>, <code class="filename">bbnote</code>, 
                    <code class="filename">bbplain</code>, and <code class="filename">bbdebug</code>.</p></li></ul></div><p>
        </p><p>
            For guidance on how logging is handled in both Python and Bash recipes, see the 
            <code class="filename">logging.bbclass</code> file in the 
            <code class="filename">meta/classes</code> folder of the 
            <a class="link" href="#source-directory" target="_top">source directory</a>.
        </p><div class="section" title="2.3.7.1. Logging With Python"><div class="titlepage"><div><div><h4 class="title"><a id="logging-with-python"></a>2.3.7.1. Logging With Python</h4></div></div></div><p>
                When creating recipes using Python and inserting code that handles build logs
                keep in mind the goal is to have informative logs while keeping the console as 
                "silent" as possible. 
                Also, if you want status messages in the log use the "debug" loglevel.
            </p><p>
                Following is an example written in Python.
                The code handles logging for a function that determines the number of tasks 
                needed to be run:
                </p><pre class="literallayout">
     python do_listtasks() {
         bb.debug(2, "Starting to figure out the task list")
         if noteworthy_condition:
             bb.note("There are 47 tasks to run")
         bb.debug(2, "Got to point xyz")
         if warning_trigger:
             bb.warn("Detected warning_trigger, this might be a problem later.")
         if recoverable_error:
             bb.error("Hit recoverable_error, you really need to fix this!")
         if fatal_error:
             bb.fatal("fatal_error detected, unable to print the task list")
         bb.plain("The tasks present are abc")
         bb.debug(2, "Finished figuring out the tasklist")
     }
                </pre><p>
            </p></div><div class="section" title="2.3.7.2. Logging With Bash"><div class="titlepage"><div><div><h4 class="title"><a id="logging-with-bash"></a>2.3.7.2. Logging With Bash</h4></div></div></div><p>
                When creating recipes using Bash and inserting code that handles build
                logs you have the same goals - informative with minimal console output. 
                The syntax you use for recipes written in Bash is similar to that of 
                recipes written in Python described in the previous section.
            </p><p>
                Following is an example written in Bash.
                The code logs the progress of the <code class="filename">do_my_function</code> function.
                </p><pre class="literallayout">
     do_my_function() {
         bbdebug 2 "Running do_my_function"
         if [ exceptional_condition ]; then
             bbnote "Hit exceptional_condition"
         fi
         bbdebug 2  "Got to point xyz"
         if [ warning_trigger ]; then
             bbwarn "Detected warning_trigger, this might cause a problem later."
         fi
         if [ recoverable_error ]; then
             bberror "Hit recoverable_error, correcting"
         fi
         if [ fatal_error ]; then
             bbfatal "fatal_error detected"
         fi
         bbdebug 2 "Completed do_my_function"
     }
                </pre><p>
            </p></div></div><div class="section" title="2.3.8. Other Tips"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-debugging-others"></a>2.3.8. Other Tips</h3></div></div></div><p>
            Here are some other tips that you might find useful:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>When adding new packages, it is worth watching for 
                    undesirable items making their way into compiler command lines.
                    For example, you do not want references to local system files like 
                    <code class="filename">/usr/lib/</code> or <code class="filename">/usr/include/</code>.
                    </p></li><li class="listitem"><p>If you want to remove the psplash boot splashscreen, 
                    add <code class="filename">psplash=false</code> to  the kernel command line.
                    Doing so prevents psplash from loading and thus allows you to see the console.
                    It is also possible to switch out of the splashscreen by 
                    switching the virtual console (e.g. Fn+Left or Fn+Right on a Zaurus).
                    </p></li></ul></div><p>
        </p></div></div></div>

    <div class="chapter" title="Chapter 3. Technical Details"><div class="titlepage"><div><div><h2 class="title"><a id="technical-details"></a>Chapter 3. Technical Details</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#usingpoky-components">3.1. Yocto Project Components</a></span></dt><dd><dl><dt><span class="section"><a href="#usingpoky-components-bitbake">3.1.1. BitBake</a></span></dt><dt><span class="section"><a href="#usingpoky-components-metadata">3.1.2. Metadata (Recipes)</a></span></dt><dt><span class="section"><a href="#usingpoky-components-classes">3.1.3. Classes</a></span></dt><dt><span class="section"><a href="#usingpoky-components-configuration">3.1.4. Configuration</a></span></dt></dl></dd><dt><span class="section"><a href="#shared-state-cache">3.2. Shared State Cache</a></span></dt><dd><dl><dt><span class="section"><a href="#overall-architecture">3.2.1. Overall Architecture</a></span></dt><dt><span class="section"><a href="#checksums">3.2.2. Checksums (Signatures)</a></span></dt><dt><span class="section"><a href="#shared-state">3.2.3. Shared State</a></span></dt><dt><span class="section"><a href="#tips-and-tricks">3.2.4. Tips and Tricks</a></span></dt></dl></dd><dt><span class="section"><a href="#x32">3.3. x32</a></span></dt><dd><dl><dt><span class="section"><a href="#support">3.3.1. Support</a></span></dt><dt><span class="section"><a href="#future-development-and-limitations">3.3.2. Future Development and Limitations</a></span></dt><dt><span class="section"><a href="#using-x32-right-now">3.3.3. Using x32 Right Now</a></span></dt></dl></dd><dt><span class="section"><a href="#licenses">3.4. Licenses</a></span></dt><dd><dl><dt><span class="section"><a href="#usingpoky-configuring-LIC_FILES_CHKSUM">3.4.1. Tracking License Changes</a></span></dt><dt><span class="section"><a href="#enabling-commercially-licensed-recipes">3.4.2. Enabling Commercially Licensed Recipes</a></span></dt></dl></dd></dl></div><p>
        This chapter provides technical details for various parts of the Yocto Project. 
        Currently, topics include Yocto Project components and shared state (sstate) cache.
    </p><div class="section" title="3.1. Yocto Project Components"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="usingpoky-components"></a>3.1. Yocto Project Components</h2></div></div></div><p>
        The BitBake task executor together with various types of configuration files form the 
        OpenEmbedded Core.
        This section overviews the BitBake task executor and the
        configuration files by describing what they are used for and how they interact.
    </p><p>  
        BitBake handles the parsing and execution of the data files. 
        The data itself is of various types:
    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>Recipes:</em></span>  Provides details about particular 
            pieces of software</p></li><li class="listitem"><p><span class="emphasis"><em>Class Data:</em></span>  An abstraction of common build 
            information (e.g. how to build a Linux kernel).</p></li><li class="listitem"><p><span class="emphasis"><em>Configuration Data:</em></span>  Defines machine-specific settings, 
            policy decisions, etc.
            Configuration data acts as the glue to bind everything together.</p></li></ul></div><p>
        For more information on data, see the
        "<a class="link" href="#yocto-project-terms" target="_top">Yocto Project Terms</a>"
        section in the Yocto Project Development Manual.
    </p><p> 
        BitBake knows how to combine multiple data sources together and refers to each data source
        as a layer.
        For information on layers, see the 
        "<a class="link" href="#understanding-and-creating-layers" target="_top">Understanding and 
        Creating Layers</a>" section of the Yocto Project Development Manual.
    </p><p>
        Following are some brief details on these core components.
        For more detailed information on these components see the 
        "<a class="link" href="#ref-structure" title="Chapter 4. Source Directory Structure">Directory Structure</a>" chapter.
    </p><div class="section" title="3.1.1. BitBake"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-components-bitbake"></a>3.1.1. BitBake</h3></div></div></div><p>
            BitBake is the tool at the heart of the OpenEmbedded build system and is responsible
            for parsing the metadata, generating a list of tasks from it,
            and then executing those tasks. 
            To see a list of the options BitBake supports, use the following help command:
            </p><pre class="literallayout">
     $ bitbake --help
            </pre><p>
        </p><p>
            The most common usage for BitBake is <code class="filename">bitbake &lt;packagename&gt;</code>, where
            <code class="filename">packagename</code> is the name of the package you want to build 
            (referred to as the "target" in this manual). 
            The target often equates to the first part of a <code class="filename">.bb</code> filename.
            So, to run the <code class="filename">matchbox-desktop_1.2.3.bb</code> file, you
            might type the following:
            </p><pre class="literallayout">
     $ bitbake matchbox-desktop
            </pre><p>
            Several different versions of <code class="filename">matchbox-desktop</code> might exist.
            BitBake chooses the one selected by the distribution configuration.
            You can get more details about how BitBake chooses between different 
            target versions and providers in the 
            "<a class="link" href="#ref-bitbake-providers" title="5.2. Preferences and Providers">Preferences and Providers</a>" section.
        </p><p>
            BitBake also tries to execute any dependent tasks first.
            So for example, before building <code class="filename">matchbox-desktop</code>, BitBake
            would build a cross compiler and <code class="filename">eglibc</code> if they had not already 
            been built.
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>This release of the Yocto Project does not support the <code class="filename">glibc</code>
                GNU version of the Unix standard C library.  By default, the OpenEmbedded build system
                builds with <code class="filename">eglibc</code>.</div><p>
        </p><p>
            A useful BitBake option to consider is the <code class="filename">-k</code> or 
            <code class="filename">--continue</code> option.  
            This option instructs BitBake to try and continue processing the job as much 
            as possible even after encountering an error.  
            When an error occurs, the target that
            failed and those that depend on it cannot be remade.  
            However, when you use this option other dependencies can still be processed.
        </p></div><div class="section" title="3.1.2. Metadata (Recipes)"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-components-metadata"></a>3.1.2. Metadata (Recipes)</h3></div></div></div><p>
            The <code class="filename">.bb</code> files are usually referred to as "recipes." 
            In general, a recipe contains information about a single piece of software.
            The information includes the location from which to download the source patches 
            (if any are needed), which special configuration options to apply, 
            how to compile the source files, and how to package the compiled output. 
        </p><p>
            The term "package" can also be used to describe recipes.
            However, since the same word is used for the packaged output from the OpenEmbedded 
            build system (i.e. <code class="filename">.ipk</code> or <code class="filename">.deb</code> files), 
            this document avoids using the term "package" when referring to recipes.
        </p></div><div class="section" title="3.1.3. Classes"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-components-classes"></a>3.1.3. Classes</h3></div></div></div><p>
            Class files (<code class="filename">.bbclass</code>) contain information that is useful to share
            between metadata files. 
            An example is the Autotools class, which contains
            common settings for any application that Autotools uses.
            The "<a class="link" href="#ref-classes" title="Chapter 6. Classes">Reference: Classes</a>" chapter provides details
            about common classes and how to use them.
        </p></div><div class="section" title="3.1.4. Configuration"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-components-configuration"></a>3.1.4. Configuration</h3></div></div></div><p>
            The configuration files (<code class="filename">.conf</code>) define various configuration variables
            that govern the OpenEmbedded build process. 
            These files fall into several areas that define machine configuration options, 
            distribution configuration options, compiler tuning options, general common configuration
            options and user configuration options (<code class="filename">local.conf</code>, which is found
            in the <a class="ulink" href="build-directory" target="_top">build directory</a>).
        </p></div></div><div class="section" title="3.2. Shared State Cache"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="shared-state-cache"></a>3.2. Shared State Cache</h2></div></div></div><p>
        By design, the OpenEmbedded build system builds everything from scratch unless 
        BitBake can determine that parts don't need to be rebuilt.
        Fundamentally, building from scratch is attractive as it means all parts are 
        built fresh and there is no possibility of stale data causing problems. 
        When developers hit problems, they typically default back to building from scratch
        so they know the state of things from the start.
    </p><p>  
        Building an image from scratch is both an advantage and a disadvantage to the process. 
        As mentioned in the previous paragraph, building from scratch ensures that 
        everything is current and starts from a known state.
        However, building from scratch also takes much longer as it generally means 
        rebuilding things that don't necessarily need rebuilt.
    </p><p>
        The Yocto Project implements shared state code that supports incremental builds.
        The implementation of the shared state code answers the following questions that
        were fundamental roadblocks within the OpenEmbedded incremental build support system:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">What pieces of the system have changed and what pieces have not changed?</li><li class="listitem">How are changed pieces of software removed and replaced?</li><li class="listitem">How are pre-built components that don't need to be rebuilt from scratch
                used when they are available?</li></ul></div><p>
    </p><p>
        For the first question, the build system detects changes in the "inputs" to a given task by 
        creating a checksum (or signature) of the task's inputs. 
        If the checksum changes, the system assumes the inputs have changed and the task needs to be 
        rerun.
        For the second question, the shared state (sstate) code tracks which tasks add which output
        to the build process. 
        This means the output from a given task can be removed, upgraded or otherwise manipulated.
        The third question is partly addressed by the solution for the second question
        assuming the build system can fetch the sstate objects from remote locations and 
        install them if they are deemed to be valid.
    </p><p>
        The rest of this section goes into detail about the overall incremental build
        architecture, the checksums (signatures), shared state, and some tips and tricks.
    </p><div class="section" title="3.2.1. Overall Architecture"><div class="titlepage"><div><div><h3 class="title"><a id="overall-architecture"></a>3.2.1. Overall Architecture</h3></div></div></div><p>
            When determining what parts of the system need to be built, BitBake 
            uses a per-task basis and does not use a per-recipe basis.
            You might wonder why using a per-task basis is preferred over a per-recipe basis.
            To help explain, consider having the IPK packaging backend enabled and then switching to DEB. 
            In this case, <code class="filename">do_install</code> and <code class="filename">do_package</code>
            output are still valid.
            However, with a per-recipe approach, the build would not include the 
            <code class="filename">.deb</code> files.        
            Consequently, you would have to invalidate the whole build and rerun it. 
            Rerunning everything is not the best situation.
            Also in this case, the core must be "taught" much about specific tasks. 
            This methodology does not scale well and does not allow users to easily add new tasks 
            in layers or as external recipes without touching the packaged-staging core.
        </p></div><div class="section" title="3.2.2. Checksums (Signatures)"><div class="titlepage"><div><div><h3 class="title"><a id="checksums"></a>3.2.2. Checksums (Signatures)</h3></div></div></div><p>
            The shared state code uses a checksum, which is a unique signature of a task's 
            inputs, to determine if a task needs to be run again. 
            Because it is a change in a task's inputs that triggers a rerun, the process
            needs to detect all the inputs to a given task. 
            For shell tasks, this turns out to be fairly easy because
            the build process generates a "run" shell script for each task and 
            it is possible to create a checksum that gives you a good idea of when 
            the task's data changes.
        </p><p>
            To complicate the problem, there are things that should not be included in 
            the checksum. 
            First, there is the actual specific build path of a given task - 
            the <code class="filename">WORKDIR</code>. 
            It does not matter if the working directory changes because it should not 
            affect the output for target packages.
            Also, the build process has the objective of making native/cross packages relocatable. 
            The checksum therefore needs to exclude <code class="filename">WORKDIR</code>.
            The simplistic approach for excluding the working directory is to set 
            <code class="filename">WORKDIR</code> to some fixed value and create the checksum
            for the "run" script. 
        </p><p>
            Another problem results from the "run" scripts containing functions that 
            might or might not get called.  
            The incremental build solution contains code that figures out dependencies 
            between shell functions.
            This code is used to prune the "run" scripts down to the minimum set, 
            thereby alleviating this problem and making the "run" scripts much more 
            readable as a bonus.
        </p><p>
            So far we have solutions for shell scripts.
            What about python tasks?
            The same approach applies even though these tasks are more difficult.
            The process needs to figure out what variables a python function accesses 
            and what functions it calls.
            Again, the incremental build solution contains code that first figures out 
            the variable and function dependencies, and then creates a checksum for the data 
            used as the input to the task.
        </p><p>
            Like the <code class="filename">WORKDIR</code> case, situations exist where dependencies 
            should be ignored.
            For these cases, you can instruct the build process to ignore a dependency
            by using a line like the following:
            </p><pre class="literallayout">
     PACKAGE_ARCHS[vardepsexclude] = "MACHINE"
            </pre><p>
            This example ensures that the <code class="filename">PACKAGE_ARCHS</code> variable does not 
            depend on the value of <code class="filename">MACHINE</code>, even if it does reference it.
        </p><p>
            Equally, there are cases where we need to add dependencies BitBake is not able to find.
            You can accomplish this by using a line like the following:
            </p><pre class="literallayout">
      PACKAGE_ARCHS[vardeps] = "MACHINE"
            </pre><p>
            This example explicitly adds the <code class="filename">MACHINE</code> variable as a 
            dependency for <code class="filename">PACKAGE_ARCHS</code>.
        </p><p> 
            Consider a case with inline python, for example, where BitBake is not
            able to figure out dependencies. 
            When running in debug mode (i.e. using <code class="filename">-DDD</code>), BitBake 
            produces output when it discovers something for which it cannot figure out
            dependencies. 
            The Yocto Project team has currently not managed to cover those dependencies 
            in detail and is aware of the need to fix this situation.
        </p><p>
            Thus far, this section has limited discussion to the direct inputs into a task.
            Information based on direct inputs is referred to as the "basehash" in the
            code. 
            However, there is still the question of a task's indirect inputs - the
            things that were already built and present in the build directory. 
            The checksum (or signature) for a particular task needs to add the hashes 
            of all the tasks on which the particular task depends. 
            Choosing which dependencies to add is a policy decision. 
            However, the effect is to generate a master checksum that combines the basehash 
            and the hashes of the task's dependencies.
        </p><p>
            At the code level, there are a variety of ways both the basehash and the
            dependent task hashes can be influenced. 
            Within the BitBake configuration file, we can give BitBake some extra information 
            to help it construct the basehash.
            The following statements effectively result in a list of global variable
            dependency excludes - variables never included in any checksum:
            </p><pre class="literallayout">
  BB_HASHBASE_WHITELIST ?= "TMPDIR FILE PATH PWD BB_TASKHASH BBPATH"
  BB_HASHBASE_WHITELIST += "DL_DIR SSTATE_DIR THISDIR FILESEXTRAPATHS"
  BB_HASHBASE_WHITELIST += "FILE_DIRNAME HOME LOGNAME SHELL TERM USER"
  BB_HASHBASE_WHITELIST += "FILESPATH USERNAME STAGING_DIR_HOST STAGING_DIR_TARGET"
            </pre><p>
            The previous example actually excludes 
            <a class="link" href="#var-WORKDIR" title="WORKDIR"><code class="filename">WORKDIR</code></a>
            since it is actually constructed as a path within 
            <a class="link" href="#var-TMPDIR" title="TMPDIR"><code class="filename">TMPDIR</code></a>, which is on 
            the whitelist. 
        </p><p>
            The rules for deciding which hashes of dependent tasks to include through
            dependency chains are more complex and are generally accomplished with a 
            python function. 
            The code in <code class="filename">meta/lib/oe/sstatesig.py</code> shows two examples
            of this and also illustrates how you can insert your own policy into the system 
            if so desired.
            This file defines the two basic signature generators <code class="filename">OE-Core</code>
            uses:  "OEBasic" and "OEBasicHash". 
            By default, there is a dummy "noop" signature handler enabled in BitBake. 
            This means that behavior is unchanged from previous versions. 
            <code class="filename">OE-Core</code> uses the "OEBasic" signature handler by default
            through this setting in the <code class="filename">bitbake.conf</code> file:
            </p><pre class="literallayout">
  BB_SIGNATURE_HANDLER ?= "OEBasic"
            </pre><p>
            The "OEBasicHash" <code class="filename">BB_SIGNATURE_HANDLER</code> is the same as the 
            "OEBasic" version but adds the task hash to the stamp files. 
            This results in any metadata change that changes the task hash, automatically 
            causing the task to be run again. 
            This removes the need to bump <a class="link" href="#var-PR" title="PR"><code class="filename">PR</code></a>
            values and changes to metadata automatically ripple across the build. 
            Currently, this behavior is not the default behavior for <code class="filename">OE-Core</code>
            but is the default in <code class="filename">poky</code>.
        </p><p>
            It is also worth noting that the end result of these signature generators is to
            make some dependency and hash information available to the build. 
            This information includes:
            </p><pre class="literallayout">
  BB_BASEHASH_task-&lt;taskname&gt; - the base hashes for each task in the recipe
  BB_BASEHASH_&lt;filename:taskname&gt; - the base hashes for each dependent task
  BBHASHDEPS_&lt;filename:taskname&gt; - The task dependencies for each task
  BB_TASKHASH - the hash of the currently running task
            </pre><p>
        </p></div><div class="section" title="3.2.3. Shared State"><div class="titlepage"><div><div><h3 class="title"><a id="shared-state"></a>3.2.3. Shared State</h3></div></div></div><p>
            Checksums and dependencies, as discussed in the previous section, solve half the 
            problem.
            The other part of the problem is being able to use checksum information during the build
            and being able to reuse or rebuild specific components.
        </p><p>
            The shared state class (<code class="filename">sstate.bbclass</code>) 
            is a relatively generic implementation of how to "capture" a snapshot of a given task. 
            The idea is that the build process does not care about the source of a task's output.
            Output could be freshly built or it could be downloaded and unpacked from
            somewhere - the build process doesn't need to worry about its source.
        </p><p>
            There are two types of output, one is just about creating a directory
            in <code class="filename">WORKDIR</code>.
            A good example is the output of either <code class="filename">do_install</code> or 
            <code class="filename">do_package</code>. 
            The other type of output occurs when a set of data is merged into a shared directory 
            tree such as the sysroot.
        </p><p>
            The Yocto Project team has tried to keep the details of the implementation hidden in 
            <code class="filename">sstate.bbclass</code>. 
            From a user's perspective, adding shared state wrapping to a task
            is as simple as this <code class="filename">do_deploy</code> example taken from 
            <code class="filename">do_deploy.bbclass</code>:
            </p><pre class="literallayout">
     DEPLOYDIR = "${WORKDIR}/deploy-${PN}"
     SSTATETASKS += "do_deploy"
     do_deploy[sstate-name] = "deploy"
     do_deploy[sstate-inputdirs] = "${DEPLOYDIR}"
     do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}"

     python do_deploy_setscene () {
         sstate_setscene(d)
     }
     addtask do_deploy_setscene
            </pre><p>
            In the example, we add some extra flags to the task, a name field ("deploy"), an
            input directory where the task sends data, and the output
            directory where the data from the task should eventually be copied. 
            We also add a <code class="filename">_setscene</code> variant of the task and add the task
            name to the <code class="filename">SSTATETASKS</code> list.
        </p><p>
            If you have a directory whose contents you need to preserve, you can do this with 
            a line like the following:
            </p><pre class="literallayout">
     do_package[sstate-plaindirs] = "${PKGD} ${PKGDEST}"
            </pre><p>
            This method, as well as the following example, also works for multiple directories.
            </p><pre class="literallayout">
     do_package[sstate-inputdirs] = "${PKGDESTWORK} ${SHLIBSWORKDIR}"
     do_package[sstate-outputdirs] = "${PKGDATA_DIR} ${SHLIBSDIR}"
     do_package[sstate-lockfile] = "${PACKAGELOCK}"
            </pre><p>
            These methods also include the ability to take a lockfile when manipulating
            shared state directory structures since some cases are sensitive to file
            additions or removals.
        </p><p>
            Behind the scenes, the shared state code works by looking in 
            <code class="filename">SSTATE_DIR</code> and  
            <code class="filename">SSTATE_MIRRORS</code> for shared state files. 
            Here is an example:
            </p><pre class="literallayout">
     SSTATE_MIRRORS ?= "\
     file://.* http://someserver.tld/share/sstate/ \n \
     file://.* file:///some/local/dir/sstate/"
            </pre><p>
        </p><p>
            The shared state package validity can be detected just by looking at the
            filename since the filename contains the task checksum (or signature) as
            described earlier in this section. 
            If a valid shared state package is found, the build process downloads it 
            and uses it to accelerate the task.
        </p><p>
            The build processes uses the <code class="filename">*_setscene</code> tasks
            for the task acceleration phase.
            BitBake goes through this phase before the main execution code and tries
            to accelerate any tasks for which it can find shared state packages. 
            If a shared state package for a task is available, the shared state
            package is used.
            This means the task and any tasks on which it is dependent are not 
            executed.
        </p><p>
            As a real world example, the aim is when building an IPK-based image,
            only the <code class="filename">do_package_write_ipk</code> tasks would have their 
            shared state packages fetched and extracted. 
            Since the sysroot is not used, it would never get extracted. 
            This is another reason why a task-based approach is preferred over a 
            recipe-based approach, which would have to install the output from every task.
        </p></div><div class="section" title="3.2.4. Tips and Tricks"><div class="titlepage"><div><div><h3 class="title"><a id="tips-and-tricks"></a>3.2.4. Tips and Tricks</h3></div></div></div><p>
            The code in the build system that supports incremental builds is not 
            simple code.
            This section presents some tips and tricks that help you work around 
            issues related to shared state code.
        </p><div class="section" title="3.2.4.1. Debugging"><div class="titlepage"><div><div><h4 class="title"><a id="debugging"></a>3.2.4.1. Debugging</h4></div></div></div><p>
                When things go wrong, debugging needs to be straightforward. 
                Because of this, the Yocto Project team included strong debugging
                tools:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Whenever a shared state package is written out, so is a
                        corresponding <code class="filename">.siginfo</code> file. 
                        This practice results in a pickled python database of all
                        the metadata that went into creating the hash for a given shared state
                        package.</p></li><li class="listitem"><p>If BitBake is run with the <code class="filename">--dump-signatures</code>
                        (or <code class="filename">-S</code>) option, BitBake dumps out 
                        <code class="filename">.siginfo</code> files in
                        the stamp directory for every task it would have executed instead of
                        building the specified target package.</p></li><li class="listitem"><p>There is a <code class="filename">bitbake-diffsigs</code> command that
                        can process these <code class="filename">.siginfo</code> files. 
                        If one file is specified, it will dump out the dependency
                        information in the file. 
                        If two files are specified, it will compare the two files and dump out 
                        the differences between the two.
                        This allows the question of "What changed between X and Y?" to be
                        answered easily.</p></li></ul></div><p>
            </p></div><div class="section" title="3.2.4.2. Invalidating Shared State"><div class="titlepage"><div><div><h4 class="title"><a id="invalidating-shared-state"></a>3.2.4.2. Invalidating Shared State</h4></div></div></div><p>
                The shared state code uses checksums and shared state
                cache to avoid unnecessarily rebuilding tasks.
                As with all schemes, this one has some drawbacks.
                It is possible that you could make implicit changes that are not factored 
                into the checksum calculation, but do affect a task's output. 
                A good example is perhaps when a tool changes its output.
                Let's say that the output of <code class="filename">rpmdeps</code> needed to change.
                The result of the change should be that all the "package", "package_write_rpm",
                and "package_deploy-rpm" shared state cache items would become invalid.
                But, because this is a change that is external to the code and therefore implicit,
                the associated shared state cache items do not become invalidated.
                In this case, the build process would use the cached items rather than running the 
                task again. 
                Obviously, these types of implicit changes can cause problems.
            </p><p>
                To avoid these problems during the build, you need to understand the effects of any
                change you make.
                Note that any changes you make directly to a function automatically are factored into 
                the checksum calculation and thus, will invalidate the associated area of sstate cache.
                You need to be aware of any implicit changes that are not obvious changes to the 
                code and could affect the output of a given task. 
                Once you are aware of such a change, you can take steps to invalidate the cache 
                and force the task to run. 
                The step to take is as simple as changing a function's comments in the source code. 
                For example, to invalidate package shared state files, change the comment statements
                of <code class="filename">do_package</code> or the comments of one of the functions it calls.
                The change is purely cosmetic, but it causes the checksum to be recalculated and  
                forces the task to be run again.
            </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                For an example of a commit that makes a cosmetic change to invalidate 
                a shared state, see this
                <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54" target="_top">commit</a>.
            </div></div></div></div><div class="section" title="3.3. x32"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="x32"></a>3.3. x32</h2></div></div></div><p>
        x32 is a new processor-specific Application Binary Interface (psABI) for x86_64. 
        An ABI defines the calling conventions between functions in a processing environment.  
        The interface determines what registers are used and what the sizes are for various C data types.
    </p><p>
        Some processing environments prefer using 32-bit applications even when running 
        on Intel 64-bit platforms. 
        Consider the i386 psABI, which is a very old 32-bit ABI for Intel 64-bit platforms.
        The i386 psABI does not provide efficient use and access of the Intel 64-bit processor resources,
        leaving the system underutilized. 
        Now consider the x86_64 psABI.
        This ABI is newer and uses 64-bits for data sizes and program pointers.
        The extra bits increase the footprint size of the programs, libraries, 
        and also increases the memory and file system size requirements.
        Executing under the x32 psABI enables user programs to utilize CPU and system resources 
        more efficiently while keeping the memory footprint of the applications low.
        Extra bits are used for registers but not for addressing mechanisms. 
    </p><div class="section" title="3.3.1. Support"><div class="titlepage"><div><div><h3 class="title"><a id="support"></a>3.3.1. Support</h3></div></div></div><p>
            While the x32 psABI specifications are not fully finalized, this Yocto Project
            release supports current development specifications of x32 psABI.
            As of this release of the Yocto Project, x32 psABI support exists as follows:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>You can create packages and images in x32 psABI format on x86_64 architecture targets. 
                    </p></li><li class="listitem"><p>You can use the x32 psABI support through the <code class="filename">meta-x32</code>
                    layer on top of the OE-core/Yocto layer.</p></li><li class="listitem"><p>The toolchain from the <code class="filename">experimental/meta-x32</code> layer 
                    is used for building x32 psABI program binaries.</p></li><li class="listitem"><p>You can successfully build many recipes with the x32 toolchain.</p></li><li class="listitem"><p>You can create and boot <code class="filename">core-image-minimal</code> and 
                    <code class="filename">core-image-sato</code> images.</p></li></ul></div><p>
        </p></div><div class="section" title="3.3.2. Future Development and Limitations"><div class="titlepage"><div><div><h3 class="title"><a id="future-development-and-limitations"></a>3.3.2. Future Development and Limitations</h3></div></div></div><p>
            As of this Yocto Project release, the x32 psABI kernel and library interfaces 
            specifications are not finalized.
        </p><p>
            Future Plans for the x32 psABI in the Yocto Project include the following:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Enhance and fix the few remaining recipes so they  
                    work with and support x32 toolchains.</p></li><li class="listitem"><p>Enhance RPM Package Manager (RPM) support for x32 binaries.</p></li><li class="listitem"><p>Support larger images.</p></li><li class="listitem"><p>Integrate x32 recipes, toolchain, and kernel changes from 
                    <code class="filename">experimental/meta-x32</code> into OE-core.</p></li></ul></div><p>
        </p></div><div class="section" title="3.3.3. Using x32 Right Now"><div class="titlepage"><div><div><h3 class="title"><a id="using-x32-right-now"></a>3.3.3. Using x32 Right Now</h3></div></div></div><p>
            Despite the fact the x32 psABI support is in development state for this release of the
            Yocto Project, you can follow these steps to use the x32 spABI:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Add the <code class="filename">experimental/meta-x32</code> layer to your local
                    <a class="link" href="#build-directory" target="_top">build directory</a>.  
                    You can find the <code class="filename">experimental/meta-x32</code> source repository at
                    <a class="ulink" href="http://git.yoctoproject.org" target="_top">http://git.yoctoproject.org</a>.</p></li><li class="listitem"><p>Edit your <code class="filename">conf/bblayers.conf</code> file so that it includes
                    the <code class="filename">meta-x32</code>.
                    Here is an example:
                    </p><pre class="literallayout">
     BBLAYERS ?= " \
        /home/nitin/prj/poky.git/meta \
        /home/nitin/prj/poky.git/meta-yocto \
        /home/nitin/prj/meta-x32.git \
     "
                    </pre></li><li class="listitem"><p>Enable the x32 psABI tuning file for <code class="filename">x86_64</code>
                    machines by editing the <code class="filename">conf/local.conf</code> like this:
                    </p><pre class="literallayout">
      MACHINE = "qemux86-64"
      DEFAULTTUNE = "x86-64-x32"
      baselib = "${@d.getVar('BASE_LIB_tune-' + (d.getVar('DEFAULTTUNE', True) \
         or 'INVALID'), True) or 'lib'}"
      #MACHINE = "atom-pc"
      #DEFAULTTUNE = "core2-64-x32"
                    </pre></li><li class="listitem"><p>As usual, use BitBake to build an image that supports the x32 psABI.  
                    Here is an example:
                    </p><pre class="literallayout">
     $ bitake core-image-sato
                    </pre></li><li class="listitem"><p>As usual, run your image using QEMU:
                    </p><pre class="literallayout">
     $ runqemu qemux86-64 core-image-sato
                    </pre></li></ul></div><p>
        </p></div></div><div class="section" title="3.4. Licenses"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="licenses"></a>3.4. Licenses</h2></div></div></div><p>
        This section describes the mechanism by which the OpenEmbedded build system 
        tracks changes to licensing text.
        The section also describes how to enable commercially licensed recipes, 
        which by default are disabled.
    </p><div class="section" title="3.4.1. Tracking License Changes"><div class="titlepage"><div><div><h3 class="title"><a id="usingpoky-configuring-LIC_FILES_CHKSUM"></a>3.4.1. Tracking License Changes</h3></div></div></div><p>
            The license of an upstream project might change in the future. 
            In order to prevent these changes going unnoticed, the  
            <code class="filename"><a class="link" href="#var-LIC_FILES_CHKSUM" title="LIC_FILES_CHKSUM">LIC_FILES_CHKSUM</a></code>
            variable tracks changes to the license text. The checksums are validated at the end of the
            configure step, and if the checksums do not match, the build will fail.
        </p><div class="section" title="3.4.1.1. Specifying the LIC_FILES_CHKSUM Variable"><div class="titlepage"><div><div><h4 class="title"><a id="usingpoky-specifying-LIC_FILES_CHKSUM"></a>3.4.1.1. Specifying the <code class="filename">LIC_FILES_CHKSUM</code> Variable</h4></div></div></div><p>
                The <code class="filename">LIC_FILES_CHKSUM</code>
                variable contains checksums of the license text in the source code for the recipe.
                Following is an example of how to specify <code class="filename">LIC_FILES_CHKSUM</code>:
                </p><pre class="literallayout">
     LIC_FILES_CHKSUM = "file://COPYING;md5=xxxx \
                         file://licfile1.txt;beginline=5;endline=29;md5=yyyy \
                         file://licfile2.txt;endline=50;md5=zzzz \
                         ..."
                </pre><p>
            </p><p>
                The build system uses the 
                <code class="filename"><a class="link" href="#var-S" title="S">S</a></code> variable as the 
                default directory used when searching files listed in 
                <code class="filename">LIC_FILES_CHKSUM</code>.
                The previous example employs the default directory.
            </p><p>
                You can also use relative paths as shown in the following example: 
                </p><pre class="literallayout">
     LIC_FILES_CHKSUM = "file://src/ls.c;startline=5;endline=16;\
                                         md5=bb14ed3c4cda583abc85401304b5cd4e"
     LIC_FILES_CHKSUM = "file://../license.html;md5=5c94767cedb5d6987c902ac850ded2c6"
                </pre><p>
            </p><p>
                In this example, the first line locates a file in 
                <code class="filename">${S}/src/ls.c</code>. 
                The second line refers to a file in 
                <code class="filename"><a class="link" href="#var-WORKDIR" title="WORKDIR">WORKDIR</a></code>, which is the parent
                of <code class="filename"><a class="link" href="#var-S" title="S">S</a></code>.
            </p><p>
                Note that this variable is mandatory for all recipes, unless the 
                <code class="filename">LICENSE</code> variable is set to "CLOSED".
            </p></div><div class="section" title="3.4.1.2. Explanation of Syntax"><div class="titlepage"><div><div><h4 class="title"><a id="usingpoky-LIC_FILES_CHKSUM-explanation-of-syntax"></a>3.4.1.2. Explanation of Syntax</h4></div></div></div><p>
                As mentioned in the previous section, the 
                <code class="filename">LIC_FILES_CHKSUM</code> variable lists all the 
                important files that contain the license text for the source code. 
                It is possible to specify a checksum for an entire file, or a specific section of a
                file (specified by beginning and ending line numbers with the "beginline" and "endline"
                parameters, respectively). 
                The latter is useful for source files with a license notice header,
                README documents, and so forth.
                If you do not use the "beginline" parameter, then it is assumed that the text begins on the 
                first line of the file. 
                Similarly, if you do not use the "endline" parameter, it is assumed that the license text 
                ends with the last line of the file. 
            </p><p>
                The "md5" parameter stores the md5 checksum of the license text. 
                If the license text changes in any way as compared to this parameter
                then a mismatch occurs.
                This mismatch triggers a build failure and notifies the developer.
                Notification allows the developer to review and address the license text changes.
                Also note that if a mismatch occurs during the build, the correct md5 
                checksum is placed in the build log and can be easily copied to the recipe.
            </p><p>
                There is no limit to how many files you can specify using the 
                <code class="filename">LIC_FILES_CHKSUM</code> variable.
                Generally, however, every project requires a few specifications for license tracking. 
                Many projects have a "COPYING" file that stores the license information for all the source 
                code files.
                This practice allows you to just track the "COPYING" file as long as it is kept up to date. 
            </p><div class="tip" title="Tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Tip</h3>
                If you specify an empty or invalid "md5" parameter, BitBake returns an md5 mis-match 
                error and displays the correct "md5" parameter value during the build. 
                The correct parameter is also captured in the build log. 
            </div><div class="tip" title="Tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Tip</h3>
                If the whole file contains only license text, you do not need to use the "beginline" and 
                "endline" parameters. 
            </div></div></div><div class="section" title="3.4.2. Enabling Commercially Licensed Recipes"><div class="titlepage"><div><div><h3 class="title"><a id="enabling-commercially-licensed-recipes"></a>3.4.2. Enabling Commercially Licensed Recipes</h3></div></div></div><p>
            By default, the OpenEmbedded build system disables
            components that have commercial or other special licensing
            requirements.  
            Such requirements are defined on a
            recipe-by-recipe basis through the <code class="filename">LICENSE_FLAGS</code> variable
            definition in the affected recipe.  
            For instance, the
            <code class="filename">$HOME/poky/meta/recipes-multimedia/gstreamer/gst-plugins-ugly</code>
            recipe contains the following statement:
            </p><pre class="literallayout">
     LICENSE_FLAGS = "commercial"
            </pre><p>
            Here is a slightly more complicated example that contains both an
            explicit package name and version (after variable expansion):
            </p><pre class="literallayout">
     LICENSE_FLAGS = "license_${PN}_${PV}"
            </pre><p>
	        In order for a component restricted by a <code class="filename">LICENSE_FLAGS</code>
	        definition to be enabled and included in an image, it
	        needs to have a matching entry in the global
	        <code class="filename">LICENSE_FLAGS_WHITELIST</code> variable, which is a variable
	        typically defined in your <code class="filename">local.conf</code> file.  
            For example, to enable
	        the <code class="filename">$HOME/poky/meta/recipes-multimedia/gstreamer/gst-plugins-ugly</code>
	        package, you could add either the string
	        "commercial_gst-plugins-ugly" or the more general string
	        "commercial" to <code class="filename">LICENSE_FLAGS_WHITELIST</code>.
            See the
            "<a class="link" href="#license-flag-matching" title="3.4.2.1. License Flag Matching">License Flag Matching</a>" section
            for a full explanation of how <code class="filename">LICENSE_FLAGS</code> matching works.
            Here is the example:
            </p><pre class="literallayout">
     LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly"
            </pre><p>
	        Likewise, to additionally enable the package containing
	        <code class="filename">LICENSE_FLAGS = "license_${PN}_${PV}"</code>, and assuming
	        that the actual recipe name was <code class="filename">emgd_1.10.bb</code>,
	        the following string would enable that package as well as
	        the original <code class="filename">gst-plugins-ugly</code> package:
            </p><pre class="literallayout">
     LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly license_emgd_1.10"
            </pre><p>
	        As a convenience, you do not need to specify the complete license string
	        in the whitelist for every package.
            you can use an abbreviated form, which consists
	        of just the first portion or portions of the license string before
	        the initial underscore character or characters.
            A partial string will match
	        any license that contains the given string as the first
	        portion of its license.  
            For example, the following
	        whitelist string will also match both of the packages
	        previously mentioned as well as any other packages that have
	        licenses starting with "commercial" or "license".
            </p><pre class="literallayout">
     LICENSE_FLAGS_WHITELIST = "commercial license"
            </pre><p>
        </p><div class="section" title="3.4.2.1. License Flag Matching"><div class="titlepage"><div><div><h4 class="title"><a id="license-flag-matching"></a>3.4.2.1. License Flag Matching</h4></div></div></div><p>
		        The definition of 'matching' in reference to a
		        recipe's <code class="filename">LICENSE_FLAGS</code> setting is simple.
                However, some things exist that you should know about in order to
                correctly and effectively use it.
            </p><p>
                Before a flag
                defined by a particular recipe is tested against the
                contents of the <code class="filename">LICENSE_FLAGS_WHITELIST</code> variable, the
                string <code class="filename">_${PN}</code> (with 
                <a class="link" href="#var-PN" title="PN"><code class="filename">PN</code></a> expanded of course) is
                appended to the flag, thus automatically making each
                <code class="filename">LICENSE_FLAGS</code> value recipe-specific.
                That string is
                then matched against the whitelist.
                So if you specify <code class="filename">LICENSE_FLAGS = "commercial"</code> in recipe
		        "foo" for example, the string <code class="filename">"commercial_foo"</code>
                would normally be what is specified in the whitelist in order for it to
                match.
            </p><p>
                You can broaden the match by
                putting any "_"-separated beginning subset of a
                <code class="filename">LICENSE_FLAGS</code> flag in the whitelist, which will also
                match.  
                For example, simply specifying "commercial" in
                the whitelist would match any expanded <code class="filename">LICENSE_FLAGS</code>
                definition starting with "commercial" such as
                "commercial_foo" and "commercial_bar", which are the
                strings that would be automatically generated for
                hypothetical "foo" and "bar" recipes assuming those
                recipes had simply specified the following:
                </p><pre class="literallayout">
     LICENSE_FLAGS = "commercial"
                </pre><p>
            </p><p>
                Broadening the match allows for a range of specificity for the items
                in the whitelist, from more general to perfectly
                specific.  
                So you have the choice of exhaustively
                enumerating each license flag in the whitelist to
                allow only those specific recipes into the image, or
                of using a more general string to pick up anything
                matching just the first component or components of the specified
                string.
            </p><p>
                This scheme works even if the flag already
                has <code class="filename">_${PN}</code> appended - the extra <code class="filename">_${PN}</code> is
                redundant, but does not affect the outcome.  
                For example, a license flag of "commercial_1.2_foo" would
                turn into "commercial_1.2_foo_foo" and would match
                both the general "commercial" and the specific
                "commercial_1.2_foo", as expected.
                The flag would also match
                "commercial_1.2_foo_foo" and "commercial_1.2", which
                does not make much sense regarding use in the whitelist.
            </p><p>  
                For a versioned string, you could instead specify
                "commercial_foo_1.2", which would turn into
                "commercial_foo_1.2_foo".
                And, as expected, this flag allows
                you to pick up this package along with
                anything else "commercial" when you specify "commercial"
                in the whitelist.
                Or, the flag allows you to pick up this package along with anything "commercial_foo"
                regardless of version when you use "commercial_foo" in the whitelist.
                Finally, you can be completely specific about the package and version and specify
                "commercial_foo_1.2" package and version.
            </p></div><div class="section" title="3.4.2.2. Other Variables Related to Commercial Licenses"><div class="titlepage"><div><div><h4 class="title"><a id="other-variables-related-to-commercial-licenses"></a>3.4.2.2. Other Variables Related to Commercial Licenses</h4></div></div></div><p>
                Other helpful variables related to commercial
                license handling exist and are defined in the
                <code class="filename">$HOME/poky/meta/conf/distro/include/default-distrovars.inc</code> file:
                </p><pre class="literallayout">
     COMMERCIAL_AUDIO_PLUGINS ?= ""
     COMMERCIAL_VIDEO_PLUGINS ?= ""
     COMMERCIAL_QT = ""
                </pre><p>
                If you want to enable these components, you can do so by making sure you have
                the following statements in your <code class="filename">local.conf</code> configuration file:
                </p><pre class="literallayout">
     COMMERCIAL_AUDIO_PLUGINS = "gst-plugins-ugly-mad \
        gst-plugins-ugly-mpegaudioparse"
     COMMERCIAL_VIDEO_PLUGINS = "gst-plugins-ugly-mpeg2dec \
        gst-plugins-ugly-mpegstream gst-plugins-bad-mpegvideoparse"
     COMMERCIAL_QT ?= "qmmp"
     LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly commercial_gst-plugins-bad commercial_qmmp"
                </pre><p>
                Of course, you could also create a matching whitelist
                for those components using the more general "commercial"
                in the whitelist, but that would also enable all the
                other packages with <code class="filename">LICENSE_FLAGS</code> containing
                "commercial", which you may or may not want:
                </p><pre class="literallayout">
     LICENSE_FLAGS_WHITELIST = "commercial"
                </pre><p>
            </p><p>
                Specifying audio and video plug-ins as part of the 
                <code class="filename">COMMERCIAL_AUDIO_PLUGINS</code> and 
                <code class="filename">COMMERCIAL_VIDEO_PLUGINS</code> statements
                or commercial qt components as part of
                the <code class="filename">COMMERCIAL_QT</code> statement (along
                with the enabling <code class="filename">LICENSE_FLAGS_WHITELIST</code>) includes the
                plug-ins or components into built images, thus adding
                support for media formats or components.
            </p></div></div></div></div>

    <div class="chapter" title="Chapter 4. Source Directory Structure"><div class="titlepage"><div><div><h2 class="title"><a id="ref-structure"></a>Chapter 4. Source Directory Structure</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#structure-core">4.1. Top level core components</a></span></dt><dd><dl><dt><span class="section"><a href="#structure-core-bitbake">4.1.1. <code class="filename">bitbake/</code></a></span></dt><dt><span class="section"><a href="#structure-core-build">4.1.2. <code class="filename">build/</code></a></span></dt><dt><span class="section"><a href="#handbook">4.1.3. <code class="filename">documentation</code></a></span></dt><dt><span class="section"><a href="#structure-core-meta">4.1.4. <code class="filename">meta/</code></a></span></dt><dt><span class="section"><a href="#structure-core-meta-demoapps">4.1.5. <code class="filename">meta-demoapps/</code></a></span></dt><dt><span class="section"><a href="#structure-core-meta-rt">4.1.6. <code class="filename">meta-rt/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-skeleton">4.1.7. <code class="filename">meta-skeleton/</code></a></span></dt><dt><span class="section"><a href="#structure-core-scripts">4.1.8. <code class="filename">scripts/</code></a></span></dt><dt><span class="section"><a href="#structure-core-script">4.1.9. <code class="filename">oe-init-build-env</code></a></span></dt><dt><span class="section"><a href="#structure-basic-top-level">4.1.10. <code class="filename">LICENSE, README, and README.hardware</code></a></span></dt></dl></dd><dt><span class="section"><a href="#structure-build">4.2. The Build Directory - <code class="filename">build/</code></a></span></dt><dd><dl><dt><span class="section"><a href="#structure-build-pseudodone">4.2.1. <code class="filename">build/pseudodone</code></a></span></dt><dt><span class="section"><a href="#structure-build-conf-local.conf">4.2.2. <code class="filename">build/conf/local.conf</code></a></span></dt><dt><span class="section"><a href="#structure-build-conf-bblayers.conf">4.2.3. <code class="filename">build/conf/bblayers.conf</code></a></span></dt><dt><span class="section"><a href="#structure-build-conf-sanity_info">4.2.4. <code class="filename">build/conf/sanity_info</code></a></span></dt><dt><span class="section"><a href="#structure-build-downloads">4.2.5. <code class="filename">build/downloads/</code></a></span></dt><dt><span class="section"><a href="#structure-build-sstate-cache">4.2.6. <code class="filename">build/sstate-cache/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp">4.2.7. <code class="filename">build/tmp/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-buildstats">4.2.8. <code class="filename">build/tmp/buildstats/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-cache">4.2.9. <code class="filename">build/tmp/cache/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-deploy">4.2.10. <code class="filename">build/tmp/deploy/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-deploy-deb">4.2.11. <code class="filename">build/tmp/deploy/deb/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-deploy-rpm">4.2.12. <code class="filename">build/tmp/deploy/rpm/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-deploy-licenses">4.2.13. <code class="filename">build/tmp/deploy/licenses/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-deploy-images">4.2.14. <code class="filename">build/tmp/deploy/images/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-deploy-ipk">4.2.15. <code class="filename">build/tmp/deploy/ipk/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-sysroots">4.2.16. <code class="filename">build/tmp/sysroots/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-stamps">4.2.17. <code class="filename">build/tmp/stamps/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-log">4.2.18. <code class="filename">build/tmp/log/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-pkgdata">4.2.19. <code class="filename">build/tmp/pkgdata/</code></a></span></dt><dt><span class="section"><a href="#structure-build-tmp-work">4.2.20. <code class="filename">build/tmp/work/</code></a></span></dt></dl></dd><dt><span class="section"><a href="#structure-meta">4.3. The Metadata - <code class="filename">meta/</code></a></span></dt><dd><dl><dt><span class="section"><a href="#structure-meta-classes">4.3.1. <code class="filename">meta/classes/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-conf">4.3.2. <code class="filename">meta/conf/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-conf-machine">4.3.3. <code class="filename">meta/conf/machine/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-conf-distro">4.3.4. <code class="filename">meta/conf/distro/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-bsp">4.3.5. <code class="filename">meta/recipes-bsp/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-connectivity">4.3.6. <code class="filename">meta/recipes-connectivity/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-core">4.3.7. <code class="filename">meta/recipes-core/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-devtools">4.3.8. <code class="filename">meta/recipes-devtools/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-extended">4.3.9. <code class="filename">meta/recipes-extended/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-gnome">4.3.10. <code class="filename">meta/recipes-gnome/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-graphics">4.3.11. <code class="filename">meta/recipes-graphics/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-kernel">4.3.12. <code class="filename">meta/recipes-kernel/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-multimedia">4.3.13. <code class="filename">meta/recipes-multimedia/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-qt">4.3.14. <code class="filename">meta/recipes-qt/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-rt">4.3.15. <code class="filename">meta/recipes-rt/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-sato">4.3.16. <code class="filename">meta/recipes-sato/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-support">4.3.17. <code class="filename">meta/recipes-support/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-site">4.3.18. <code class="filename">meta/site/</code></a></span></dt><dt><span class="section"><a href="#structure-meta-recipes-txt">4.3.19. <code class="filename">meta/recipes.txt</code></a></span></dt></dl></dd></dl></div><p>
    The <a class="link" href="#source-directory" target="_top">source directory</a> consists of several components.
    Understanding them and knowing where they are located is key to using the Yocto Project well.
    This chapter describes the source directory and gives information about the various 
    files and directories.
</p><p>
    For information on how to establish a local source directory on your development system, see the
    "<a class="link" href="#getting-setup" target="_top">Getting Set Up</a>"
    section in the Yocto Project Development Manual.
</p><div class="section" title="4.1. Top level core components"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="structure-core"></a>4.1. Top level core components</h2></div></div></div><div class="section" title="4.1.1. bitbake/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-core-bitbake"></a>4.1.1. <code class="filename">bitbake/</code></h3></div></div></div><p>
            The <a class="ulink" href="source-directory" target="_top">source directory</a>
            includes a copy of BitBake for ease of use.
            The copy usually matches the current stable BitBake release from the BitBake project. 
            BitBake, a metadata interpreter, reads the Yocto Project metadata and runs the tasks 
            defined by that data. 
            Failures are usually from the metadata and not from BitBake itself.
            Consequently, most users do not need to worry about BitBake.
        </p><p>
            When you run the <code class="filename">bitbake</code> command, the wrapper script in 
            <code class="filename">scripts/</code> is executed to run the main BitBake executable, 
            which resides in the <code class="filename">bitbake/bin/</code> directory.
            Sourcing the <a class="link" href="#structure-core-script" title="4.1.9. oe-init-build-env">oe-init-build-env</a> 
            script places the <code class="filename">scripts</code> and <code class="filename">bitbake/bin</code>
            directories (in that order) into the shell's <code class="filename">PATH</code> environment 
            variable.
        </p><p>
            For more information on BitBake, see the BitBake on-line manual at 
            <a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">http://docs.openembedded.org/bitbake/html/</a>.
        </p></div><div class="section" title="4.1.2. build/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-core-build"></a>4.1.2. <code class="filename">build/</code></h3></div></div></div><p>
            This directory contains user configuration files and the output 
            generated by the OpenEmbedded build system in its standard configuration where 
            the source tree is combined with the output.
            The <a class="link" href="#build-directory" target="_top">build directory</a>
            is created initially when you <code class="filename">source</code>
            the OpenEmbedded build environment setup script <code class="filename">oe-init-build-env</code>.
        </p><p> 
            It is also possible to place output and configuration 
            files in a directory separate from the 
            <a class="link" href="#source-directory" target="_top">source directory</a>
            by providing a directory name when you <code class="filename">source</code>
            the setup script.
            For information on separating output from your local source directory files, see <a class="link" href="#structure-core-script" title="4.1.9. oe-init-build-env">oe-init-build-env</a>.
        </p></div><div class="section" title="4.1.3. documentation"><div class="titlepage"><div><div><h3 class="title"><a id="handbook"></a>4.1.3. <code class="filename">documentation</code></h3></div></div></div><p>
            This directory holds the source for the Yocto Project documentation
            as well as templates and tools that allow you to generate PDF and HTML
            versions of the manuals.  
            Each manual is contained in a sub-folder.  
            For example, the files for this manual reside in 
            <code class="filename">poky-ref-manual</code>.
        </p></div><div class="section" title="4.1.4. meta/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-core-meta"></a>4.1.4. <code class="filename">meta/</code></h3></div></div></div><p>
            This directory contains the OpenEmbedded Core metadata. 
            The directory holds machine definitions, the Yocto Project distribution, 
            and the packages that make up a given system.
        </p></div><div class="section" title="4.1.5. meta-demoapps/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-core-meta-demoapps"></a>4.1.5. <code class="filename">meta-demoapps/</code></h3></div></div></div><p>
            This directory contains recipes for applications and demos that are not part of the 
            OpenEmbedded core.
        </p></div><div class="section" title="4.1.6. meta-rt/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-core-meta-rt"></a>4.1.6. <code class="filename">meta-rt/</code></h3></div></div></div><p>
            This directory contains recipes for real-time kernels. 
        </p></div><div class="section" title="4.1.7. meta-skeleton/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-skeleton"></a>4.1.7. <code class="filename">meta-skeleton/</code></h3></div></div></div><p>
            This directory contains template recipes for BSP and kernel development. 
        </p></div><div class="section" title="4.1.8. scripts/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-core-scripts"></a>4.1.8. <code class="filename">scripts/</code></h3></div></div></div><p>
            This directory contains various integration scripts that implement 
            extra functionality in the Yocto Project environment (e.g. QEMU scripts).
            The <a class="link" href="#structure-core-script" title="4.1.9. oe-init-build-env">oe-init-build-env</a> script appends this
            directory to the shell's <code class="filename">PATH</code> environment variable.
        </p><p>
            The <code class="filename">scripts</code> directory has useful scripts that assist contributing
            back to the Yocto Project, such as <code class="filename">create_pull_request</code> and 
            <code class="filename">send_pull_request</code>.
        </p></div><div class="section" title="4.1.9. oe-init-build-env"><div class="titlepage"><div><div><h3 class="title"><a id="structure-core-script"></a>4.1.9. <code class="filename">oe-init-build-env</code></h3></div></div></div><p>
            This script sets up the OpenEmbedded build environment. 
            Running this script with the <code class="filename">source</code> command in
            a shell makes changes to <code class="filename">PATH</code> and sets other core BitBake variables based on the
            current working directory. 
            You need to run this script before running BitBake commands.
            The script uses other scripts within the <code class="filename">scripts</code> directory to do 
            the bulk of the work.
        </p><p>
            By default, running this script without a build directory argument creates the 
            <code class="filename">build</code> directory. 
            If you provide a build directory argument when you <code class="filename">source</code>
            the script, you direct OpenEmbedded build system to create a 
            <a class="link" href="#build-directory" target="_top">build directory</a> of your choice.
            For example, the following command creates a build directory named 
            <code class="filename">mybuilds</code> that is outside of the 
            <a class="link" href="#source-directory" target="_top">source directory</a>:
            </p><pre class="literallayout">
     $ source oe-init-build-env ~/mybuilds
            </pre><p>
        </p></div><div class="section" title="4.1.10. LICENSE, README, and README.hardware"><div class="titlepage"><div><div><h3 class="title"><a id="structure-basic-top-level"></a>4.1.10. <code class="filename">LICENSE, README, and README.hardware</code></h3></div></div></div><p>
            These files are standard top-level files. 
        </p></div></div><div class="section" title="4.2. The Build Directory - build/"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="structure-build"></a>4.2. The Build Directory - <code class="filename">build/</code></h2></div></div></div><div class="section" title="4.2.1. build/pseudodone"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-pseudodone"></a>4.2.1. <code class="filename">build/pseudodone</code></h3></div></div></div><p>
            This tag file indicates that the initial pseudo binary was created. 
            The file is built the first time BitBake is invoked. 
        </p></div><div class="section" title="4.2.2. build/conf/local.conf"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-conf-local.conf"></a>4.2.2. <code class="filename">build/conf/local.conf</code></h3></div></div></div><p>
            This file contains all the local user configuration for your build environment. 
            If there is no <code class="filename">local.conf</code> present, it is created from 
            <code class="filename">local.conf.sample</code>. 
            The <code class="filename">local.conf</code> file contains documentation on the various configuration options.  
            Any variable set here overrides any variable set elsewhere within the environment unless 
            that variable is hard-coded within a file (e.g. by using '=' instead of '?='). 
            Some variables are hard-coded for various reasons but these variables are 
            relatively rare.
        </p><p>
            Edit this file to set the <code class="filename"><a class="link" href="#var-MACHINE" title="MACHINE">MACHINE</a></code> 
            for which you want to build, which package types you
            wish to use (<code class="filename">PACKAGE_CLASSES</code>), or where you want to downloaded files
            (<code class="filename"><a class="link" href="#var-DL_DIR" title="DL_DIR">DL_DIR</a></code>).
        </p></div><div class="section" title="4.2.3. build/conf/bblayers.conf"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-conf-bblayers.conf"></a>4.2.3. <code class="filename">build/conf/bblayers.conf</code></h3></div></div></div><p>
            This file defines layers, which is a directory tree, traversed (or walked) by BitBake. 
            If <code class="filename">bblayers.conf</code> 
            is not present, it is created from <code class="filename">bblayers.conf.sample</code> when 
            you <code class="filename">source</code> the environment setup script.
        </p></div><div class="section" title="4.2.4. build/conf/sanity_info"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-conf-sanity_info"></a>4.2.4. <code class="filename">build/conf/sanity_info</code></h3></div></div></div><p>
            This file is created during the build to indicate the state of the sanity checks.
        </p></div><div class="section" title="4.2.5. build/downloads/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-downloads"></a>4.2.5. <code class="filename">build/downloads/</code></h3></div></div></div><p>
            This directory is used for the upstream source tarballs.
            The directory can be reused by multiple builds or moved to another location. 
            You can control the location of this directory through the
            <code class="filename"><a class="link" href="#var-DL_DIR" title="DL_DIR">DL_DIR</a></code> variable.
        </p></div><div class="section" title="4.2.6. build/sstate-cache/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-sstate-cache"></a>4.2.6. <code class="filename">build/sstate-cache/</code></h3></div></div></div><p>
            This directory is used for the shared state cache.
            The directory can be reused by multiple builds or moved to another location. 
            You can control the location of this directory through the
            <code class="filename"><a class="link" href="#var-SSTATE_DIR" title="SSTATE_DIR">SSTATE_DIR</a></code> variable.
        </p></div><div class="section" title="4.2.7. build/tmp/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp"></a>4.2.7. <code class="filename">build/tmp/</code></h3></div></div></div><p>
            This directory receives all the OpenEmbedded build system's output.
            BitBake creates this directory if it does not exist. 
            As a last resort, to clean up a build and start it from scratch (other than the downloads), 
            you can remove everything in the <code class="filename">tmp</code> directory or get rid of the 
            directory completely.
            If you do, you should also completely remove the <code class="filename">build/sstate-cache</code>
            directory as well.
        </p></div><div class="section" title="4.2.8. build/tmp/buildstats/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-buildstats"></a>4.2.8. <code class="filename">build/tmp/buildstats/</code></h3></div></div></div><p>
            This directory stores the build statistics.
        </p></div><div class="section" title="4.2.9. build/tmp/cache/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-cache"></a>4.2.9. <code class="filename">build/tmp/cache/</code></h3></div></div></div><p>
            When BitBake parses the metadata, it creates a cache file of the result that can
            be used when subsequently running commands. 
            These results are stored here on a per-machine basis.
        </p></div><div class="section" title="4.2.10. build/tmp/deploy/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-deploy"></a>4.2.10. <code class="filename">build/tmp/deploy/</code></h3></div></div></div><p>
            This directory contains any 'end result' output from the OpenEmbedded build process.
        </p></div><div class="section" title="4.2.11. build/tmp/deploy/deb/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-deploy-deb"></a>4.2.11. <code class="filename">build/tmp/deploy/deb/</code></h3></div></div></div><p>
            This directory receives any <code class="filename">.deb</code> packages produced by 
            the build process.
            The packages are sorted into feeds for different architecture types.
        </p></div><div class="section" title="4.2.12. build/tmp/deploy/rpm/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-deploy-rpm"></a>4.2.12. <code class="filename">build/tmp/deploy/rpm/</code></h3></div></div></div><p>
            This directory receives any <code class="filename">.rpm</code> packages produced by 
            the build process.  
            The packages are sorted into feeds for different architecture types.
        </p></div><div class="section" title="4.2.13. build/tmp/deploy/licenses/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-deploy-licenses"></a>4.2.13. <code class="filename">build/tmp/deploy/licenses/</code></h3></div></div></div><p>
            This directory receives package licensing information.
            For example, the directory contains sub-directories for <code class="filename">bash</code>,
            <code class="filename">busybox</code>, and <code class="filename">eglibc</code> (among others) that in turn
            contain appropriate <code class="filename">COPYING</code> license files with other licensing information.
        </p></div><div class="section" title="4.2.14. build/tmp/deploy/images/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-deploy-images"></a>4.2.14. <code class="filename">build/tmp/deploy/images/</code></h3></div></div></div><p>
            This directory receives complete filesystem images. 
            If you want to flash the resulting image from a build onto a device, look here for the image.
        </p><p>
            Be careful when deleting files in this directory. 
            You can safely delete old images from this directory (e.g. 
            <code class="filename">core-image-*</code>, <code class="filename">hob-image-*</code>,
            etc.). 
            However, the kernel (<code class="filename">*zImage*</code>, <code class="filename">*uImage*</code>, etc.), 
            bootloader and other supplementary files might be deployed here prior to building an
            image.
            Because these files, however, are not directly produced from the image, if you
            delete them they will not be automatically re-created when you build the image again.
        </p><p>
            If you do accidentally delete files here, you will need to force them to be 
            re-created. 
            In order to do that, you will need to know the target that produced them.
            For example, these commands rebuild and re-create the kernel files:
            </p><pre class="literallayout">
     $ bitbake -c clean virtual/kernel
     $ bitbake virtual/kernel
            </pre><p>
        </p></div><div class="section" title="4.2.15. build/tmp/deploy/ipk/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-deploy-ipk"></a>4.2.15. <code class="filename">build/tmp/deploy/ipk/</code></h3></div></div></div><p>
            This directory receives <code class="filename">.ipk</code> packages produced by 
            the build process.</p></div><div class="section" title="4.2.16. build/tmp/sysroots/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-sysroots"></a>4.2.16. <code class="filename">build/tmp/sysroots/</code></h3></div></div></div><p>
            This directory contains shared header files and libraries as well as other shared 
            data.  
            Packages that need to share output with other packages do so within this directory. 
            The directory is subdivided by architecture so multiple builds can run within
            the one build directory.
        </p></div><div class="section" title="4.2.17. build/tmp/stamps/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-stamps"></a>4.2.17. <code class="filename">build/tmp/stamps/</code></h3></div></div></div><p>
            This directory holds information that that BitBake uses for accounting purposes 
            to track what tasks have run and when they have run.
            The directory is sub-divided by architecture. 
            The files in the directory are empty of data.
            However, BitBake uses the filenames and timestamps for tracking purposes.
        </p></div><div class="section" title="4.2.18. build/tmp/log/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-log"></a>4.2.18. <code class="filename">build/tmp/log/</code></h3></div></div></div><p>
            This directory contains general logs that are not otherwise placed using the 
            package's <code class="filename"><a class="link" href="#var-WORKDIR" title="WORKDIR">WORKDIR</a></code>.
            Examples of logs are the output from the <code class="filename">check_pkg</code> or 
            <code class="filename">distro_check</code> tasks.
            Running a build does not necessarily mean this directory is created.
        </p></div><div class="section" title="4.2.19. build/tmp/pkgdata/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-pkgdata"></a>4.2.19. <code class="filename">build/tmp/pkgdata/</code></h3></div></div></div><p>
            This directory contains intermediate packaging data that is used later in the packaging process. 
            For more information, see the "<a class="link" href="#ref-classes-package" title="6.12. Packaging - package*.bbclass">Packaging - package*.bbclass</a>" section.
        </p></div><div class="section" title="4.2.20. build/tmp/work/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-build-tmp-work"></a>4.2.20. <code class="filename">build/tmp/work/</code></h3></div></div></div><p>
            This directory contains architecture-specific work sub-directories for packages built by BitBake. 
            All tasks execute from a work directory.
            For example, the source for a particular package is unpacked, patched, configured and compiled all
            within its own work directory.
            Within the work directory, organization is based on the package group for which the source
            is being compiled.
        </p><p>
            It is worth considering the structure of a typical work directory. 
            As an example, consider the <code class="filename">linux-yocto-kernel-3.0</code>
            on the machine <code class="filename">qemux86</code> 
            built within the Yocto Project.  
            For this package, a work directory of 
            <code class="filename">tmp/work/qemux86-poky-linux/linux-yocto-3.0+git1+&lt;.....&gt;</code>, 
            referred to as <code class="filename"><a class="link" href="#var-WORKDIR" title="WORKDIR">WORKDIR</a></code>, is created.  
            Within this directory, the source is unpacked to 
            <code class="filename">linux-qemux86-standard-build</code> and then patched by Quilt 
            (see the 
            "<a class="link" href="#using-a-quilt-workflow" target="_top">Modifying Package 
            Source Code with Quilt</a>" section in the Yocto Project Development Manual.   
            Within the <code class="filename">linux-qemux86-standard-build</code> directory, 
            standard Quilt directories <code class="filename">linux-3.0/patches</code>
            and <code class="filename">linux-3.0/.pc</code> are created,
            and standard Quilt commands can be used.
        </p><p>
            There are other directories generated within WORKDIR. 
            The most important directory is WORKDIR<code class="filename">/temp/</code>, which has log files for each 
            task (<code class="filename">log.do_*.pid</code>) and contains the scripts BitBake runs for 
            each task (<code class="filename">run.do_*.pid</code>). 
            The WORKDIR<code class="filename">/image/</code> directory is where "make 
            install" places its output that is then split into sub-packages 
            within WORKDIR<code class="filename">/packages-split/</code>.
        </p></div></div><div class="section" title="4.3. The Metadata - meta/"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="structure-meta"></a>4.3. The Metadata - <code class="filename">meta/</code></h2></div></div></div><p>
        As mentioned previously, metadata is the core of the Yocto Project. 
        Metadata has several important subdivisions:
    </p><div class="section" title="4.3.1. meta/classes/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-classes"></a>4.3.1. <code class="filename">meta/classes/</code></h3></div></div></div><p>
            This directory contains the <code class="filename">*.bbclass</code> files. 
            Class files are used to abstract common code so it can be reused by multiple 
            packages. 
            Every package inherits the <code class="filename">base.bbclass</code> file.
            Examples of other important classes are <code class="filename">autotools.bbclass</code>, which 
            in theory allows any Autotool-enabled package to work with the Yocto Project with minimal effort.
            Another example is <code class="filename">kernel.bbclass</code> that contains common code and functions 
            for working with the Linux kernel. 
            Functions like image generation or packaging also have their specific class files 
            such as <code class="filename">image.bbclass</code>, <code class="filename">rootfs_*.bbclass</code> and 
            <code class="filename">package*.bbclass</code>.
        </p></div><div class="section" title="4.3.2. meta/conf/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-conf"></a>4.3.2. <code class="filename">meta/conf/</code></h3></div></div></div><p>
            This directory contains the core set of configuration files that start from 
            <code class="filename">bitbake.conf</code> and from which all other configuration 
            files are included.
            See the include statements at the end of the file and you will note that even 
            <code class="filename">local.conf</code> is loaded from there. 
            While <code class="filename">bitbake.conf</code> sets up the defaults, you can often override 
            these by using the (<code class="filename">local.conf</code>) file, machine file or 
            the distribution configuration file.
        </p></div><div class="section" title="4.3.3. meta/conf/machine/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-conf-machine"></a>4.3.3. <code class="filename">meta/conf/machine/</code></h3></div></div></div><p>
            This directory contains all the machine configuration files. 
            If you set <code class="filename">MACHINE="qemux86"</code>, 
            the OpenEmbedded build system looks for a <code class="filename">qemux86.conf</code> file in this 
            directory. 
            The <code class="filename">include</code> directory contains various data common to multiple machines. 
            If you want to add support for a new machine to the Yocto Project, look in this directory.
        </p></div><div class="section" title="4.3.4. meta/conf/distro/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-conf-distro"></a>4.3.4. <code class="filename">meta/conf/distro/</code></h3></div></div></div><p>
            Any distribution-specific configuration is controlled from this directory. 
            For the Yocto Project, the <code class="filename">defaultsetup.conf</code> is the main file here.  
            This directory includes the versions and the 
            <code class="filename">SRCDATE</code> definitions for applications that are configured here. 
            An example of an alternative configuration might be <code class="filename">poky-bleeding.conf</code>.
            Although this file mainly inherits its configuration from Poky.
        </p></div><div class="section" title="4.3.5. meta/recipes-bsp/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-bsp"></a>4.3.5. <code class="filename">meta/recipes-bsp/</code></h3></div></div></div><p>
            This directory contains anything linking to specific hardware or hardware 
            configuration information such as "u-boot" and "grub".
        </p></div><div class="section" title="4.3.6. meta/recipes-connectivity/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-connectivity"></a>4.3.6. <code class="filename">meta/recipes-connectivity/</code></h3></div></div></div><p>
            This directory contains libraries and applications related to communication with other devices.
        </p></div><div class="section" title="4.3.7. meta/recipes-core/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-core"></a>4.3.7. <code class="filename">meta/recipes-core/</code></h3></div></div></div><p>
            This directory contains what is needed to build a basic working Linux image 
            including commonly used dependencies.
        </p></div><div class="section" title="4.3.8. meta/recipes-devtools/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-devtools"></a>4.3.8. <code class="filename">meta/recipes-devtools/</code></h3></div></div></div><p>
            This directory contains tools that are primarily used by the build system.
            The tools, however, can also be used on targets.
        </p></div><div class="section" title="4.3.9. meta/recipes-extended/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-extended"></a>4.3.9. <code class="filename">meta/recipes-extended/</code></h3></div></div></div><p>
            This directory contains non-essential applications that add features compared to the 
            alternatives in core. 
            You might need this directory for full tool functionality or for Linux Standard Base (LSB)
            compliance.
        </p></div><div class="section" title="4.3.10. meta/recipes-gnome/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-gnome"></a>4.3.10. <code class="filename">meta/recipes-gnome/</code></h3></div></div></div><p>
            This directory contains all things related to the GTK+ application framework.
        </p></div><div class="section" title="4.3.11. meta/recipes-graphics/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-graphics"></a>4.3.11. <code class="filename">meta/recipes-graphics/</code></h3></div></div></div><p>
            This directory contains X and other graphically related system libraries
        </p></div><div class="section" title="4.3.12. meta/recipes-kernel/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-kernel"></a>4.3.12. <code class="filename">meta/recipes-kernel/</code></h3></div></div></div><p>
            This directory contains the kernel and generic applications and libraries that 
            have strong kernel dependencies.
        </p></div><div class="section" title="4.3.13. meta/recipes-multimedia/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-multimedia"></a>4.3.13. <code class="filename">meta/recipes-multimedia/</code></h3></div></div></div><p>
            This directory contains codecs and support utilities for audio, images and video.
        </p></div><div class="section" title="4.3.14. meta/recipes-qt/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-qt"></a>4.3.14. <code class="filename">meta/recipes-qt/</code></h3></div></div></div><p>
            This directory contains all things related to the Qt application framework.
        </p></div><div class="section" title="4.3.15. meta/recipes-rt/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-rt"></a>4.3.15. <code class="filename">meta/recipes-rt/</code></h3></div></div></div><p>
            This directory contains package and image recipes for using and testing
            the <code class="filename">PREEMPT_RT</code> kernel. 
        </p></div><div class="section" title="4.3.16. meta/recipes-sato/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-sato"></a>4.3.16. <code class="filename">meta/recipes-sato/</code></h3></div></div></div><p>
            This directory contains the Sato demo/reference UI/UX and its associated applications
            and configuration data.
        </p></div><div class="section" title="4.3.17. meta/recipes-support/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-support"></a>4.3.17. <code class="filename">meta/recipes-support/</code></h3></div></div></div><p>
            This directory contains recipes that used by other recipes, but that are not directly 
            included in images (i.e. dependencies of other recipes).
        </p></div><div class="section" title="4.3.18. meta/site/"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-site"></a>4.3.18. <code class="filename">meta/site/</code></h3></div></div></div><p>
            This directory contains a list of cached results for various architectures.
            Because certain "autoconf" test results cannot be determined when cross-compiling due to 
            the tests not able to run on a live system, the information in this directory is 
            passed to "autoconf" for the various architectures. 
        </p></div><div class="section" title="4.3.19. meta/recipes.txt"><div class="titlepage"><div><div><h3 class="title"><a id="structure-meta-recipes-txt"></a>4.3.19. <code class="filename">meta/recipes.txt</code></h3></div></div></div><p>
            This file is a description of the contents of <code class="filename">recipes-*</code>.
        </p></div></div></div>

    <div class="chapter" title="Chapter 5. BitBake"><div class="titlepage"><div><div><h2 class="title"><a id="ref-bitbake"></a>Chapter 5. BitBake</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#ref-bitbake-parsing">5.1. Parsing</a></span></dt><dt><span class="section"><a href="#ref-bitbake-providers">5.2. Preferences and Providers</a></span></dt><dt><span class="section"><a href="#ref-bitbake-dependencies">5.3. Dependencies</a></span></dt><dt><span class="section"><a href="#ref-bitbake-tasklist">5.4. The Task List</a></span></dt><dt><span class="section"><a href="#ref-bitbake-runtask">5.5. Running a Task</a></span></dt><dt><span class="section"><a href="#ref-bitbake-commandline">5.6. BitBake Command Line</a></span></dt><dt><span class="section"><a href="#ref-bitbake-fetchers">5.7. Fetchers</a></span></dt></dl></div><p>
        BitBake is a program written in Python that interprets the metadata used by the OpenEmbedded
        build system.
        At some point, developers wonder what actually happens when you enter:
        </p><pre class="literallayout">
     $ bitbake core-image-sato
        </pre><p>
    </p><p>
        This chapter provides an overview of what happens behind the scenes from BitBake's perspective.
    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
        BitBake strives to be a generic "task" executor that is capable of handling complex dependency relationships. 
        As such, it has no real knowledge of what the tasks being executed actually do. 
        BitBake just considers a list of tasks with dependencies and handles metadata 
        that consists of variables in a certain format that get passed to the tasks.
    </div><div class="section" title="5.1. Parsing"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-bitbake-parsing"></a>5.1. Parsing</h2></div></div></div><p>
            BitBake parses configuration files, classes, and <code class="filename">.bb</code> files. 
        </p><p>
            The first thing BitBake does is look for the <code class="filename">bitbake.conf</code> file.
            This file resides in the 
            <a class="link" href="#source-directory" target="_top">source directory</a>
            within the <code class="filename">meta/conf/</code> directory.
            BitBake finds it by examining its 
            <a class="link" href="#var-BBPATH" title="BBPATH"><code class="filename">BBPATH</code></a> environment 
            variable and looking for the <code class="filename">meta/conf/</code> 
            directory.
        </p><p>
            The <code class="filename">bitbake.conf</code> file lists other configuration 
            files to include from a <code class="filename">conf/</code> 
            directory below the directories listed in <code class="filename">BBPATH</code>. 
            In general, the most important configuration file from a user's perspective 
            is <code class="filename">local.conf</code>, which contains a user's customized 
            settings for the OpenEmbedded build environment. 
            Other notable configuration files are the distribution 
            configuration file (set by the 
            <code class="filename"><a class="link" href="#var-DISTRO" title="DISTRO">DISTRO</a></code> variable) 
            and the machine configuration file 
            (set by the 
            <code class="filename"><a class="link" href="#var-MACHINE" title="MACHINE">MACHINE</a></code> variable).  
            The <code class="filename">DISTRO</code> and <code class="filename">MACHINE</code> BitBake environment 
            variables are both usually set in 
            the <code class="filename">local.conf</code> file. 
            Valid distribution 
            configuration files are available in the <code class="filename">meta/conf/distro/</code> directory 
            and valid machine configuration 
            files in the <code class="filename">meta/conf/machine/</code> directory. 
            Within the <code class="filename">meta/conf/machine/include/</code> 
            directory are various <code class="filename">tune-*.inc</code> configuration files that provide common 
            "tuning" settings specific to and shared between particular architectures and machines.
        </p><p>
            After the parsing of the configuration files, some standard classes are included. 
            The <code class="filename">base.bbclass</code> file is always included.
            Other classes that are specified in the configuration using the 
            <code class="filename"><a class="link" href="#var-INHERIT" title="INHERIT">INHERIT</a></code>
            variable are also included. 
            Class files are searched for in a <code class="filename">classes</code> subdirectory 
            under the paths in <code class="filename">BBPATH</code> in the same way as
            configuration files.
        </p><p>
            After classes are included, the variable 
            <code class="filename"><a class="link" href="#var-BBFILES" title="BBFILES">BBFILES</a></code> 
            is set, usually in
            <code class="filename">local.conf</code>, and defines the list of places to search for 
            <code class="filename">.bb</code> files. 
            By default, the <code class="filename">BBFILES</code> variable specifies the 
            <code class="filename">meta/recipes-*/</code> directory within Poky. 
            Adding extra content to <code class="filename">BBFILES</code> is best achieved through the use of 
            BitBake layers as described in the 
            "<a class="link" href="#understanding-and-creating-layers" target="_top">Understanding and 
            Creating Layers</a>" section of the Yocto Project Development Manual.
        </p><p>
            BitBake parses each <code class="filename">.bb</code> file in <code class="filename">BBFILES</code> and 
            stores the values of various variables.  
            In summary, for each <code class="filename">.bb</code> 
            file the configuration plus the base class of variables are set, followed 
            by the data in the <code class="filename">.bb</code> file 
            itself, followed by any inherit commands that
            <code class="filename">.bb</code> file might contain.
        </p><p>
            Because parsing <code class="filename">.bb</code> files is a time 
            consuming process, a cache is kept to speed up subsequent parsing. 
            This cache is invalid if the timestamp of the <code class="filename">.bb</code> 
            file itself changes, or if the timestamps of any of the include, 
            configuration or class files the <code class="filename">.bb</code>
            file depends on changes.
        </p></div><div class="section" title="5.2. Preferences and Providers"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-bitbake-providers"></a>5.2. Preferences and Providers</h2></div></div></div><p>
            Once all the <code class="filename">.bb</code> files have been 
            parsed, BitBake starts to build the target (<code class="filename">core-image-sato</code>
            in the previous section's example) and looks for providers of that target.
            Once a provider is selected, BitBake resolves all the dependencies for  
            the target. 
            In the case of <code class="filename">core-image-sato</code>, it would lead to 
            <code class="filename">task-base.bb</code>,  
            which in turn leads to packages like <code class="filename">Contacts</code>, 
            <code class="filename">Dates</code> and <code class="filename">BusyBox</code>.
            These packages in turn depend on <code class="filename">eglibc</code> and the toolchain.
        </p><p>
            Sometimes a target might have multiple providers.
            A common example is "virtual/kernel", which is provided by each kernel package. 
            Each machine often selects the best kernel provider by using a line similar to the 
            following in the machine configuration file:
        </p><pre class="literallayout">
     PREFERRED_PROVIDER_virtual/kernel = "linux-yocto"
        </pre><p>
            The default <code class="filename"><a class="link" href="#var-PREFERRED_PROVIDER" title="PREFERRED_PROVIDER">PREFERRED_PROVIDER</a></code> 
            is the provider with the same name as the target.
        </p><p>
            Understanding how providers are chosen is made complicated by the fact
            that multiple versions might exist. 
            BitBake defaults to the highest version of a provider.
            Version comparisons are made using the same method as Debian. 
            You can use the
            <code class="filename"><a class="link" href="#var-PREFERRED_VERSION" title="PREFERRED_VERSION">PREFERRED_VERSION</a></code>
            variable to specify a particular version (usually in the distro configuration).
            You can influence the order by using the 
            <code class="filename"><a class="link" href="#var-DEFAULT_PREFERENCE" title="DEFAULT_PREFERENCE">DEFAULT_PREFERENCE</a></code> 
            variable. 
            By default, files have a preference of "0". 
            Setting the <code class="filename">DEFAULT_PREFERENCE</code> to "-1" makes the 
            package unlikely to be used unless it is explicitly referenced.
            Setting the <code class="filename">DEFAULT_PREFERENCE</code> to "1" makes it likely the package is used. 
            <code class="filename">PREFERRED_VERSION</code> overrides any <code class="filename">DEFAULT_PREFERENCE</code> setting.
            <code class="filename">DEFAULT_PREFERENCE</code> is often used to mark newer and more experimental package
            versions until they have undergone sufficient testing to be considered stable.
        </p><p>
            In summary, BitBake has created a list of providers, which is prioritized, for each target.
        </p></div><div class="section" title="5.3. Dependencies"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-bitbake-dependencies"></a>5.3. Dependencies</h2></div></div></div><p>
            Each target BitBake builds consists of multiple tasks such as 
            <code class="filename">fetch</code>, <code class="filename">unpack</code>, 
            <code class="filename">patch</code>, <code class="filename">configure</code>, 
            and <code class="filename">compile</code>. 
            For best performance on multi-core systems, BitBake considers each task as an independent 
            entity with its own set of dependencies. 
        </p><p>
            Dependencies are defined through several variables.
            You can find information about variables BitBake uses in the 
            <a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">BitBake manual</a>. 
            At a basic level, it is sufficient to know that BitBake uses the 
            <code class="filename"><a class="link" href="#var-DEPENDS" title="DEPENDS">DEPENDS</a></code> and 
            <code class="filename"><a class="link" href="#var-RDEPENDS" title="RDEPENDS">RDEPENDS</a></code> variables when 
            calculating dependencies. 
        </p></div><div class="section" title="5.4. The Task List"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-bitbake-tasklist"></a>5.4. The Task List</h2></div></div></div><p>
            Based on the generated list of providers and the dependency information, 
            BitBake can now calculate exactly what tasks it needs to run and in what 
            order it needs to run them. 
            The build now starts with BitBake forking off threads up to the limit set in the 
            <code class="filename"><a class="link" href="#var-BB_NUMBER_THREADS" title="BB_NUMBER_THREADS">BB_NUMBER_THREADS</a></code> variable.
            BitBake continues to fork threads as long as there are tasks ready to run,
            those tasks have all their dependencies met, and the thread threshold has not been 
            exceeded.
        </p><p>
            It is worth noting that you can greatly speed up the build time by properly setting 
            the <code class="filename">BB_NUMBER_THREADS</code> variable.  
            See the
            "<a class="link" href="#building-image" target="_top">Building an Image</a>"
            section in the Yocto Project Quick Start for more information.
        </p><p>
            As each task completes, a timestamp is written to the directory specified by the 
            <code class="filename"><a class="link" href="#var-STAMP" title="STAMP">STAMP</a></code> variable (usually
            <code class="filename">build/tmp/stamps/*/</code>). 
            On subsequent runs, BitBake looks at the <code class="filename">/build/tmp/stamps</code>
            directory and does not rerun
            tasks that are already completed unless a timestamp is found to be invalid. 
            Currently, invalid timestamps are only considered on a per 
            <code class="filename">.bb</code> file basis.
            So, for example, if the configure stamp has a timestamp greater than the 
            compile timestamp for a given target, then the compile task would rerun.
            Running the compile task again, however, has no effect on other providers 
            that depend on that target. 
            This behavior could change or become configurable in future versions of BitBake. 
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
            Some tasks are marked as "nostamp" tasks.
            No timestamp file is created when these tasks are run.
            Consequently, "nostamp" tasks are always rerun.
        </div></div><div class="section" title="5.5. Running a Task"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-bitbake-runtask"></a>5.5. Running a Task</h2></div></div></div><p>
            Tasks can either be a shell task or a Python task.
            For shell tasks, BitBake writes a shell script to 
            <code class="filename">${WORKDIR}/temp/run.do_taskname.pid</code> and then executes the script. 
            The generated shell script contains all the exported variables, and the shell functions 
            with all variables expanded. 
            Output from the shell script goes to the file <code class="filename">${WORKDIR}/temp/log.do_taskname.pid</code>.
            Looking at the expanded shell functions in the run file and the output in the log files 
            is a useful debugging technique.
        </p><p>
            For Python tasks, BitBake executes the task internally and logs information to the 
            controlling terminal. 
            Future versions of BitBake will write the functions to files similar to the way 
            shell tasks are handled.
            Logging will be handled in way similar to shell tasks as well.
        </p><p>
            Once all the tasks have been completed BitBake exits.
        </p><p>
            When running a task, BitBake tightly controls the execution environment 
            of the build tasks to make sure unwanted contamination from the build machine
            cannot influence the build. 
            Consequently, if you do want something to get passed into the build 
            task's environment, you must take a few steps:
            </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>Tell BitBake to load what you want from the environment
                    into the data store. 
                    You can do so through the <code class="filename">BB_ENV_WHITELIST</code>
                    variable.
                    For example, assume you want to prevent the build system from 
                    accessing your <code class="filename">$HOME/.ccache</code> directory.
                    The following command tells BitBake to load 
                    <code class="filename">CCACHE_DIR</code> from the environment into the data
                    store:
                    </p><pre class="literallayout">
     export BB_ENV_EXTRAWHITE="$BB_ENV_EXTRAWHITE CCACHE_DIR" 
                    </pre></li><li class="listitem"><p>Tell BitBake to export what you have loaded into the 
                    environment store to the task environment of every running task.
                    Loading something from the environment into the data store
                    (previous step) only makes it available in the datastore. 
                    To export it to the task environment of every running task,
                    use a command similar to the following in your 
                    <code class="filename">local.conf</code> or distro configuration file:
                    </p><pre class="literallayout">
     export CCACHE_DIR
                    </pre></li></ol></div><p>
        </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
            A side effect of the previous steps is that BitBake records the variable
            as a dependency of the build process in things like the shared state
            checksums. 
            If doing so results in unnecessary rebuilds of tasks, you can whitelist the 
            variable so that the shared state code ignores the dependency when it creates
            checksums.
            For information on this process, see the <code class="filename">BB_HASHBASE_WHITELIST</code>
            example in the "<a class="link" href="#checksums" title="3.2.2. Checksums (Signatures)">Checksums (Signatures)</a>" section.
        </div></div><div class="section" title="5.6. BitBake Command Line"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-bitbake-commandline"></a>5.6. BitBake Command Line</h2></div></div></div><p>
            Following is the BitBake help output:
        </p><pre class="screen">
$ bitbake --help
Usage: bitbake [options] [package ...]

Executes the specified task (default is 'build') for a given set of BitBake files.
It expects that BBFILES is defined, which is a space separated list of files to
be executed.  BBFILES does support wildcards.
Default BBFILES are the .bb files in the current directory.

Options:
  --version             show program's version number and exit
  -h, --help            show this help message and exit
  -b BUILDFILE, --buildfile=BUILDFILE
                        execute the task against this .bb file, rather than a
                        package from BBFILES. Does not handle any
                        dependencies.
  -k, --continue        continue as much as possible after an error. While the
                        target that failed, and those that depend on it,
                        cannot be remade, the other dependencies of these
                        targets can be processed all the same.
  -a, --tryaltconfigs   continue with builds by trying to use alternative
                        providers where possible.
  -f, --force           force run of specified cmd, regardless of stamp status
  -c CMD, --cmd=CMD     Specify task to execute. Note that this only executes
                        the specified task for the providee and the packages
                        it depends on, i.e. 'compile' does not implicitly call
                        stage for the dependencies (IOW: use only if you know
                        what you are doing). Depending on the base.bbclass a
                        listtasks tasks is defined and will show available
                        tasks
  -r PREFILE, --read=PREFILE
                        read the specified file before bitbake.conf
  -R POSTFILE, --postread=POSTFILE
                        read the specified file after bitbake.conf
  -v, --verbose         output more chit-chat to the terminal
  -D, --debug           Increase the debug level. You can specify this more
                        than once.
  -n, --dry-run         don't execute, just go through the motions
  -S, --dump-signatures
                        don't execute, just dump out the signature
                        construction information
  -p, --parse-only      quit after parsing the BB files (developers only)
  -s, --show-versions   show current and preferred versions of all packages
  -e, --environment     show the global or per-package environment (this is
                        what used to be bbread)
  -g, --graphviz        emit the dependency trees of the specified packages in
                        the dot syntax
  -I EXTRA_ASSUME_PROVIDED, --ignore-deps=EXTRA_ASSUME_PROVIDED
                        Assume these dependencies don't exist and are already
                        provided (equivalent to ASSUME_PROVIDED). Useful to
                        make dependency graphs more appealing
  -l DEBUG_DOMAINS, --log-domains=DEBUG_DOMAINS
                        Show debug logging for the specified logging domains
  -P, --profile         profile the command and print a report
  -u UI, --ui=UI        userinterface to use
  -t SERVERTYPE, --servertype=SERVERTYPE
                        Choose which server to use, none, process or xmlrpc
  --revisions-changed   Set the exit code depending on whether upstream
                        floating revisions have changed or not
        </pre></div><div class="section" title="5.7. Fetchers"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-bitbake-fetchers"></a>5.7. Fetchers</h2></div></div></div><p>
            BitBake also contains a set of "fetcher" modules that allow 
            retrieval of source code from various types of sources. 
            For example, BitBake can get source code from a disk with the metadata, from websites, 
            from remote shell accounts or from Source Code Management (SCM) systems 
            like <code class="filename">cvs/subversion/git</code>. 
        </p><p>
            Fetchers are usually triggered by entries in 
            <code class="filename"><a class="link" href="#var-SRC_URI" title="SRC_URI">SRC_URI</a></code>. 
            You can find information about the options and formats of entries for specific 
            fetchers in the <a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">BitBake manual</a>.
        </p><p>
            One useful feature for certain Source Code Manager (SCM) fetchers is the ability to 
            "auto-update" when the upstream SCM changes version. 
            Since this ability requires certain functionality from the SCM, not all
            systems support it.
            Currently Subversion, Bazaar and to a limited extent, Git support the ability to "auto-update". 
            This feature works using the <code class="filename"><a class="link" href="#var-SRCREV" title="SRCREV">SRCREV</a></code> 
            variable. 
            See the 
            "<a class="link" href="#platdev-appdev-srcrev" target="_top">Using an External SCM</a>" section 
            in the Yocto Project Development Manual for more information.
        </p></div></div>

    <div class="chapter" title="Chapter 6. Classes"><div class="titlepage"><div><div><h2 class="title"><a id="ref-classes"></a>Chapter 6. Classes</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#ref-classes-base">6.1. The base class - <code class="filename">base.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-autotools">6.2. Autotooled Packages - <code class="filename">autotools.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-update-alternatives">6.3. Alternatives - <code class="filename">update-alternatives.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-update-rc.d">6.4. Initscripts - <code class="filename">update-rc.d.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-binconfig">6.5. Binary config scripts - <code class="filename">binconfig.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-debian">6.6. Debian renaming - <code class="filename">debian.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-pkgconfig">6.7. Pkg-config - <code class="filename">pkgconfig.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-src-distribute">6.8. Distribution of sources - <code class="filename">src_distribute_local.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-perl">6.9. Perl modules - <code class="filename">cpan.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-distutils">6.10. Python extensions - <code class="filename">distutils.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-devshell">6.11. Developer Shell - <code class="filename">devshell.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-package">6.12. Packaging - <code class="filename">package*.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-kernel">6.13. Building kernels - <code class="filename">kernel.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-image">6.14. Creating images - <code class="filename">image.bbclass</code> and <code class="filename">rootfs*.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-sanity">6.15. Host System sanity checks - <code class="filename">sanity.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-insane">6.16. Generated output quality assurance checks - <code class="filename">insane.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-siteinfo">6.17. Autotools configuration data cache - <code class="filename">siteinfo.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-useradd">6.18. Adding Users - <code class="filename">useradd.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-externalsrc">6.19. Using External Source - <code class="filename">externalsrc.bbclass</code></a></span></dt><dt><span class="section"><a href="#ref-classes-others">6.20. Other Classes</a></span></dt></dl></div><p>
    Class files are used to abstract common functionality and share it amongst multiple 
    <code class="filename">.bb</code> files. 
    Any metadata usually found in a <code class="filename">.bb</code> file can also be placed in a class 
    file. 
    Class files are identified by the extension <code class="filename">.bbclass</code> and are usually placed 
    in a <code class="filename">classes/</code> directory beneath the 
    <code class="filename">meta*/</code> directory found in the 
    <a class="link" href="#source-directory" target="_top">source directory</a>.
    Class files can also be pointed to by BUILDDIR (e.g. <code class="filename">build/</code>)in the same way as
    <code class="filename">.conf</code> files in the <code class="filename">conf</code> directory. 
    Class files are searched for in <a class="link" href="#var-BBPATH" title="BBPATH"><code class="filename">BBPATH</code></a>
    using the same method by which <code class="filename">.conf</code> files are searched.
</p><p>
    In most cases inheriting the class is enough to enable its features, although 
    for some classes you might need to set variables or override some of the 
    default behaviour.
</p><div class="section" title="6.1. The base class - base.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-base"></a>6.1. The base class - <code class="filename">base.bbclass</code></h2></div></div></div><p>
        The base class is special in that every <code class="filename">.bb</code> 
        file inherits it automatically. 
        This class contains definitions for standard basic 
        tasks such as fetching, unpacking, configuring (empty by default), compiling 
        (runs any <code class="filename">Makefile</code> present), installing (empty by default) and packaging 
        (empty by default). 
        These classes are often overridden or extended by other classes 
        such as <code class="filename">autotools.bbclass</code> or <code class="filename">package.bbclass</code>. 
        The class also contains some commonly used functions such as <code class="filename">oe_runmake</code>.
    </p></div><div class="section" title="6.2. Autotooled Packages - autotools.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-autotools"></a>6.2. Autotooled Packages - <code class="filename">autotools.bbclass</code></h2></div></div></div><p>
        Autotools (<code class="filename">autoconf</code>, <code class="filename">automake</code>, 
        and <code class="filename">libtool</code>) bring standardization. 
        This class defines a set of tasks (configure, compile etc.) that 
        work for all Autotooled packages.  
        It should usually be enough to define a few standard variables 
        and then simply <code class="filename">inherit autotools</code>.
        This class can also work with software that emulates Autotools.
        For more information, see the  
        "<a class="link" href="#usingpoky-extend-addpkg-autotools" target="_top">Autotooled Package</a>"
        section in the Yocto Project Development Manual.
    </p><p>
        It's useful to have some idea of how the tasks defined by this class work
        and what they do behind the scenes.
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename">do_configure</code> ‐ regenerates the 
                configure script (using <code class="filename">autoreconf</code>) and then launches it 
                with a standard set of arguments used during cross-compilation. 
                You can pass additional parameters to <code class="filename">configure</code> through the 
                <code class="filename"><a class="link" href="#var-EXTRA_OECONF" title="EXTRA_OECONF">EXTRA_OECONF</a></code> variable.
                </p></li><li class="listitem"><p><code class="filename">do_compile</code> ‐ runs <code class="filename">make</code> with 
                arguments that specify the compiler and linker. 
                You can pass additional arguments through 
                the <code class="filename"><a class="link" href="#var-EXTRA_OEMAKE" title="EXTRA_OEMAKE">EXTRA_OEMAKE</a></code> variable.
                </p></li><li class="listitem"><p><code class="filename">do_install</code> ‐ runs <code class="filename">make install</code> 
                and passes a DESTDIR option, which takes its value from the standard 
                <code class="filename"><a class="link" href="#var-DESTDIR" title="DESTDIR">DESTDIR</a></code> variable.
                </p></li></ul></div><p>
    </p></div><div class="section" title="6.3. Alternatives - update-alternatives.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-update-alternatives"></a>6.3. Alternatives - <code class="filename">update-alternatives.bbclass</code></h2></div></div></div><p>
        Several programs can fulfill the same or similar function and be installed with the same name. 
        For example, the <code class="filename">ar</code> command is available from the 
        <code class="filename">busybox</code>, <code class="filename">binutils</code> and 
        <code class="filename">elfutils</code> packages. 
        The <code class="filename">update-alternatives.bbclass</code> class handles renaming the 
        binaries so that multiple packages can be installed without conflicts. 
        The <code class="filename">ar</code> command still works regardless of which packages are installed
        or subsequently removed. 
        The class renames the conflicting binary in each package and symlinks the highest 
        priority binary during installation or removal of packages.
    </p><p>
        Four variables control this class:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename">ALTERNATIVE_NAME</code> ‐ The name of the 
                binary that is replaced (<code class="filename">ar</code> in this example).</p></li><li class="listitem"><p><code class="filename">ALTERNATIVE_LINK</code> ‐ The path to 
                the resulting binary (<code class="filename">/bin/ar</code> in this example).</p></li><li class="listitem"><p><code class="filename">ALTERNATIVE_PATH</code> ‐ The path to the 
                real binary (<code class="filename">/usr/bin/ar.binutils</code> in this example).</p></li><li class="listitem"><p><code class="filename">ALTERNATIVE_PRIORITY</code> ‐ The priority of 
                the binary. 
                The version with the most features should have the highest priority.</p></li></ul></div><p>
    </p><p>
	Currently, the OpenEmbedded build system supports only one binary per package.
    </p></div><div class="section" title="6.4. Initscripts - update-rc.d.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-update-rc.d"></a>6.4. Initscripts - <code class="filename">update-rc.d.bbclass</code></h2></div></div></div><p>
        This class uses <code class="filename">update-rc.d</code> to safely install an 
        initialization script on behalf of the package. 
        The OpenEmbedded build system takes care of details such as making sure the script is stopped before 
        a package is removed and started when the package is installed. 
        Three variables control this class: 
        <code class="filename"><a class="link" href="#var-INITSCRIPT_PACKAGES" title="INITSCRIPT_PACKAGES">INITSCRIPT_PACKAGES</a></code>, 
        <code class="filename"><a class="link" href="#var-INITSCRIPT_NAME" title="INITSCRIPT_NAME">INITSCRIPT_NAME</a></code> and
        <code class="filename"><a class="link" href="#var-INITSCRIPT_PARAMS" title="INITSCRIPT_PARAMS">INITSCRIPT_PARAMS</a></code>.
        See the variable links for details.
    </p></div><div class="section" title="6.5. Binary config scripts - binconfig.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-binconfig"></a>6.5. Binary config scripts - <code class="filename">binconfig.bbclass</code></h2></div></div></div><p>
        Before <code class="filename">pkg-config</code> had become widespread, libraries shipped shell
        scripts to give information about the libraries and include paths needed 
        to build software (usually named <code class="filename">LIBNAME-config</code>).
        This class assists any recipe using such scripts.
    </p><p>
        During staging, BitBake installs such scripts into the
        <code class="filename">sysroots/</code> directory. 
        BitBake also changes all paths to point into the <code class="filename">sysroots/</code>
        directory so all builds that use the script will use the correct 
        directories for the cross compiling layout.
    </p></div><div class="section" title="6.6. Debian renaming - debian.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-debian"></a>6.6. Debian renaming - <code class="filename">debian.bbclass</code></h2></div></div></div><p>
        This class renames packages so that they follow the Debian naming
        policy (i.e. <code class="filename">eglibc</code> becomes <code class="filename">libc6</code>
        and <code class="filename">eglibc-devel</code> becomes <code class="filename">libc6-dev</code>.
    </p></div><div class="section" title="6.7. Pkg-config - pkgconfig.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-pkgconfig"></a>6.7. Pkg-config - <code class="filename">pkgconfig.bbclass</code></h2></div></div></div><p>
        <code class="filename">pkg-config</code> brought standardization and this class aims to make its
        integration smooth for all libraries that make use of it.
    </p><p>
        During staging, BitBake installs <code class="filename">pkg-config</code> data into the
        <code class="filename">sysroots/</code> directory. 
        By making use of sysroot functionality within <code class="filename">pkg-config</code>,
        this class no longer has to manipulate the files.
    </p></div><div class="section" title="6.8. Distribution of sources - src_distribute_local.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-src-distribute"></a>6.8. Distribution of sources - <code class="filename">src_distribute_local.bbclass</code></h2></div></div></div><p>
        Many software licenses require that source files be provided along with the binaries.
        To simplify this process, two classes were created:
        <code class="filename">src_distribute.bbclass</code> and 
        <code class="filename">src_distribute_local.bbclass</code>.
    </p><p>
        The results of these classes are <code class="filename">tmp/deploy/source/</code> 
        subdirs with sources sorted by 
        <code class="filename"><a class="link" href="#var-LICENSE" title="LICENSE">LICENSE</a></code> field. 
        If recipes list few licenses (or have entries like "Bitstream Vera"),
        the source archive is placed in each license directory.
    </p><p>
        This class operates using three modes:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>copy:</em></span> Copies the files to the 
                distribute directory.</p></li><li class="listitem"><p><span class="emphasis"><em>symlink:</em></span> Symlinks the files to the 
                distribute directory.</p></li><li class="listitem"><p><span class="emphasis"><em>move+symlink:</em></span> Moves the files into 
                the distribute directory and then symlinks them back.</p></li></ul></div><p>
    </p></div><div class="section" title="6.9. Perl modules - cpan.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-perl"></a>6.9. Perl modules - <code class="filename">cpan.bbclass</code></h2></div></div></div><p>
        Recipes for Perl modules are simple.
        These recipes usually only need to point to the source's archive and then inherit the 
        proper <code class="filename">.bbclass</code> file.
        Building is split into two methods depending on which method the module authors used.
    </p><p>
        Modules that use old <code class="filename">Makefile.PL</code>-based build system require
        <code class="filename">cpan.bbclass</code> in their recipes.
    </p><p>
        Modules that use <code class="filename">Build.PL</code>-based build system require
        using <code class="filename">cpan_build.bbclass</code> in their recipes.
    </p></div><div class="section" title="6.10. Python extensions - distutils.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-distutils"></a>6.10. Python extensions - <code class="filename">distutils.bbclass</code></h2></div></div></div><p>
        Recipes for Python extensions are simple.
        These recipes usually only need to point to the source's archive and then inherit
        the proper <code class="filename">.bbclass</code> file.
        Building is split into two methods dependling on which method the module authors used.
    </p><p>
        Extensions that use an Autotools-based build system require Autotools and 
        <code class="filename">distutils</code>-based <code class="filename">.bbclasse</code> files in their recipes.
    </p><p>
        Extensions that use <code class="filename">distutils</code>-based build systems require 
        <code class="filename">distutils.bbclass</code> in their recipes.
    </p></div><div class="section" title="6.11. Developer Shell - devshell.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-devshell"></a>6.11. Developer Shell - <code class="filename">devshell.bbclass</code></h2></div></div></div><p>
        This class adds the <code class="filename">devshell</code> task. 
        Distribution policy dictates whether to include this class.
        See the 
        "<a class="link" href="#platdev-appdev-devshell" target="_top">Using a Development Shell</a>" section 
        in the Yocto Project Development Manual for more information about using <code class="filename">devshell</code>.
    </p></div><div class="section" title="6.12. Packaging - package*.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-package"></a>6.12. Packaging - <code class="filename">package*.bbclass</code></h2></div></div></div><p>
        The packaging classes add support for generating packages from a build's
        output. 
        The core generic functionality is in <code class="filename">package.bbclass</code>.
        The code specific to particular package types is contained in various sub-classes such as
        <code class="filename">package_deb.bbclass</code>, <code class="filename">package_ipk.bbclass</code>,
        and <code class="filename">package_rpm.bbclass</code>. 
        Most users will want one or more of these classes.
    </p><p>
        You can control the list of resulting package formats by using the 
        <code class="filename"><a class="link" href="#var-PACKAGE_CLASSES" title="PACKAGE_CLASSES">PACKAGE_CLASSES</a></code> 
        variable defined in the <code class="filename">local.conf</code> configuration file, 
        which is located in the <code class="filename">conf</code> folder of the 
        <a class="link" href="#source-directory" target="_top">source directory</a>. 
        When defining the variable, you can specify one or more package types.
        Since images are generated from packages, a packaging class is 
        needed to enable image generation.
        The first class listed in this variable is used for image generation. 
    </p><p>
        The package class you choose can affect build-time performance and has space
        ramifications.
        In general, building a package with RPM takes about thirty percent more time as 
        compared to using IPK to build the same or similar package.
        This comparison takes into account a complete build of the package with all 
        dependencies previously built.
        The reason for this discrepancy is because the RPM package manager creates and 
        processes more metadata than the IPK package manager.
        Consequently, you might consider setting <code class="filename">PACKAGE_CLASSES</code>
        to "package_ipk" if you are building smaller systems.
    </p><p>
        Keep in mind, however, that RPM starts to provide more abilities than IPK due to 
        the fact that it processes more metadata.
        For example, this information includes individual file types, file checksum generation
        and evaluation on install, sparse file support, conflict detection and resolution
        for multilib systems, ACID style upgrade, and repackaging abilities for rollbacks.
    </p><p>
        Another consideration for packages built using the RPM package manager is space.
        For smaller systems, the extra space used for the Berkley Database and the amount 
        of metadata can affect your ability to do on-device upgrades.
    </p><p>
        You can find additional information on the effects of the package class at these 
        two Yocto Project mailing list links:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><a class="ulink" href="http://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html" target="_top">
                https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html</a></p></li><li class="listitem"><p><a class="ulink" href="http://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html" target="_top">
                https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html</a></p></li></ul></div><p>
    </p></div><div class="section" title="6.13. Building kernels - kernel.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-kernel"></a>6.13. Building kernels - <code class="filename">kernel.bbclass</code></h2></div></div></div><p>
        This class handles building Linux kernels. 
        The class contains code to build all kernel trees. 
        All needed headers are staged into the
        <code class="filename"><a class="link" href="#var-STAGING_KERNEL_DIR" title="STAGING_KERNEL_DIR">STAGING_KERNEL_DIR</a></code>
        directory to allow out-of-tree module builds using <code class="filename">module.bbclass</code>.
    </p><p>
        This means that each built kernel module is packaged separately and inter-module 
        dependencies are created by parsing the <code class="filename">modinfo</code> output. 
        If all modules are required, then installing the <code class="filename">kernel-modules</code>
        package installs all packages with modules and various other kernel packages 
        such as <code class="filename">kernel-vmlinux</code>.
    </p><p>
        Various other classes are used by the kernel and module classes internally including 
        <code class="filename">kernel-arch.bbclass</code>, <code class="filename">module_strip.bbclass</code>, 
        <code class="filename">module-base.bbclass</code>, and <code class="filename">linux-kernel-base.bbclass</code>.
    </p></div><div class="section" title="6.14. Creating images - image.bbclass and rootfs*.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-image"></a>6.14. Creating images - <code class="filename">image.bbclass</code> and <code class="filename">rootfs*.bbclass</code></h2></div></div></div><p>
        These classes add support for creating images in several formats. 
        First, the root filesystem is created from packages using
        one of the <code class="filename">rootfs_*.bbclass</code> 
        files (depending on the package format used) and then the image is created.
    </p><p>
        The <code class="filename"><a class="link" href="#var-IMAGE_FSTYPES" title="IMAGE_FSTYPES">IMAGE_FSTYPES</a></code>
        variable controls the types of images to generate.
    </p><p>        
        The <code class="filename"><a class="link" href="#var-IMAGE_INSTALL" title="IMAGE_INSTALL">IMAGE_INSTALL</a></code>
        variable controls the list of packages to install into the image.
    </p></div><div class="section" title="6.15. Host System sanity checks - sanity.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-sanity"></a>6.15. Host System sanity checks - <code class="filename">sanity.bbclass</code></h2></div></div></div><p>
        This class checks to see if prerequisite software is present so that 
        users can be notified of potential problems that might affect their build. 
        The class also performs basic user configuration checks from 
        the <code class="filename">local.conf</code> configuration file to
        prevent common mistakes that cause build failures. 
        Distribution policy usually determines whether to include this class.
    </p></div><div class="section" title="6.16. Generated output quality assurance checks - insane.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-insane"></a>6.16. Generated output quality assurance checks - <code class="filename">insane.bbclass</code></h2></div></div></div><p>
        This class adds a step to the package generation process that sanity checks the
        packages generated by the OpenEmbedded build system.
        A range of checks are performed that check the build's output
        for common problems that show up during runtime.
        Distribution policy usually dictates whether to include this class.
    </p><p>
        You can configure the sanity checks so that specific test failures either raise a warning or 
        an error message.  
        Typically, failures for new tests generate a warning.
        Subsequent failures for the same test would then generate an error message 
        once the metadata is in a known and good condition.
        You use the <code class="filename">WARN_QA</code> variable to specify tests for which you 
        want to generate a warning message on failure.
        You use the <code class="filename">ERROR_QA</code> variable to specify tests for which you 
        want to generate an error message on failure.
    </p><p>
        The following list shows the tests you can list with the <code class="filename">WARN_QA</code>
        and <code class="filename">ERROR_QA</code> variables:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em><code class="filename">ldflags:</code></em></span>
                Ensures that the binaries were linked with the 
                <code class="filename">LDFLAGS</code> options provided by the build system. 
                If this test fails, check that the <code class="filename">LDFLAGS</code> variable
                is being passed to the linker command.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">useless-rpaths:</code></em></span>
                Checks for dynamic library load paths (rpaths) in the binaries that 
                by default on a standard system are searched by the linker (e.g.
                <code class="filename">/lib</code> and <code class="filename">/usr/lib</code>). 
                While these paths will not cause any breakage, they do waste space and 
                are unnecessary.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">rpaths:</code></em></span>
                Checks for rpaths in the binaries that contain build system paths such
                as <code class="filename">TMPDIR</code>.
                If this test fails, bad <code class="filename">-rpath</code> options are being 
                passed to the linker commands and your binaries have potential security 
                issues.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">dev-so:</code></em></span>
                Checks that the <code class="filename">.so</code> symbolic links are in the 
                <code class="filename">-dev</code> package and not in any of the other packages. 
                In general, these symlinks are only useful for development purposes.
                Thus, the <code class="filename">-dev</code> package is the correct location for
                them. 
                Some very rare cases do exist for dynamically loaded modules where 
                these symlinks are needed instead in the main package.
                </p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">debug-files:</code></em></span>
                Checks for <code class="filename">.debug</code> directories in anything but the 
                <code class="filename">-dbg</code> package. 
                The debug files should all be in the <code class="filename">-dbg</code> package.
                Thus, anything packaged elsewhere is incorrect packaging.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">arch:</code></em></span>
                Checks the Executable and Linkable Format (ELF) type, bit size and endianness 
                of any binaries to ensure it matches the target architecture. 
                This test fails if any binaries don't match the type since there would be an 
                incompatibility. 
                Sometimes software, like bootloaders, might need to bypass this check.
                </p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">debug-deps:</code></em></span>
                Checks that <code class="filename">-dbg</code> packages only depend on other
                <code class="filename">-dbg</code> packages and not on any other types of packages,
                which would cause a packaging bug.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">dev-deps:</code></em></span>
                Checks that <code class="filename">-dev</code> packages only depend on other 
                <code class="filename">-dev</code> packages and not on any other types of packages,
                which would be a packaging bug.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">pkgconfig:</code></em></span>
                Checks <code class="filename">.pc</code> files for any 
                <code class="filename">TMPDIR/WORKDIR</code> paths. 
                Any <code class="filename">.pc</code> file containing these paths is incorrect 
                since <code class="filename">pkg-config</code> itself adds the correct sysroot prefix 
                when the files are accessed.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">la:</code></em></span>
                Checks <code class="filename">.la</code> files for any <code class="filename">TMPDIR</code>
                paths. 
                Any <code class="filename">.la</code> file continaing these paths is incorrect since 
                <code class="filename">libtool</code> adds the correct sysroot prefix when using the 
                files automatically itself.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">desktop:</code></em></span>
                Runs the <code class="filename">desktop-file-validate</code> program against any 
                <code class="filename">.desktop</code> files to validate their contents against 
                the specification for <code class="filename">.desktop</code> files.</p></li></ul></div><p>
    </p></div><div class="section" title="6.17. Autotools configuration data cache - siteinfo.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-siteinfo"></a>6.17. Autotools configuration data cache - <code class="filename">siteinfo.bbclass</code></h2></div></div></div><p>
        Autotools can require tests that must execute on the target hardware.
        Since this is not possible in general when cross compiling, site information is
        used to provide cached test results so these tests can be skipped over but
        still make the correct values available.
        The <code class="filename"><a class="link" href="#structure-meta-site" title="4.3.18. meta/site/">meta/site directory</a></code>
        contains test results sorted into different categories such as architecture, endianness, and
        the <code class="filename">libc</code> used. 
        Site information provides a list of files containing data relevant to 
        the current build in the 
        <code class="filename"><a class="link" href="#var-CONFIG_SITE" title="CONFIG_SITE">CONFIG_SITE</a></code> variable 
        that Autotools automatically picks up.
    </p><p>
        The class also provides variables like 
        <code class="filename"><a class="link" href="#var-SITEINFO_ENDIANNESS" title="SITEINFO_ENDIANNESS">SITEINFO_ENDIANNESS</a></code> 
        and <code class="filename"><a class="link" href="#var-SITEINFO_BITS" title="SITEINFO_BITS">SITEINFO_BITS</a></code> 
        that can be used elsewhere in the metadata.
    </p><p>
        Because this class is included from <code class="filename">base.bbclass</code>, it is always active.
    </p></div><div class="section" title="6.18. Adding Users - useradd.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-useradd"></a>6.18. Adding Users - <code class="filename">useradd.bbclass</code></h2></div></div></div><p>
        If you have packages that install files that are owned by custom users or groups, 
        you can use this class to specify those packages and associate the users and groups
        with those packages.
        The <code class="filename">meta-skeleton/recipes-skeleton/useradd/useradd-example.bb</code> 
        recipe in the <a class="link" href="#source-directory" target="_top">source directory</a>
        provides a simple exmample that shows how to add three 
        users and groups to two packages.
        See the <code class="filename">useradd-example.bb</code> for more information on how to 
        use this class.
    </p></div><div class="section" title="6.19. Using External Source - externalsrc.bbclass"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-externalsrc"></a>6.19. Using External Source - <code class="filename">externalsrc.bbclass</code></h2></div></div></div><p>
        You can use this class to build software from source code that is external to the 
        OpenEmbedded build system.  
        In other words, your source code resides in an external tree outside of the Yocto Project.
        Building software from an external source tree means that the normal fetch, unpack, and 
        patch process is not used.
    </p><p>
        To use the class, you need to define the 
        <a class="link" href="#var-S" title="S"><code class="filename">S</code></a> variable to point to the directory that contains the source files. 
        You also need to have your recipe inherit the <code class="filename">externalsrc.bbclass</code> class.
    </p><p>
        This class expects the source code to support recipe builds that use the 
        <a class="link" href="#var-B" title="B"><code class="filename">B</code></a> variable to point to the directory in 
        which the OpenEmbedded build system places the generated objects built from the recipes.
        By default, the <code class="filename">B</code> directory is set to the following, which is separate from the 
        source directory (<code class="filename">S</code>):
        </p><pre class="literallayout">
     ${WORKDIR}/${BPN}-{PV}/
        </pre><p>
        See the glossary entries for the
        <a class="link" href="#var-WORKDIR" title="WORKDIR"><code class="filename">WORKDIR</code></a>, 
        <a class="link" href="#var-BPN" title="BPN"><code class="filename">BPN</code></a>, 
        <a class="link" href="#var-PV" title="PV"><code class="filename">PV</code></a>,
        <a class="link" href="#var-S" title="S"><code class="filename">S</code></a>, and 
        <a class="link" href="#var-B" title="B"><code class="filename">B</code></a> for more information.
    </p><p>
        You can build object files in the external tree by setting the
        <code class="filename">B</code> variable equal to <code class="filename">"${S}"</code>.
        However, this practice does not work well if you use the source for more than one variant
        (i.e., "natives" such as <code class="filename">quilt-native</code>, 
        or "crosses" such as <code class="filename">gcc-cross</code>).
        So, be sure there are no "native", "cross", or "multilib" variants of the recipe.
    </p><p>
        If you do want to build different variants of a recipe, you can use the 
        <a class="link" href="#var-BBCLASSEXTEND" title="BBCLASSEXTEND"><code class="filename">BBCLASSEXTEND</code></a> variable. 
        When you do, the <a class="link" href="#var-B" title="B"><code class="filename">B</code></a> variable must support the 
        recipe's ability to build variants in different working directories.
        Most autotools-based recipes support separating these directories.
        The OpenEmbedded build system defaults to using separate directories for <code class="filename">gcc</code>
        and some kernel recipes.
        Alternatively, you can make sure that separate recipes exist that each 
        use the <code class="filename">BBCLASSEXTEND</code> variable to build each variant.
        The separate recipes can inherit a single target recipe.
    </p><p>
        For information on how to use this class, see the 
        "<a class="link" href="#building-software-from-an-external-source" target="_top">Building
        Software from an External Source</a>" section in the Yocto Project Development Manual.
    </p></div><div class="section" title="6.20. Other Classes"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-classes-others"></a>6.20. Other Classes</h2></div></div></div><p>
        Thus far, this chapter has discussed only the most useful and important 
        classes.
        However, other classes exist within the <code class="filename">meta/classes</code> directory 
        in the <a class="link" href="#source-directory" target="_top">source directory</a>.
        You can examine the <code class="filename">.bbclass</code> files directly for more 
        information. 
    </p></div></div>

    <div class="chapter" title="Chapter 7. Images"><div class="titlepage"><div><div><h2 class="title"><a id="ref-images"></a>Chapter 7. Images</h2></div></div></div><p>
        The OpenEmbedded build process supports several types of images to satisfy different needs.  
        When you issue the <code class="filename">bitbake</code> command you provide a “top-level” recipe 
        that essentially begins the build for the type of image you want.
    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
        Building an image without GNU Public License Version 3 (GPLv3) components is 
        only supported for minimal and base images.
        Furthermore, if you are going to build an image using non-GPLv3 components,
        you must make the following changes in the <code class="filename">local.conf</code> file
        before using the BitBake command to build the minimal or base image:
        <pre class="literallayout">
     1. Comment out the EXTRA_IMAGE_FEATURES line
     2. Set INCOMPATIBLE_LICENSE = "GPLv3"
        </pre></div><p>
        From within the <code class="filename">poky</code> Git repository, use the following command to list 
        the supported images:
        </p><pre class="literallayout">
     $ ls meta*/recipes*/images/*.bb
        </pre><p>
        These recipes reside in the <code class="filename">meta/recipes-core/images</code>,
        <code class="filename">meta/recipes-extended/images</code>, 
        <code class="filename">meta/recipes-graphics/images</code>, and 
        <code class="filename">meta/recipes-sato/images</code> directories 
        within the <a class="link" href="#source-directory" target="_top">source directory</a>.  
        Although the recipe names are somewhat explanatory, here is a list that describes them:
    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-base</code>:</em></span>
            A console-only image that fully supports the target device hardware.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-core</code>:</em></span>
            An X11 image with simple applications such as terminal, editor, and file manager.
            </p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-minimal</code>:</em></span>
            A small image just capable of allowing a device to boot.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-minimal-dev</code>:</em></span>
            A <code class="filename">core-image-minimal</code> image suitable for development work
            using the host.
            The image includes headers and libraries you can use in a host development 
            environment.
            </p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-minimal-initramfs</code>:</em></span>
            A <code class="filename">core-image-minimal</code> image that has the Minimal RAM-based 
            Initial Root Filesystem (<code class="filename">initramfs</code>) as part of the kernel, 
            which allows the system to find the first “init” program more efficiently.
            </p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-minimal-mtdutils</code>:</em></span>
            A <code class="filename">core-image-minimal</code> image that has support 
            for the Minimal MTD Utilities, which let the user interact with the 
            MTD subsystem in the kernel to perform operations on flash devices.
            </p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-basic</code>:</em></span>
            A foundational basic image without support for X that can be reasonably used for 
            customization.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-lsb</code>:</em></span>
            A <code class="filename">core-image-basic</code> image suitable for implementations 
            that conform to Linux Standard Base (LSB).</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-lsb-dev</code>:</em></span>
            A <code class="filename">core-image-lsb</code> image that is suitable for development work
            using the host.
            The image includes headers and libraries you can use in a host development 
            environment.
            </p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-lsb-sdk</code>:</em></span>
            A <code class="filename">core-image-lsb</code> that includes everything in meta-toolchain 
            but also includes development headers and libraries to form a complete standalone SDK.
            This image is suitable for development using the target.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-clutter</code>:</em></span>
            An image with support for the Open GL-based toolkit Clutter, which enables development of 
            rich and animated graphical user interfaces.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-sato</code>:</em></span>
            An image with Sato support, a mobile environment and visual style that works well 
            with mobile devices.
            The image supports X11 with a Sato theme and Pimlico applications and also  
            contains terminal, editor, and file manager.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-sato-dev</code>:</em></span>
            A <code class="filename">core-image-sato</code> image suitable for development 
            using the host.
            The image includes libraries needed to build applications on the device itself, 
            testing and profiling tools, and debug symbols.  
            This image was formerly <code class="filename">core-image-sdk</code>.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-sato-sdk</code>:</em></span>
            A <code class="filename">core-image-sato</code> image that includes everything in meta-toolchain. 
            The image also includes development headers and libraries to form a complete standalone SDK
            and is suitable for development using the target.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-rt</code>:</em></span>
            A <code class="filename">core-image-minimal</code> image plus a real-time test suite and 
            tools appropriate for real-time use.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-rt-sdk</code>:</em></span>
            A <code class="filename">core-image-rt</code> image that includes everything in 
            <code class="filename">meta-toolchain</code>.  
            The image also includes development headers and libraries to form a complete 
            stand-alone SDK and is suitable for development using the target.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">core-image-gtk-directfb</code>:</em></span>
            An image that uses <code class="filename">gtk+</code> over <code class="filename">directfb</code> 
            instead of X11.  
            In order to build, this image requires specific distro configuration that enables 
            <code class="filename">gtk</code> over <code class="filename">directfb</code>.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">build-appliance-image</code>:</em></span>
            An image you can boot and run using either the
            <a class="ulink" href="http://www.vmware.com/products/player/overview.html" target="_top">VMware Player</a>
            or <a class="ulink" href="http://www.vmware.com/products/workstation/overview.html" target="_top">VMware Workstation</a>.
            For more information on this image, see the
            <a class="ulink" href="http://www.yoctoproject.org/documentation/build-appliance" target="_top">Build Appliance</a> page on 
            the Yocto Project website.</p></li></ul></div><div class="tip" title="Tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Tip</h3>
        From the Yocto Project release 1.1 onwards, <code class="filename">-live</code> and 
        <code class="filename">-directdisk</code> images have been replaced by a "live"
        option in <code class="filename">IMAGE_FSTYPES</code> that will work with any image to produce an 
        image file that can be
        copied directly to a CD or USB device and run as is. 
        To build a live image, simply add
        "live" to <code class="filename">IMAGE_FSTYPES</code> within the <code class="filename">local.conf</code>
        file or wherever appropriate and then build the desired image as normal.
    </div></div>

    <div class="chapter" title="Chapter 8. Reference: Features"><div class="titlepage"><div><div><h2 class="title"><a id="ref-features"></a>Chapter 8. Reference: Features</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#ref-features-distro">8.1. Distro</a></span></dt><dt><span class="section"><a href="#ref-features-machine">8.2. Machine</a></span></dt><dt><span class="section"><a href="#ref-features-image">8.3. Reference: Images</a></span></dt></dl></div><p>
        Features provide a mechanism for working out which packages
        should be included in the generated images. 
        Distributions can select which features they want to support through the
        <code class="filename"><a class="link" href="#var-DISTRO_FEATURES" title="DISTRO_FEATURES">DISTRO_FEATURES</a></code>
        variable, which is set in the <code class="filename">poky.conf</code> distribution configuration file.
        Machine features are set in the
        <code class="filename"><a class="link" href="#var-MACHINE_FEATURES" title="MACHINE_FEATURES">MACHINE_FEATURES</a></code>
        variable, which is set in the machine configuration file and
        specifies the hardware features for a given machine.
    </p><p>
        These two variables combine to work out which kernel modules,
        utilities, and other packages to include. 
        A given distribution can support a selected subset of features so some machine features might not
        be included if the distribution itself does not support them.
    </p><div class="section" title="8.1. Distro"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-features-distro"></a>8.1. Distro</h2></div></div></div><p>
            The items below are valid options for 
            <code class="filename"><a class="link" href="#var-DISTRO_FEATURES" title="DISTRO_FEATURES">DISTRO_FEATURES</a></code>:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>alsa:</em></span> ALSA support will be included (OSS compatibility 
                    kernel modules will be installed if available).</p></li><li class="listitem"><p><span class="emphasis"><em>bluetooth:</em></span> Include bluetooth support (integrated BT only)
                    </p></li><li class="listitem"><p><span class="emphasis"><em>ext2:</em></span> Include tools for supporting for devices with internal
                    HDD/Microdrive for storing files (instead of Flash only devices)
                    </p></li><li class="listitem"><p><span class="emphasis"><em>irda:</em></span> Include Irda support
                    </p></li><li class="listitem"><p><span class="emphasis"><em>keyboard:</em></span> Include keyboard support (e.g. keymaps will be 
                    loaded during boot).
                    </p></li><li class="listitem"><p><span class="emphasis"><em>pci:</em></span> Include PCI bus support
                    </p></li><li class="listitem"><p><span class="emphasis"><em>pcmcia:</em></span> Include PCMCIA/CompactFlash support
                    </p></li><li class="listitem"><p><span class="emphasis"><em>usbgadget:</em></span> USB Gadget Device support (for USB
                    networking/serial/storage)
                    </p></li><li class="listitem"><p><span class="emphasis"><em>usbhost:</em></span> USB Host support (allows to connect external
                    keyboard, mouse, storage, network etc)
                    </p></li><li class="listitem"><p><span class="emphasis"><em>wifi:</em></span> WiFi support (integrated only)
                    </p></li><li class="listitem"><p><span class="emphasis"><em>cramfs:</em></span> CramFS support
                    </p></li><li class="listitem"><p><span class="emphasis"><em>ipsec:</em></span> IPSec support
                    </p></li><li class="listitem"><p><span class="emphasis"><em>ipv6:</em></span> IPv6 support
                    </p></li><li class="listitem"><p><span class="emphasis"><em>nfs:</em></span> NFS client support (for mounting NFS exports on
                    device)</p></li><li class="listitem"><p><span class="emphasis"><em>ppp:</em></span> PPP dialup support</p></li><li class="listitem"><p><span class="emphasis"><em>smbfs:</em></span> SMB networks client support (for mounting
                    Samba/Microsoft Windows shares on device)</p></li></ul></div><p>
        </p></div><div class="section" title="8.2. Machine"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-features-machine"></a>8.2. Machine</h2></div></div></div><p>
            The items below are valid options for 
            <code class="filename"><a class="link" href="#var-MACHINE_FEATURES" title="MACHINE_FEATURES">MACHINE_FEATURES</a></code>:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>acpi:</em></span> Hardware has ACPI (x86/x86_64 only)
                    </p></li><li class="listitem"><p><span class="emphasis"><em>alsa:</em></span> Hardware has ALSA audio drivers
                    </p></li><li class="listitem"><p><span class="emphasis"><em>apm:</em></span> Hardware uses APM (or APM emulation)
                    </p></li><li class="listitem"><p><span class="emphasis"><em>bluetooth:</em></span> Hardware has integrated BT
                    </p></li><li class="listitem"><p><span class="emphasis"><em>ext2:</em></span> Hardware HDD or Microdrive
                    </p></li><li class="listitem"><p><span class="emphasis"><em>irda:</em></span> Hardware has Irda support
                    </p></li><li class="listitem"><p><span class="emphasis"><em>keyboard:</em></span> Hardware has a keyboard
                    </p></li><li class="listitem"><p><span class="emphasis"><em>pci:</em></span> Hardware has a PCI bus
                    </p></li><li class="listitem"><p><span class="emphasis"><em>pcmcia:</em></span> Hardware has PCMCIA or CompactFlash sockets
                    </p></li><li class="listitem"><p><span class="emphasis"><em>screen:</em></span> Hardware has a screen
                    </p></li><li class="listitem"><p><span class="emphasis"><em>serial:</em></span> Hardware has serial support (usually RS232)
                    </p></li><li class="listitem"><p><span class="emphasis"><em>touchscreen:</em></span> Hardware has a touchscreen
                    </p></li><li class="listitem"><p><span class="emphasis"><em>usbgadget:</em></span> Hardware is USB gadget device capable
                    </p></li><li class="listitem"><p><span class="emphasis"><em>usbhost:</em></span> Hardware is USB Host capable
                    </p></li><li class="listitem"><p><span class="emphasis"><em>wifi:</em></span> Hardware has integrated WiFi
                    </p></li></ul></div><p>
        </p></div><div class="section" title="8.3. Reference: Images"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-features-image"></a>8.3. Reference: Images</h2></div></div></div><p>
            The contents of images generated by the OpenEmbedded build system can be controlled by the 
            <code class="filename"><a class="link" href="#var-IMAGE_FEATURES" title="IMAGE_FEATURES">IMAGE_FEATURES</a></code>
            and <code class="filename"><a class="link" href="#var-EXTRA_IMAGE_FEATURES" title="EXTRA_IMAGE_FEATURES">EXTRA_IMAGE_FEATURES</a></code>
            variables that you typically configure in your image recipes.
            Through these variables you can add several different
            predefined packages such as development utilities or packages with debug
            information needed to investigate application problems or profile applications.
        </p><p>
            Current list of 
            <code class="filename">IMAGE_FEATURES</code> contains the following:
            </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em>apps-console-core:</em></span> Core console applications such as 
                    <code class="filename">ssh</code>, <code class="filename">daemon</code>, <code class="filename">avahi daemon</code>,
                    <code class="filename">portmap</code> (for mounting NFS shares)</p></li><li class="listitem"><p><span class="emphasis"><em>x11-base:</em></span> X11 server + minimal desktop</p></li><li class="listitem"><p><span class="emphasis"><em>x11-sato:</em></span> OpenedHand Sato environment</p></li><li class="listitem"><p><span class="emphasis"><em>apps-x11-core:</em></span> Core X11 applications such as an 
                    X Terminal, file manager, and file editor</p></li><li class="listitem"><p><span class="emphasis"><em>apps-x11-games:</em></span> A set of X11 games</p></li><li class="listitem"><p><span class="emphasis"><em>tools-sdk:</em></span> A full SDK that runs on the device
                    </p></li><li class="listitem"><p><span class="emphasis"><em>tools-debug:</em></span> Debugging tools such as 
                    <code class="filename">strace</code> and <code class="filename">gdb</code>
                    </p></li><li class="listitem"><p><span class="emphasis"><em>tools-profile:</em></span> Profiling tools such as 
                    <code class="filename">oprofile</code>, <code class="filename">exmap</code>, and 
                    <code class="filename">LTTng</code></p></li><li class="listitem"><p><span class="emphasis"><em>tools-testapps:</em></span> Device testing tools (e.g.
                    touchscreen debugging)</p></li><li class="listitem"><p><span class="emphasis"><em>nfs-server:</em></span> NFS server (exports / over NFS 
                    to everybody)</p></li><li class="listitem"><p><span class="emphasis"><em>dev-pkgs:</em></span> Development packages (headers and 
                    extra library links) for all packages installed in a given image</p></li><li class="listitem"><p><span class="emphasis"><em>dbg-pkgs:</em></span> Debug packages for all packages 
                    installed in a given image</p></li></ul></div><p>
        </p></div></div>

    <div class="chapter" title="Chapter 9. Variables Glossary"><div class="titlepage"><div><div><h2 class="title"><a id="ref-variables-glos"></a>Chapter 9. Variables Glossary</h2></div></div></div><div class="toc"><dl><dt><span class="glossary"><a href="#ref-variables-glossary">Glossary</a></span></dt></dl></div><p>
    This chapter lists common variables used in the OpenEmbedded build system and gives an overview
    of their function and contents.
</p><div class="glossary" title="Glossary"><div class="titlepage"><div><div><h2 class="title"><a id="ref-variables-glossary"></a>Glossary</h2></div></div></div><p>
       <a class="link" href="#var-ALLOW_EMPTY" title="ALLOW_EMPTY">A</a> 
       <a class="link" href="#var-B" title="B">B</a> 
       <a class="link" href="#var-CFLAGS" title="CFLAGS">C</a> 
       <a class="link" href="#var-D" title="D">D</a> 
       <a class="link" href="#var-ENABLE_BINARY_LOCALE_GENERATION" title="ENABLE_BINARY_LOCALE_GENERATION">E</a> 
       <a class="link" href="#var-FILES" title="FILES">F</a> 

       <a class="link" href="#var-HOMEPAGE" title="HOMEPAGE">H</a> 
       <a class="link" href="#var-IMAGE_FEATURES" title="IMAGE_FEATURES">I</a> 

       <a class="link" href="#var-KBRANCH" title="KBRANCH">K</a>
       <a class="link" href="#var-LAYERDIR" title="LAYERDIR">L</a> 
       <a class="link" href="#var-MACHINE" title="MACHINE">M</a> 


       <a class="link" href="#var-PACKAGE_ARCH" title="PACKAGE_ARCH">P</a> 

       <a class="link" href="#var-RCONFLICTS" title="RCONFLICTS">R</a> 
       <a class="link" href="#var-S" title="S">S</a> 
       <a class="link" href="#var-TARGET_ARCH" title="TARGET_ARCH">T</a> 


       <a class="link" href="#var-WORKDIR" title="WORKDIR">W</a> 



    </p><div class="glossdiv" title="A"><h3 class="title">A</h3><dl><dt><a id="var-ALLOW_EMPTY"></a>ALLOW_EMPTY</dt><dd><p>
                   Specifies if an output package should still be produced if it is empty.
                   By default, BitBake does not produce empty packages.
                   This default behavior can cause issues when there is an 
                   <a class="link" href="#var-RDEPENDS" title="RDEPENDS"><code class="filename">RDEPENDS</code></a> or 
                   some other runtime hard-requirement on the existence of the package.
                </p><p>
                   Like all package-controlling variables, you must always use them in 
                   conjunction with a package name override.
                   Here is an example:
                   </p><pre class="literallayout">
     ALLOW_EMPTY_${PN}
                   </pre><p>
                </p></dd><dt><a id="var-AUTHOR"></a>AUTHOR</dt><dd><p>The email address used to contact the original author or authors in 
                    order to send patches, forward bugs, etc.</p></dd><dt><a id="var-AUTOREV"></a>AUTOREV</dt><dd><p>Specifies to use the current (newest) source revision.
                    This variable is with the <code class="filename"><a class="link" href="#var-SRCREV" title="SRCREV">SRCREV</a></code>
                    variable.</p></dd></dl></div><div class="glossdiv" title="B"><h3 class="title">B</h3><dl><dt><a id="var-B"></a>B</dt><dd><p>
                    The directory in which the OpenEmbedded build system places
                    generated objects during a recipe's build process.
                    By default, this directory is the same as the <a class="link" href="#var-S" title="S"><code class="filename">S</code></a>
                    directory:
                    </p><pre class="literallayout">
     B = ${WORKDIR}/${BPN}-{PV}/
                    </pre><p>
                    You can separate the source directory (<code class="filename">S</code>) and the directory pointed to 
                    by the <code class="filename">B</code> variable.
                    Most autotools-based recipes support separating these directories.
                    The build system defaults to using separate directories for <code class="filename">gcc</code>
                    and some kernel recipes.
                </p></dd><dt><a id="var-BAD_RECOMMENDATIONS"></a>BAD_RECOMMENDATIONS</dt><dd><p>
                    A list of packages not to install despite being recommended by a recipe.
                    Support for this variable exists only for images that use the 
                    <code class="filename">ipkg</code> packaging system.
                </p></dd><dt><a id="var-BBCLASSEXTEND"></a>BBCLASSEXTEND</dt><dd><p>
                    Allows you to extend a recipe so that it builds variants of the software.
                    Common variants for recipes exist such as "natives" like <code class="filename">quilt-native</code>,
                    which is a copy of quilt built to run on the build system;
                    "crosses" such as <code class="filename">gcc-cross</code>,
                    which is a compiler built to run on the build machine but produces binaries
                    that run on the target <a class="link" href="#var-MACHINE" title="MACHINE"><code class="filename">MACHINE</code></a>;
                    "nativesdk", which targets the SDK machine instead of <code class="filename">MACHINE</code>;
                    and "mulitlibs" in the form "<code class="filename">multilib:&lt;multilib_name&gt;</code>".
                </p><p>
                    To build a different variant of the recipe with a minimal amount of code, it usually
                    is as simple as adding the following to your recipe:
                    </p><pre class="literallayout">
     BBCLASSEXTEND =+ "native nativesdk"
     BBCLASSEXTEND =+ "multilib:&lt;multilib_name&gt;"
                    </pre><p>
                </p></dd><dt><a id="var-BBMASK"></a>BBMASK</dt><dd><p>Prevents BitBake from processing recipes and recipe append files.
                    You can use the <code class="filename">BBMASK</code> variable to "hide" 
                    these <code class="filename">.bb</code> and <code class="filename">.bbappend</code> files.
                    BitBake ignores any recipe or recipe append files that match the expression.
                    It is as if BitBake does not see them at all.
                    Consequently, matching files are not parsed or otherwise used by 
                    BitBake.</p><p>The value you provide is passed to python's regular expression compiler.
                    For complete syntax information, see python's documentation at 
                    <a class="ulink" href="http://docs.python.org/release/2.3/lib/re-syntax.html" target="_top">http://docs.python.org/release/2.3/lib/re-syntax.html</a>.
                    The expression is compared against the full paths to the files. 
                    For example, the following uses a complete regular expression to tell
                    BitBake to ignore all recipe and recipe append files in the 
                    <code class="filename">.*/meta-ti/recipes-misc/</code> directory:
                    </p><pre class="literallayout">
     BBMASK = ".*/meta-ti/recipes-misc/"
                    </pre><p>Use the <code class="filename">BBMASK</code> variable from within the 
                    <code class="filename">conf/local.conf</code> file found 
                    in the <a class="link" href="#build-directory" target="_top">build directory</a>.</p></dd><dt><a id="var-BB_NUMBER_THREADS"></a>BB_NUMBER_THREADS</dt><dd><p>The maximum number of tasks BitBake should run in parallel at any one time.
                    If your host development system supports multiple cores a good rule of thumb
                    is to set this variable to twice the number of cores.</p></dd><dt><a id="var-BBFILE_COLLECTIONS"></a>BBFILE_COLLECTIONS</dt><dd><p>Lists the names of configured layers. 
                    These names are used to find the other <code class="filename">BBFILE_*</code>
                    variables. 
                    Typically, each layer will append its name to this variable in its
                    <code class="filename">conf/layer.conf</code> file.
                </p></dd><dt><a id="var-BBFILE_PATTERN"></a>BBFILE_PATTERN</dt><dd><p>Variable that expands to match files from <code class="filename">BBFILES</code> in a particular layer.  
                    This variable is used in the <code class="filename">conf/layer.conf</code> file and must 
                    be suffixed with the name of the specific layer (e.g. 
                    <code class="filename">BBFILE_PATTERN_emenlow</code>).</p></dd><dt><a id="var-BBFILE_PRIORITY"></a>BBFILE_PRIORITY</dt><dd><p>Assigns the priority for recipe files in each layer.</p><p>This variable is useful in situations where the same package appears in
                    more than one layer. 
                    Setting this variable allows you to prioritize a
                    layer against other layers that contain the same package - effectively
                    letting you control the precedence for the multiple layers. 
                    The precedence established through this variable stands regardless of a
                    layer's package version (<code class="filename">PV</code> variable). 
                    For example, a layer that has a package with a higher <code class="filename">PV</code> value but for 
                    which the <code class="filename">BBFILE_PRIORITY</code> is set to have a lower precedence still has a 
                    lower precedence.</p><p>A larger value for the <code class="filename">BBFILE_PRIORITY</code> variable results in a higher
                    precedence. 
                    For example, the value 6 has a higher precedence than the value 5. 
                    If not specified, the <code class="filename">BBFILE_PRIORITY</code> variable is set based on layer
                    dependencies (see the
                    <code class="filename"><a class="link" href="#var-LAYERDEPENDS" title="LAYERDEPENDS">LAYERDEPENDS</a></code> variable for 
                    more information.
                    The default priority, if unspecified
                    for a layer with no dependencies, is the lowest defined priority + 1
                    (or 1 if no priorities are defined).</p><div class="tip" title="Tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Tip</h3>
                    You can use the command <code class="filename">bitbake-layers show_layers</code> to list
                    all configured layers along with their priorities.
                </div></dd><dt><a id="var-BBFILES"></a>BBFILES</dt><dd><p>List of recipe files used by BitBake to build software</p></dd><dt><a id="var-BBPATH"></a>BBPATH</dt><dd><p>Used by BitBake to locate <code class="filename">.bbclass</code> and configuration files.  
                    This variable is analogous to the <code class="filename">PATH</code> variable.</p></dd><dt><a id="var-BBINCLUDELOGS"></a>BBINCLUDELOGS</dt><dd><p>Variable that controls how BitBake displays logs on build failure.</p></dd><dt><a id="var-BBLAYERS"></a>BBLAYERS</dt><dd><p>Lists the layers to enable during the build. 
                    This variable is defined in the <code class="filename">bblayers.conf</code> configuration 
                    file in the <a class="link" href="#build-directory" target="_top">build directory</a>. 
                    Here is an example:
                    </p><pre class="literallayout">
     BBLAYERS = " \
       /home/scottrif/poky/meta \
       /home/scottrif/poky/meta-yocto \
       /home/scottrif/poky/meta-mykernel \
       "
                    </pre><p>
                    This example enables three layers, one of which is a custom, user-defined layer 
                    named <code class="filename">meta-mykernel</code>.
                </p></dd><dt><a id="var-BPN"></a>BPN</dt><dd><p>Bare name of package with any suffixes like -cross -native removed.</p></dd></dl></div><div class="glossdiv" title="C"><h3 class="title">C</h3><dl><dt><a id="var-CFLAGS"></a>CFLAGS</dt><dd><p>
                    Flags passed to C compiler for the target system. 
                    This variable evaluates to the same as 
                    <code class="filename"><a class="link" href="#var-TARGET_CFLAGS" title="TARGET_CFLAGS">TARGET_CFLAGS</a></code>.
                </p></dd><dt><a id="var-COMPATIBLE_MACHINE"></a>COMPATIBLE_MACHINE</dt><dd><p>A regular expression which evaluates to match the machines the recipe 
                    works with. 
                    It stops recipes being run on machines for which they are not compatible. 
                    This is particularly useful with kernels. 
                    It also helps to increase parsing speed as further parsing of the recipe is skipped 
                    if it is found the current machine is not compatible.</p></dd><dt><a id="var-CONFFILES"></a>CONFFILES</dt><dd><p>
                    Identifies editable or configurable files that are part of a package.
                    If the Package Management System (PMS) is being used to update
                    packages on the target system, it is possible that 
                    configuration files you have changed after the original installation
                    and that you now want to remain unchanged are overwritten.
                    In other words, editable files might exist in the package that you do not 
                    want reset as part of the package update process.
                    You can use the <code class="filename">CONFFILES</code> variable to list the files in the 
                    package that you wish to prevent the PMS from overwriting during this update process.
                </p><p>  
                    To use the <code class="filename">CONFFILES</code> variable, provide a package name
                    override that identifies the package.
                    Then, provide a space-separated list of files.
                    Here is an example:
                    </p><pre class="literallayout">                       
  CONFFILES_${PN} += "${sysconfdir}/file1 \
     ${sysconfdir}/file2 ${sysconfdir}/file3"
                    </pre><p>
                </p><p>
                    A relationship exists between the <code class="filename">CONFFILES</code> and 
                    <code class="filename"><a class="link" href="#var-FILES" title="FILES">FILES</a></code> variables.
                    The files listed within <code class="filename">CONFFILES</code> must be a subset of 
                    the files listed within <code class="filename">FILES</code>.
                    Because the configuration files you provide with <code class="filename">CONFFILES</code> 
                    are simply being identified so that the PMS will not overwrite them, 
                    it makes sense that
                    the files must already be included as part of the package through the 
                    <code class="filename">FILES</code> variable.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    When specifying paths as part of the <code class="filename">CONFFILES</code> variable, 
                    it is good practice to use appropriate path variables. 
                    For example, <code class="filename">${sysconfdir}</code> rather than 
                    <code class="filename">/etc</code> or <code class="filename">${bindir}</code> rather 
                    than <code class="filename">/usr/bin</code>.
                    You can find a list of these variables at the top of the 
                    <code class="filename">/meta/conf/bitbake.conf</code> file in the 
                    <a class="link" href="#source-directory" target="_top">source directory</a>.
                </div></dd><dt><a id="var-CONFIG_SITE"></a>CONFIG_SITE</dt><dd><p>
                    A list of files that contains <code class="filename">autoconf</code> test results relevant 
                    to the current build. 
                    This variable is used by the Autotools utilities when running 
                    <code class="filename">configure</code>.
                </p></dd><dt><a id="var-CORE_IMAGE_EXTRA_INSTALL"></a>CORE_IMAGE_EXTRA_INSTALL</dt><dd><p>
                    Specifies the list of packages to be added to the image. 
                    This variable should only be set in the <code class="filename">local.conf</code>
                    configuration file found in the 
                    <a class="link" href="#build-directory" target="_top">build directory</a>.
                </p><p>
                    This variable replaces <code class="filename">POKY_EXTRA_INSTALL</code>, which is no longer supported.
                </p></dd></dl></div><div class="glossdiv" title="D"><h3 class="title">D</h3><dl><dt><a id="var-D"></a>D</dt><dd><p>The destination directory.</p></dd><dt><a id="var-DEBUG_BUILD"></a>DEBUG_BUILD</dt><dd><p>
                    Specifies to build packages with debugging information. 
                    This influences the value of the 
                    <code class="filename"><a class="link" href="#var-SELECTED_OPTIMIZATION" title="SELECTED_OPTIMIZATION">SELECTED_OPTIMIZATION</a></code> 
                    variable.
                </p></dd><dt><a id="var-DEBUG_OPTIMIZATION"></a>DEBUG_OPTIMIZATION</dt><dd><p>
                    The options to pass in 
                    <code class="filename"><a class="link" href="#var-TARGET_CFLAGS" title="TARGET_CFLAGS">TARGET_CFLAGS</a></code>
                    and <code class="filename"><a class="link" href="#var-CFLAGS" title="CFLAGS">CFLAGS</a></code> when compiling 
                    a system for debugging.
                    This variable defaults to "-O -fno-omit-frame-pointer -g".
                </p></dd><dt><a id="var-DEFAULT_PREFERENCE"></a>DEFAULT_PREFERENCE</dt><dd><p>Specifies the priority of recipes.</p></dd><dt><a id="var-DEPENDS"></a>DEPENDS</dt><dd><p>
                    A list of build-time dependencies for a given recipe. 
                    The variable indicates recipes that must have been staged before a 
                    particular recipe can configure.
                </p></dd><dt><a id="var-DESCRIPTION"></a>DESCRIPTION</dt><dd><p>The package description used by package managers.</p></dd><dt><a id="var-DESTDIR"></a>DESTDIR</dt><dd><p>the destination directory.</p></dd><dt><a id="var-DISTRO"></a>DISTRO</dt><dd><p>The short name of the distribution.</p></dd><dt><a id="var-DISTRO_EXTRA_RRECOMMENDS"></a>DISTRO_EXTRA_RRECOMMENDS</dt><dd><p></p><p>The list of packages which extend usability of the image. 
                    Those packages will automatically be installed but can be removed by user.</p></dd><dt><a id="var-DISTRO_FEATURES"></a>DISTRO_FEATURES</dt><dd><p>The features of the distribution.</p></dd><dt><a id="var-DISTRO_NAME"></a>DISTRO_NAME</dt><dd><p>The long name of the distribution.</p></dd><dt><a id="var-DISTRO_PN_ALIAS"></a>DISTRO_PN_ALIAS</dt><dd><p>Alias names used for the recipe in various Linux distributions.</p><p>See the  
                    "<a class="link" href="#usingpoky-configuring-DISTRO_PN_ALIAS" target="_top">Handling
                    a Package Name Alias</a>" section in the Yocto Project Development 
                    Manual for more information.</p></dd><dt><a id="var-DISTRO_VERSION"></a>DISTRO_VERSION</dt><dd><p>the version of the distribution.</p></dd><dt><a id="var-DL_DIR"></a>DL_DIR</dt><dd><p>
                    The central download directory used by the build process to store downloads.
                    You can set this directory by defining the <code class="filename">DL_DIR</code>
                    variable in the <code class="filename">/conf/local.conf</code> file.
                    This directory is self-maintaining and you should not have
                    to touch it. 
                    By default, the directory is <code class="filename">downloads</code> in the 
                    <a class="link" href="#build-directory" target="_top">build directory</a>.
                    </p><pre class="literallayout">
     #DL_DIR ?= "${TOPDIR}/downloads"
                    </pre><p>
                    To specify a different download directory, simply uncomment the line
                    and provide your directory.
                </p><p>
                    During a first build, the system downloads many different source code 
                    tarballs from various upstream projects. 
                    Downloading can take a while, particularly if your network
                    connection is slow. 
                    Tarballs are all stored in the directory defined by 
                    <code class="filename">DL_DIR</code> and the build system looks there first 
                    to find source tarballs. 
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                        When wiping and rebuilding, you can preserve this directory to speed 
                        up this part of subsequent builds. 
                    </div><p>
                </p><p>
                    You can safely share this directory between multiple builds on the 
                    same development machine.  
                    For additional information on how the build process gets source files
                    when working behind a firewall or proxy server, see the
                    "<a class="link" href="#how-does-the-yocto-project-obtain-source-code-and-will-it-work-behind-my-firewall-or-proxy-server">FAQ</a>"
                    chapter.
                </p></dd></dl></div><div class="glossdiv" title="E"><h3 class="title">E</h3><dl><dt><a id="var-ENABLE_BINARY_LOCALE_GENERATION"></a>ENABLE_BINARY_LOCALE_GENERATION</dt><dd><p></p><p>Variable that controls which locales for <code class="filename">eglibc</code> are
                    to be generated during the build (useful if the target device has 64Mbytes
                    of RAM or less).</p></dd><dt><a id="var-EXTRA_IMAGE_FEATURES"></a>EXTRA_IMAGE_FEATURES</dt><dd><p>Allows extra packages to be added to the generated images.
                    You set this variable in the <code class="filename">local.conf</code>
                    configuration file.
                    Note that some image features are also added using the 
                    <code class="filename"><a class="link" href="#var-IMAGE_FEATURES" title="IMAGE_FEATURES">IMAGE_FEATURES</a></code>
                    variable generally configured in image recipes.
                    You can use this variable to add more features in addition to those.
                    Here are some examples of features you can add:</p><pre class="literallayout">
"dbg-pkgs" - Adds -dbg packages for all installed packages
             including symbol information for debugging and 
             profiling.

"dev-pkgs" - Adds -dev packages for all installed packages.  
             This is useful if you want to develop against 
             the libraries in the image.

"tools-sdk" - Adds development tools such as gcc, make, 
              pkgconfig and so forth.

"tools-debug" - Adds debugging tools such as gdb and 
                strace.

"tools-profile" - Adds profiling tools such as oprofile, 
                  exmap, lttng and valgrind (x86 only).

"tools-testapps" - Adds useful testing tools such as 
                   ts_print, aplay, arecord and so 
                   forth.

"debug-tweaks" - Makes an image suitable for development.  
                 For example, ssh root access has a blank 
                 password.  You should remove this feature 
                 before you produce a production image.  
                       
                 There are other application targets too, see
                 <code class="filename">meta/classes/poky-image.bbclass</code>
                 and <code class="filename">meta/packages/tasks/task-poky.bb</code>
                 for more details.
                    </pre></dd><dt><a id="var-EXTRA_IMAGEDEPENDS"></a>EXTRA_IMAGEDEPENDS</dt><dd><p>A list of recipes to be built that do not provide packages to be installed in
                    the root filesystem.
                </p><p>Sometimes a recipe is required to build the final image but is not
                    needed in the root filesystem.
                    You can use the <code class="filename">EXTRA_IMAGEDEPENDS</code> variable to 
                    list these recipes and thus, specify the dependencies. 
                    A typical example is a required bootloader in a machine configuration.
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    To add packages to the root filesystem, see the various 
                    <code class="filename">*DEPENDS</code> and <code class="filename">*RECOMMENDS</code>
                    variables.
                </div></dd><dt><a id="var-EXTRA_OECMAKE"></a>EXTRA_OECMAKE</dt><dd><p>Additional <code class="filename">cmake</code> options.</p></dd><dt><a id="var-EXTRA_OECONF"></a>EXTRA_OECONF</dt><dd><p>Additional <code class="filename">configure</code> script options.</p></dd><dt><a id="var-EXTRA_OEMAKE"></a>EXTRA_OEMAKE</dt><dd><p>Additional GNU <code class="filename">make</code> options.</p></dd></dl></div><div class="glossdiv" title="F"><h3 class="title">F</h3><dl><dt><a id="var-FILES"></a>FILES</dt><dd><p>
                    The list of directories or files that are placed in packages.
                </p><p>
                    To use the <code class="filename">FILES</code> variable, provide a package name
                    override that identifies the package.
                    Then, provide a space-separated list of files or paths that identifies the 
                    files you want included as part of the package.
                    Here is an example:
                    </p><pre class="literallayout">                       
  FILES_${PN} += "${bindir}/mydir1/ ${bindir}/mydir2/myfile"
                    </pre><p>
                </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                    When specifying paths as part of the <code class="filename">FILES</code> variable, 
                    it is good practice to use appropriate path variables. 
                    For example, <code class="filename">${sysconfdir}</code> rather than 
                    <code class="filename">/etc</code> or <code class="filename">${bindir}</code> rather 
                    than <code class="filename">/usr/bin</code>.
                    You can find a list of these variables at the top of the 
                    <code class="filename">/meta/conf/bitbake.conf</code> file in the 
                    <a class="link" href="#source-directory" target="_top">source directory</a>.
                </div><p>
                    If some of the files you provide with the <code class="filename">FILES</code> variable
                    are editable and you know they should not be 
                    overwritten during the package update process by the Package Management
                    System (PMS), you can identify these files so that the PMS will not 
                    overwrite them. 
                    See the <code class="filename"><a class="link" href="#var-CONFFILES" title="CONFFILES">CONFFILES</a></code> 
                    variable for information on how to identify these files to the PMS.
                </p></dd><dt><a id="var-FILESEXTRAPATHS"></a>FILESEXTRAPATHS</dt><dd><p>
                    Extends the search path the OpenEmbedded build system uses when 
                    looking for files and patches as it processes recipes. 
                    The directories BitBake uses when it processes recipes is defined by the
                    <a class="link" href="#var-FILESPATH" title="FILESPATH"><code class="filename">FILESPATH</code></a> variable. 
                    You can add directories to the search path by defining the 
                    <code class="filename">FILESEXTRAPATHS</code> variable.
                </p><p>
                    To add paths to the search order, provide a list of directories and separate
                    each path using a colon character as follows:
                    </p><pre class="literallayout">
     FILESEXTRAPATHS_prepend := "path_1:path_2:path_3:"
                    </pre><p>
                    Typically, you want your directories search first. 
                    To make sure that happens, use <code class="filename">_prepend</code> and 
                    the immediate expansion (<code class="filename">:=</code>) operator as shown in the 
                    previous example.
                    Finally, to maintain the integrity of the <code class="filename">FILESPATH</code> variable, 
                    you must include the appropriate beginning or ending (as needed) colon character.
                </p><p>
                    The <code class="filename">FILESEXTRAPATHS</code> variable is intended for use in 
                    <code class="filename">.bbappend</code> files to include any additional files provided in that layer. 
                    You typically accomplish this with the following:
                    </p><pre class="literallayout">
     FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
                    </pre><p>
                </p></dd><dt><a id="var-FILESPATH"></a>FILESPATH</dt><dd><p>
                    The default set of directories the OpenEmbedded build system uses
                    when searching for patches and files.
                    During the build process, BitBake searches each directory in 
                    <code class="filename">FILESPATH</code> in the specified order when looking for 
                    files and patches specified by each <code class="filename">file://</code> URI in a recipe.
                </p><p>
                    The default value for the <code class="filename">FILESPATH</code> variable is defined
                    in the <code class="filename">base.bbclass</code> class found in 
                    <code class="filename">meta/classes</code> in the 
                    <a class="link" href="#source-directory" target="_top">source directory</a>:
                    </p><pre class="literallayout">
FILESPATH = "${@base_set_filespath([ "${FILE_DIRNAME}/${PF}", \
   "${FILE_DIRNAME}/${P}", "${FILE_DIRNAME}/${PN}", \
   "${FILE_DIRNAME}/${BP}", "${FILE_DIRNAME}/${BPN}", \
   "${FILE_DIRNAME}/files", "${FILE_DIRNAME}" ], d)}"
                    </pre><p>
                    Do not hand-edit the <code class="filename">FILESPATH</code> variable. 
                    If you want to extend the set of pathnames that BitBake uses when searching for 
                    files and patches, use the 
                    <a class="link" href="#var-FILESEXTRAPATHS" title="FILESEXTRAPATHS"><code class="filename">FILESEXTRAPATHS</code></a> variable.
                </p></dd><dt><a id="var-FILESYSTEM_PERMS_TABLES"></a>FILESYSTEM_PERMS_TABLES</dt><dd><p>Allows you to define your own file permissions settings table as part of
                    your configuration for the packaging process.
                    For example, suppose you need a consistent set of custom permissions for 
                    a set of groups and users across an entire work project.
                    It is best to do this in the packages themselves but this is not always 
                    possible.
                </p><p>
                    By default, the OpenEmbedded build system uses the <code class="filename">fs-perms.txt</code>, which
                    is located in the <code class="filename">meta/files</code> folder in the 
                    <a class="link" href="#source-directory" target="_top">source directory</a>.
                    If you create your own file permissions setting table, you should place it in your
                    layer or the distros layer. 
                </p><p>
                    You define the <code class="filename">FILESYSTEM_PERMS_TABLES</code> variable in the 
                    <code class="filename">conf/local.conf</code> file, which is found in the 
                    <a class="link" href="#build-directory" target="_top">build directory</a>, to 
                    point to your custom <code class="filename">fs-perms.txt</code>.
                    You can specify more than a single file permissions setting table.
                    The paths you specify to these files must be defined within the 
                    <code class="filename">BBPATH</code> variable.  
                </p><p>
                    For guidance on how to create your own file permissions settings table file, 
                    examine the existing <code class="filename">fs-perms.txt</code>.
                </p></dd><dt><a id="var-FULL_OPTIMIZATION"></a>FULL_OPTIMIZATION</dt><dd><p>
                    The options to pass in 
                    <code class="filename"><a class="link" href="#var-TARGET_CFLAGS" title="TARGET_CFLAGS">TARGET_CFLAGS</a></code>
                    and <code class="filename"><a class="link" href="#var-CFLAGS" title="CFLAGS">CFLAGS</a></code>
                    when compiling an optimized system.
                    This variable defaults to 
                    "-fexpensive-optimizations -fomit-frame-pointer -frename-registers -O2".
                </p></dd></dl></div><div class="glossdiv" title="H"><h3 class="title">H</h3><dl><dt><a id="var-HOMEPAGE"></a>HOMEPAGE</dt><dd><p>Website where more info about package can be found</p></dd></dl></div><div class="glossdiv" title="I"><h3 class="title">I</h3><dl><dt><a id="var-IMAGE_FEATURES"></a>IMAGE_FEATURES</dt><dd><p>The list of features present in images.
                Typically, you configure this variable in image recipes.
                Note that you can add extra features to the image by using the
                <code class="filename"><a class="link" href="#var-EXTRA_IMAGE_FEATURES" title="EXTRA_IMAGE_FEATURES">EXTRA_IMAGE_FEATURES</a></code> variable.
                See the "<a class="link" href="#ref-features-image" title="8.3. Reference: Images">Images</a>" chapter for the 
                list of features present in images built by the OpenEmbedded build system.</p></dd><dt><a id="var-IMAGE_FSTYPES"></a>IMAGE_FSTYPES</dt><dd><p>Formats of root filesystem images that you want to have created.</p></dd><dt><a id="var-IMAGE_INSTALL"></a>IMAGE_INSTALL</dt><dd><p>
                    Specifies the packages to install into an image.
                    The <code class="filename">IMAGE_INSTALL</code> variable is a mechanism for an image
                    recipe and you should use it with care to avoid ordering issues.
                </p><p>
                    Image recipes set <code class="filename">IMAGE_INSTALL</code> to specify the 
                    packages to install into an image through <code class="filename">image.bbclass</code>.
                    Additionally, "helper" classes exist, such as <code class="filename">core-image.bbclass</code>,
                    that can take 
                    <code class="filename"><a class="link" href="#var-IMAGE_FEATURES" title="IMAGE_FEATURES">IMAGE_FEATURES</a></code> lists
                    and turn these into auto-generated entries in 
                    <code class="filename">IMAGE_INSTALL</code> in addition to its default contents.
                </p><p>
                    Using <code class="filename">IMAGE_INSTALL</code> with the <code class="filename">+=</code>
                    operator from the <code class="filename">/conf/local.conf</code> file or from within 
                    an image recipe is not recommended as it can cause ordering issues. 
                    Since <code class="filename">core-image.bbclass</code> sets <code class="filename">IMAGE_INSTALL</code> 
                    to a default value using the <code class="filename">?=</code> operator, using a  
                    <code class="filename">+=</code> operation against <code class="filename">IMAGE_INSTALL</code> 
                    will result in unexpected behavior when used in 
                    <code class="filename">/conf/local.conf</code>.
                    Furthermore, the same operation from with an image recipe may or may not 
                    succeed depending on the specific situation.
                    In both these cases, the behavior is contrary to how most users expect 
                    the <code class="filename">+=</code> operator to work. 
                </p><p>
                    When you use this variable, it is best to use it as follows:
                    </p><pre class="literallayout">
     IMAGE_INSTALL_append = " package-name"
                    </pre><p>
                    Be sure to include the space between the quotation character and the start of the
                    package name.
                </p></dd><dt><a id="var-IMAGE_OVERHEAD_FACTOR"></a>IMAGE_OVERHEAD_FACTOR</dt><dd><p>
                    Defines a multiplier that the build system applies to the initial image
                    size for cases when the multiplier times the returned disk usage value
                    for the image is greater than the sum of 
                    <code class="filename"><a class="link" href="#var-IMAGE_ROOTFS_SIZE" title="IMAGE_ROOTFS_SIZE">IMAGE_ROOTFS_SIZE</a></code>
                    and 
                    <code class="filename"><a class="link" href="#var-IMAGE_ROOTFS_EXTRA_SPACE" title="IMAGE_ROOTFS_EXTRA_SPACE">IMAGE_ROOTFS_EXTRA_SPACE</a></code>.
                    The result of the multiplier applied to the initial image size creates
                    free disk space in the image as overhead.
                    By default, the build process uses a multiplier of 1.3 for this variable. 
                    This default value results in 30% free disk space added to the image when this 
                    method is used to determine the final generated image size.
                    You should be aware that post install scripts and the package management
                    system uses disk space inside this overhead area. 
                    Consequently, the multiplier does not produce an image with 
                    all the theoretical free disk space.                     
                    See <code class="filename"><a class="link" href="#var-IMAGE_ROOTFS_SIZE" title="IMAGE_ROOTFS_SIZE">IMAGE_ROOTFS_SIZE</a></code>
                    for information on how the build system determines the overall image size.
                </p><p>
                    The default 30% free disk space typically gives the image enough room to boot 
                    and allows for basic post installs while still leaving a small amount of 
                    free disk space. 
                    If 30% free space is inadequate, you can increase the default value.
                    For example, the following setting gives you 50% free space added to the image:
                    </p><pre class="literallayout">
     IMAGE_OVERHEAD_FACTOR = "1.5"
                    </pre><p>
                </p><p>
                    Alternatively, you can ensure a specific amount of free disk space is added
                    to the image by using     
                    <code class="filename"><a class="link" href="#var-IMAGE_ROOTFS_EXTRA_SPACE" title="IMAGE_ROOTFS_EXTRA_SPACE">IMAGE_ROOTFS_EXTRA_SPACE</a></code>
                    the variable.
                </p></dd><dt><a id="var-IMAGE_ROOTFS_EXTRA_SPACE"></a>IMAGE_ROOTFS_EXTRA_SPACE</dt><dd><p>
                    Defines additional free disk space created in the image in Kbytes.
                    By default, this variable is set to "0".
                    This free disk space is added to the image after the build system determines
                    the image size as described in 
                    <code class="filename"><a class="link" href="#var-IMAGE_ROOTFS_SIZE" title="IMAGE_ROOTFS_SIZE">IMAGE_ROOTFS_SIZE</a></code>.
                </p><p>
                    This variable is particularly useful when you want to ensure that a 
                    specific amount of free disk space is available on a device after an image 
                    is installed and running. 
                    For example, to be sure 5 Gbytes of free disk space is available, set the 
                    variable as follows:
                    </p><pre class="literallayout">
     IMAGE_ROOTFS_EXTRA_SPACE = "5242880"
                    </pre><p>
                </p></dd><dt><a id="var-IMAGE_ROOTFS_SIZE"></a>IMAGE_ROOTFS_SIZE</dt><dd><p>
                    Defines the size in Kbytes for the generated image.
                    The OpenEmbedded build system determines the final size for the generated 
                    image using an algorithm that takes into account the initial disk space used
                    for the generated image, a requested size for the image, and requested 
                    additional free disk space to be added to the image.
                    Programatically, the build system determines the final size of the 
                    generated image as follows:
                    </p><pre class="literallayout">
    if (image-du * overhead) &lt; rootfs-size:
	internal-rootfs-size = rootfs-size + xspace
    else:
	internal-rootfs-size = (image-du * overhead) + xspace

    where:

      image-du = Returned value of the du command on
                 the image.
      
      overhead = IMAGE_OVERHEAD_FACTOR

      rootfs-size = IMAGE_ROOTFS_SIZE

      internal-rootfs-size = Initial root filesystem
                             size before any modifications.

      xspace = IMAGE_ROOTFS_EXTRA_SPACE
                    </pre><p>
                   
                </p></dd><dt><a id="var-INC_PR"></a>INC_PR</dt><dd><p>Defines the Package revision.  
                    You manually combine values for <code class="filename">INC_PR</code> into the 
                    <a class="link" href="#var-PR" title="PR"><code class="filename">PR</code></a> field of the parent recipe.
                    When you change this variable, you change the <code class="filename">PR</code>
                    value for every person that includes the file.</p><p>
                    The following example shows how to use the <code class="filename">INC_PR</code> variable
                    given a common <code class="filename">.inc</code> file that defines the variable.
                    Once defined, you can use the variable to set the 
                    <code class="filename">PR</code> value:
                </p><pre class="literallayout">
recipes-graphics/xorg-font/encodings_1.0.4.bb:PR = "${INC_PR}.1"
recipes-graphics/xorg-font/font-util_1.3.0.bb:PR = "${INC_PR}.0"
recipes-graphics/xorg-font/font-alias_1.0.3.bb:PR = "${INC_PR}.3"
recipes-graphics/xorg-font/xorg-font-common.inc:INC_PR = "r2"
                </pre></dd><dt><a id="var-INHIBIT_PACKAGE_STRIP"></a>INHIBIT_PACKAGE_STRIP</dt><dd><p>
                    Causes the build to not strip binaries in resulting packages.
                </p></dd><dt><a id="var-INHERIT"></a>INHERIT</dt><dd><p>
                    Causes the named class to be inherited at 
                    this point during parsing. 
                    The variable is only valid in configuration files.
                </p></dd><dt><a id="var-INITSCRIPT_PACKAGES"></a>INITSCRIPT_PACKAGES</dt><dd><p>
                    A list of the packages that contain initscripts. 
                    If multiple packages are specified, you need to append the package name 
                    to the other <code class="filename">INITSCRIPT_*</code> as an override.</p><p>
                    This variable is used in recipes when using <code class="filename">update-rc.d.bbclass</code>.
                    The variable is optional and defaults to the <code class="filename">PN</code> variable.
                </p></dd><dt><a id="var-INITSCRIPT_NAME"></a>INITSCRIPT_NAME</dt><dd><p>
                    The filename of the initscript (as installed to <code class="filename">${etcdir}/init.d)</code>.
                </p><p>
                    This variable is used in recipes when using <code class="filename">update-rc.d.bbclass</code>.
                    The variable is Mandatory.
                </p></dd><dt><a id="var-INITSCRIPT_PARAMS"></a>INITSCRIPT_PARAMS</dt><dd><p>
                    Specifies the options to pass to <code class="filename">update-rc.d</code>.
                    An example is <code class="filename">start 99 5 2 . stop 20 0 1 6 .</code>, which gives the script a 
                    runlevel of 99, starts the script in initlevels 2 and 5, and 
                    stops the script in levels 0, 1 and 6. 
                </p><p>
                    The variable is mandatory and is used in recipes when using 
                    <code class="filename">update-rc.d.bbclass</code>.
                </p></dd></dl></div><div class="glossdiv" title="K"><h3 class="title">K</h3><dl><dt><a id="var-KBRANCH"></a>KBRANCH</dt><dd><p>
                    A regular expression used by the build process to explicitly identify the kernel 
                    branch that is validated, patched and configured during a build.  
                    The <code class="filename">KBRANCH</code> variable is optional.
                    You can use it to trigger checks to ensure the exact kernel branch you want is 
                    being used by the build process.
                </p><p>
                    Values for this variable are set in the kernel's recipe file and the kernel's 
                    append file.  
                    For example, if you are using the Yocto Project kernel that is based on the 
                    Linux 3.2 kernel, the kernel recipe file is the 
                    <code class="filename">meta/recipes-kernel/linux/linux-yocto_3.2.bb</code> file. 
                    Following is the default value for <code class="filename">KBRANCH</code> and the five overrides 
                    for the architectures the Yocto Project supports:
                    </p><pre class="literallayout">
     KBRANCH = "standard/default/base"
     KBRANCH_qemux86  = "standard/default/common-pc/base"
     KBRANCH_qemux86-64  = "standard/default/common-pc-64/base"
     KBRANCH_qemuppc  = "standard/default/qemu-ppc32"
     KBRANCH_qemumips = "standard/default/mti-malta32-be"
     KBRANCH_qemuarm  = "standard/default/arm-versatile-926ejs"
                    </pre><p>
                    Each of the above branches exist in the <code class="filename">linux-yocto-3.2</code> kernel Git 
                    repository <a class="ulink" href="http://git.yoctoproject.org/cgit.cgi/linux-yocto-3.2/refs/heads" target="_top">http://git.yoctoproject.org/cgit.cgi/linux-yocto-3.2/refs/heads</a>.  
                </p><p>
                    This variable is also used from the kernel's append file to identify the kernel 
                    branch specific to a particular machine or target hardware.  
                    The kernel's append file is located in the BSP layer for a given machine.  
                    For example, the kernel append file for the Crown Bay BSP is in the 
                    <code class="filename">meta-intel</code> Git repository and is named 
                    <code class="filename">meta-crownbay/recipes-kernel/linux/linux-yocto_3.2.bbappend</code>.  
                    Here are the related statements from the append file:
                    </p><pre class="literallayout">
     COMPATIBLE_MACHINE_crownbay = "crownbay"
     KMACHINE_crownbay  = "crownbay"
     KBRANCH_crownbay  = "standard/default/crownbay"
     
     COMPATIBLE_MACHINE_crownbay-noemgd = "crownbay-noemgd"
     KMACHINE_crownbay-noemgd  = "crownbay"
     KBRANCH_crownbay-noemgd  = "standard/default/crownbay"
                    </pre><p>
                        The <code class="filename">KBRANCH_*</code> statements identify the kernel branch to 
                        use when building for the Crown Bay BSP.  
                        In this case there are two identical statements: one for each type of 
                        Crown Bay machine.
                </p></dd><dt><a id="var-KERNEL_FEATURES"></a>KERNEL_FEATURES</dt><dd><p>Includes additional metadata from the Yocto Project kernel Git repository.
                    In the OpenEmbedded build system, the default Board Support Packages (BSPs)
                    metadata is provided through 
                    the <code class="filename">KMACHINE</code> and <code class="filename">KBRANCH</code> variables.
                    You can use the <code class="filename">KERNEL_FEATURES</code> variable to further 
                    add metadata for all BSPs.</p><p>The metadata you add through this variable includes config fragments and 
                    features descriptions,
                    which usually includes patches as well as config fragments.
                    You typically override the <code class="filename">KERNEL_FEATURES</code> variable
                    for a specific machine.
                    In this way, you can provide validated, but optional, sets of kernel
                    configurations and features.</p><p>For example, the following adds <code class="filename">netfilter</code> to all 
                    the Yocto Project kernels and adds sound support to the <code class="filename">qemux86</code>
                    machine:
                    </p><pre class="literallayout">
     # Add netfilter to all linux-yocto kernels
     KERNEL_FEATURES="features/netfilter"

     # Add sound support to the qemux86 machine
     KERNEL_FEATURES_append_qemux86="cfg/sound"
                    </pre></dd><dt><a id="var-KERNEL_IMAGETYPE"></a>KERNEL_IMAGETYPE</dt><dd><p>The type of kernel to build for a device, usually set by the 
                    machine configuration files and defaults to "zImage". 
                    This variable is used 
                    when building the kernel and is passed to <code class="filename">make</code> as the target to 
                    build.</p></dd><dt><a id="var-KMACHINE"></a>KMACHINE</dt><dd><p>
                    The machine as known by the kernel.
                    Sometimes the machine name used by the kernel does not match the machine name
                    used by the OpenEmbedded build system.
                    For example, the machine name that the OpenEmbedded build system understands as 
                    <code class="filename">qemuarm</code> goes by a different name in the Linux Yocto kernel.
                    The kernel understands that machine as <code class="filename">arm_versatile926ejs</code>.
                    For cases like these, the <code class="filename">KMACHINE</code> variable maps the 
                    kernel machine name to the OpenEmbedded build system machine name.
                </p><p>
                    Kernel machine names are initially defined in the 
                    <a class="link" href="#local-kernel-files" target="_top">Yocto Project Kernel</a> in 
                    the <code class="filename">meta/cfg/kernel-cache/bsp/&lt;bsp_name&gt;/&lt;bsp-name&gt;-&lt;kernel-type&gt;.scc</code> file.
                    For example, in the <code class="filename">linux-yocto-3.4</code> kernel in the 
                    <code class="filename">meta/cfg/kernel-cache/bsp/cedartrail/cedartrail-standard.scc</code> file, 
                    has the following:
                    </p><pre class="literallayout">
     define KMACHINE cedartrail
     define KTYPE standard
     define KARCH i386

     include ktypes/standard
     branch cedartrail

     include cedartrail.scc
                    </pre><p>
                    You can see that the kernel understands the machine name for the Cedar Trail BSP as
                    <code class="filename">cedartrail</code>.
                </p><p>
                    If you look in the Cedar Trail BSP layer in the <code class="filename">meta-intel</code> source
                    repository at <code class="filename">meta-cedartrail/recipes-kernel/linux/linux-yocto_3.0.bbappend</code>,
                    you will find the following statements among others:
                    </p><pre class="literallayout">
     COMPATIBLE_MACHINE_cedartrail = "cedartrail"
     KMACHINE_cedartrail  = "cedartrail"
     KBRANCH_cedartrail  = "yocto/standard/cedartrail"
     KERNEL_FEATURES_append_cedartrail += "bsp/cedartrail/cedartrail-pvr-merge.scc"
     KERNEL_FEATURES_append_cedartrail += "cfg/efi-ext.scc"

     COMPATIBLE_MACHINE_cedartrail-nopvr = "cedartrail"
     KMACHINE_cedartrail-nopvr  = "cedartrail"
     KBRANCH_cedartrail-nopvr  = "yocto/standard/cedartrail"
     KERNEL_FEATURES_append_cedartrail-nopvr += " cfg/smp.scc"
                    </pre><p>
                    The <code class="filename">KMACHINE</code> statements in the kernel's append file make sure that 
                    the OpenEmbedded build system and the Yocto Linux kernel understand the same machine 
                    names. 
                </p><p>
                    This append file uses two <code class="filename">KMACHINE</code> statements.
                    The first is not really necessary but does ensure that the machine known to the 
                    OpenEmbedded build system as <code class="filename">cedartrail</code> maps to the machine
                    in the kernel also known as <code class="filename">cedartrail</code>:
                    </p><pre class="literallayout">
     KMACHINE_cedartrail  = "cedartrail"
                    </pre><p>
                </p><p>
                    The second statement is a good example of why the <code class="filename">KMACHINE</code> variable
                    is needed. 
                    In this example, the OpenEmbedded build system uses the <code class="filename">cedartrail-nopvr</code>
                    machine name to refer to the Cedar Trail BSP that does not support the propriatory 
                    PowerVR driver.
                    The kernel, however, uses the machine name <code class="filename">cedartrail</code>.
                    Thus, the append file must map the <code class="filename">cedartrail-nopvr</code> machine name to 
                    the kernel's <code class="filename">cedartrail</code> name:
                    </p><pre class="literallayout">
     KMACHINE_cedartrail-nopvr  = "cedartrail"
                    </pre><p>
                </p><p>
                    BSPs that ship with the Yocto Project release provide all mappings between the Yocto 
                    Project kernel machine names and the OpenEmbedded machine names. 
                    Be sure to use the <code class="filename">KMACHINE</code> if you create a BSP and the machine 
                    name you use is different than that used in the kernel.
                </p></dd></dl></div><div class="glossdiv" title="L"><h3 class="title">L</h3><dl><dt><a id="var-LAYERDEPENDS"></a>LAYERDEPENDS</dt><dd><p>Lists the layers that this recipe depends upon, separated by spaces.
                    Optionally, you can specify a specific layer version for a dependency
                    by adding it to the end of the layer name with a colon, (e.g. "anotherlayer:3"
                    to be compared against <code class="filename">LAYERVERSION_anotherlayer</code> in this case).
                    An error will be produced if any dependency is missing or
                    the version numbers do not match exactly (if specified).
                    This variable is used in the <code class="filename">conf/layer.conf</code> file 
                    and must be suffixed with the name of the specific layer (e.g. 
                    <code class="filename">LAYERDEPENDS_mylayer</code>).</p></dd><dt><a id="var-LAYERDIR"></a>LAYERDIR</dt><dd><p>When used inside the <code class="filename">layer.conf</code> configuration 
                    file, this variable provides the path of the current layer. 
                    This variable requires immediate expansion
                    (see the BitBake manual) as lazy expansion can result in
                    the expansion happening in the wrong directory and therefore
                    giving the wrong value.</p></dd><dt><a id="var-LAYERVERSION"></a>LAYERVERSION</dt><dd><p>Optionally specifies the version of a layer as a single number.
                    You can use this within <code class="filename">LAYERDEPENDS</code> for another layer in order to
                    depend on a specific version of the layer.
                    This variable is used in the <code class="filename">conf/layer.conf</code> file 
                    and must be suffixed with the name of the specific layer (e.g.
                    <code class="filename">LAYERVERSION_mylayer</code>).</p></dd><dt><a id="var-LIC_FILES_CHKSUM"></a>LIC_FILES_CHKSUM</dt><dd><p>Checksums of the license text in the recipe source code.</p><p>This variable tracks changes in license text of the source
                    code files. 
                    If the license text is changed, it will trigger a build
                    failure, which gives the developer an opportunity to review any 
                    license change.</p><p>
                    This variable must be defined for all recipes (unless <code class="filename">LICENSE</code>
                    is set to "CLOSED")</p><p>For more information, see the
                    <a class="link" href="#usingpoky-configuring-LIC_FILES_CHKSUM" title="3.4.1. Tracking License Changes">
                    Tracking License Changes</a> section</p></dd><dt><a id="var-LICENSE"></a>LICENSE</dt><dd><p>The list of package source licenses.</p></dd><dt><a id="var-LICENSE_DIR"></a>LICENSE_DIR</dt><dd><p>Path to additional licenses used during the build.
                    By default, the OpenEmbedded build system uses <code class="filename">COMMON_LICENSE_DIR</code>  
                    to define the directory that holds common license text used during the build. 
                    The <code class="filename">LICENSE_DIR</code> variable allows you to extend that
                    location to other areas that have additional licenses: 
                    </p><pre class="literallayout">
  LICENSE_DIR += "/path/to/additional/common/licenses"
                    </pre></dd></dl></div><div class="glossdiv" title="M"><h3 class="title">M</h3><dl><dt><a id="var-MACHINE"></a>MACHINE</dt><dd><p>Specifies the target device.</p></dd><dt><a id="var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS"></a>MACHINE_ESSENTIAL_EXTRA_RDEPENDS</dt><dd><p></p><p>
                    A list of required packages to install as part of the package being
                    built.
                    The build process depends on these packages being present.
                    Furthermore, because this is a "machine essential" variable, the list of 
                    packages are essential for the machine to boot.
                    The impact of this variable affects images based on <code class="filename">task-core-boot</code>,
                    including the <code class="filename">core-image-minimal</code> image.
                </p><p>
                    This variable is similar to the 
                    <code class="filename"><a class="link" href="#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS" title="MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS">MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS</a></code>
                    variable with the exception that the package being built has a build 
                    dependency on the variable's list of packages.
                    In other words, the image will not build if a file in this list is not found.
                </p><p>
                    For example, suppose you are building a runtime package that depends
                    on a certain disk driver.
                    In this case, you would use the following:
                    </p><pre class="literallayout">
     MACHINE_ESSENTIAL_EXTRA_RDEPENDS += "&lt;disk_driver&gt;"
                    </pre><p>
                </p></dd><dt><a id="var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS"></a>MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS</dt><dd><p></p><p>
                    A list of recommended packages to install as part of the package being 
                    built. 
                    The build process does not depend on these packages being present.
                    Furthermore, because this is a "machine essential" variable, the list of 
                    packages are essential for the machine to boot.
                    The impact of this variable affects images based on <code class="filename">task-core-boot</code>,
                    including the <code class="filename">core-image-minimal</code> image.
                </p><p>
                    This variable is similar to the 
                    <code class="filename"><a class="link" href="#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS" title="MACHINE_ESSENTIAL_EXTRA_RDEPENDS">MACHINE_ESSENTIAL_EXTRA_RDEPENDS</a></code>
                    variable with the exception that the package being built does not have a build 
                    dependency on the variable's list of packages.
                    In other words, the image will build if a file in this list is not found.
                    However, because this is one of the "essential" variables, the resulting image
                    might not boot on the machine. 
                    Or, if the machine does boot using the image, the machine might not be fully 
                    functional.
                </p><p>
                    Consider an example where you have a custom kernel with a disk driver
                    built into the kernel itself, rather than using the driver built as a module.
                    If you include the package that has the driver module as part of 
                    the variable's list, the 
                    build process will not find that package.  
                    However, because these packages are "recommends" packages, the build will 
                    not fail due to the missing package.
                    Not accounting for any other problems, the custom kernel would still boot the machine.
                </p><p>
                    Some example packages of these machine essentials are flash, screen, keyboard, mouse, 
                    or touchscreen drivers (depending on the machine).
                </p><p>
                    For example, suppose you are building a runtime package that depends
                    on a mouse driver.
                    In this case, you would use the following:
                    </p><pre class="literallayout">
     MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS += "&lt;mouse_driver&gt;"
                    </pre><p>
                </p></dd><dt><a id="var-MACHINE_EXTRA_RDEPENDS"></a>MACHINE_EXTRA_RDEPENDS</dt><dd><p>
                    A list of optional but non-machine essential packages to install as 
                    part of the package being built.
                    Even though these packages are not essential for the machine to boot,  
                    the build process depends on them being present.
                    The impact of this variable affects all images based on
                    <code class="filename">task-base</code>, which does not include the 
                    <code class="filename">core-image-minimal</code> or <code class="filename">core-image-basic</code> 
                    images.
                </p><p>
                    This variable is similar to the 
                    <code class="filename"><a class="link" href="#var-MACHINE_EXTRA_RRECOMMENDS" title="MACHINE_EXTRA_RRECOMMENDS">MACHINE_EXTRA_RRECOMMENDS</a></code>
                    variable with the exception that the package being built has a build 
                    dependency on the variable's list of packages.
                    In other words, the image will not build if a file in this list is not found.
                </p><p>
                    An example is a machine that might or might not have a WiFi card.
                    The package containing the WiFi support is not essential for the 
                    machine to boot the image.
                    If it is not there, the machine will boot but not be able to use the 
                    WiFi functionality.
                    However, if you include the package with the WiFi support as part of the 
                    variable's package list, the build 
                    process depends on finding the package.
                    In this case, you would use the following:
                    </p><pre class="literallayout">
     MACHINE_EXTRA_RDEPENDS += "&lt;wifi_driver&gt;"
                    </pre><p>
                </p></dd><dt><a id="var-MACHINE_EXTRA_RRECOMMENDS"></a>MACHINE_EXTRA_RRECOMMENDS</dt><dd><p></p><p>
                    A list of optional but non-machine essential packages to install as 
                    part of the package being built.
                    The package being built has no build dependency on the list of packages 
                    with this variable.  
                    The impact of this variable affects only images based on 
                    <code class="filename">task-base</code>, which does not include the 
                    <code class="filename">core-image-minimal</code> or <code class="filename">core-image-basic</code> 
                    images.
                </p><p>
                    This variable is similar to the 
                    <code class="filename"><a class="link" href="#var-MACHINE_EXTRA_RDEPENDS" title="MACHINE_EXTRA_RDEPENDS">MACHINE_EXTRA_RDEPENDS</a></code>
                    variable with the exception that the package being built does not have a build 
                    dependency on the variable's list of packages.
                    In other words, the image will build if a file in this list is not found.
                </p><p>
                    An example is a machine that might or might not have a WiFi card.
                    The package containing the WiFi support is not essential for the 
                    machine to boot the image.
                    If it is not there, the machine will boot but not be able to use the 
                    WiFi functionality.
                    You are free to either include or not include the 
                    the package with the WiFi support as part of the 
                    variable's package list, the build 
                    process does not depend on finding the package.
                    If you include the package, you would use the following:
                    </p><pre class="literallayout">
     MACHINE_EXTRA_RRECOMMENDS += "&lt;wifi_driver&gt;"
                    </pre><p>
                </p></dd><dt><a id="var-MACHINE_FEATURES"></a>MACHINE_FEATURES</dt><dd><p>Specifies the list of device features.
                    See the <a class="link" href="#ref-features-machine" title="8.2. Machine">Machine</a> section for 
                    more information.</p></dd><dt><a id="var-MAINTAINER"></a>MAINTAINER</dt><dd><p>The email address of the distribution maintainer.</p></dd></dl></div><div class="glossdiv" title="P"><h3 class="title">P</h3><dl><dt><a id="var-PACKAGE_ARCH"></a>PACKAGE_ARCH</dt><dd><p>The architecture of the resulting package.</p></dd><dt><a id="var-PACKAGE_CLASSES"></a>PACKAGE_CLASSES</dt><dd><p>This variable, which is set in the <code class="filename">local.conf</code> configuration
                    file found in the <code class="filename">conf</code> folder of the 
                    <a class="link" href="#source-directory" target="_top">source directory</a>,
                    specifies the package manager to use when packaging data.
                    You can provide one or more arguments for the variable with the first 
                    argument being the package manager used to create images:
                    </p><pre class="literallayout">
     PACKAGE_CLASSES ?= "package_rpm package_deb package_ipk"
                    </pre><p>
                    For information on build performance effects as a result of the 
                    package manager use, see
                    <a class="link" href="#ref-classes-package" title="6.12. Packaging - package*.bbclass">Packaging - <code class="filename">package*.bbclass</code></a>
                    in this manual.
                </p></dd><dt><a id="var-PACKAGE_EXTRA_ARCHS"></a>PACKAGE_EXTRA_ARCHS</dt><dd><p>Specifies the list of architectures compatible with the device CPU.
                    This variable is useful when you build for several different devices that use
                    miscellaneous processors such as XScale and ARM926-EJS).</p></dd><dt><a id="var-PACKAGES"></a>PACKAGES</dt><dd><p>The list of packages to be created from the recipe.
                    The default value is "${PN}-dbg ${PN} ${PN}-doc ${PN}-dev".</p></dd><dt><a id="var-PARALLEL_MAKE"></a>PARALLEL_MAKE</dt><dd><p>Specifies extra options that are passed to the <code class="filename">make</code> command during the 
                    compile tasks. 
                    This variable is usually in the form <code class="filename">-j 4</code>, where the number
                    represents the maximum number of parallel threads make can run.
                    If you development host supports multiple cores a good rule of thumb is to set 
                    this variable to twice the number of cores on the host.</p></dd><dt><a id="var-PN"></a>PN</dt><dd><p>The name of the package.
                    </p></dd><dt><a id="var-PR"></a>PR</dt><dd><p>The revision of the package. 
                    The default value for this variable is "r0".
                    </p></dd><dt><a id="var-PV"></a>PV</dt><dd><p>The version of the package.
                    The version is normally extracted from the recipe name.
                    For example, if the recipe is named 
                    <code class="filename">expat_2.0.1.bb</code>, then <code class="filename">PV</code>
                    will be <code class="filename">2.0.1</code>. 
                    <code class="filename">PV</code> is generally not overridden within 
                    a recipe unless it is building an unstable version from a source code repository 
                    (e.g. Git or Subversion).
                 </p></dd><dt><a id="var-PE"></a>PE</dt><dd><p>
                    the epoch of the package. 
                    The default value is "0". 
                    The field is used to make upgrades possible when the versioning scheme changes in 
                    some backwards incompatible way.
                </p></dd><dt><a id="var-PREFERRED_PROVIDER"></a>PREFERRED_PROVIDER</dt><dd><p>
                    If multiple recipes provide an item, this variable
                    determines which recipe should be given preference. 
                    The variable must always be suffixed with the name of the 
                    provided item, and should be set to the 
                    <code class="filename">$PN</code> of the recipe 
                    to which you want to give precedence.
                    Here is an example:
                    </p><pre class="literallayout">
     PREFERRED_PROVIDER_virtual/xserver = "xserver-xf86"
                    </pre><p>
                </p></dd><dt><a id="var-PREFERRED_VERSION"></a>PREFERRED_VERSION</dt><dd><p>
                    If there are multiple versions of recipes available, this
                    variable determines which recipe should be given preference.
                    The variable must always be suffixed with the <code class="filename">$PN</code> 
                    for which to select, and should be set to the 
                    <code class="filename">$PV</code> to which you want to give precedence.
                    You can use the "<code class="filename">%</code>" character as a wildcard
                    to match any number of characters, which can be useful when 
                    specifying versions that contain long revision number that could 
                    potentially change.
                    Here are two examples:
                    </p><pre class="literallayout">
     PREFERRED_VERSION_python = "2.6.6"
     PREFERRED_VERSION_linux-yocto = "3.0+git%" 
                    </pre><p>
                </p></dd></dl></div><div class="glossdiv" title="R"><h3 class="title">R</h3><dl><dt><a id="var-RCONFLICTS"></a>RCONFLICTS</dt><dd><p>The list of packages that conflict with this package.
                    Note that the package will not be installed if the conflicting packages are not
                    first removed.</p></dd><dt><a id="var-RDEPENDS"></a>RDEPENDS</dt><dd><p>
                    A list of packages that must be installed as part of a package being built.
                    The package being built has a runtime dependency on the packages in the 
                    variable's list.
                    In other words, in order for the package being built to run correctly, 
                    it depends on these listed packages.
                    If a package in this list cannot be found during the build, the build
                    will not complete.
                </p><p>
                    Because the <code class="filename">RDEPENDS</code> variable applies to packages 
                    being built, you should 
                    always attach an override to the variable to specify the particular runtime package
                    that has the dependency.
                    For example, suppose you are building a development package that depends
                    on the <code class="filename">perl</code> package.
                    In this case, you would use the following <code class="filename">RDEPENDS</code>
                    statement:
                    </p><pre class="literallayout">
     RDEPENDS_${PN}-dev += "perl"
                    </pre><p>
                    In the example, the package name (<code class="filename">${PN}-dev</code>) must 
                    appear as it would in the 
                    <code class="filename"><a class="link" href="#var-PACKAGES" title="PACKAGES">PACKAGES</a></code> namespace before any 
                    renaming of the output package by classes like <code class="filename">debian.bbclass</code>.
                </p><p>
                    Some automatic handling occurs around the <code class="filename">RDEPENDS</code>
                    variable:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em><code class="filename">shlibdeps</code></em></span>:  If a runtime
                            package contains a shared library (<code class="filename">.so</code>), the build
                            processes the library in order to determine other libraries to which it 
                            is dynamically linked.  
                            The build process adds these libraries to <code class="filename">RDEPENDS</code>
                            to create the runtime package.</p></li><li class="listitem"><p><span class="emphasis"><em><code class="filename">pcdeps</code></em></span>:  If the package
                            ships a <code class="filename">pkg-config</code> information file, the build process
                            uses this file to add items to the <code class="filename">RDEPENDS</code>
                            variable to create the runtime packages.
                            </p></li></ul></div><p>
                </p></dd><dt><a id="var-RRECOMMENDS"></a>RRECOMMENDS</dt><dd><p>
                    A list of packages that extend the usability of a package being 
                    built.
                    The package being built does not depend on this list of packages in 
                    order to successfully build, but needs them for the extended usability.
                    To specify runtime dependencies for packages, see the 
                    <code class="filename"><a class="link" href="#var-RDEPENDS" title="RDEPENDS">RDEPENDS</a></code> variable.
                </p><p>
                    The OpenEmbedded build process automatically installs the list of packages
                    as part of the built package.
                    However, you can remove them later if you want.
                    If, during the build, a package from the list cannot be found, the build
                    process continues without an error.
                </p><p>
                    Because the <code class="filename">RRECOMMENDS</code> variable applies to packages 
                    being built, you should 
                    always attach an override to the variable to specify the particular package
                    whose usability is being extended.
                    For example, suppose you are building a development package that is extended
                    to support wireless functionality.
                    In this case, you would use the following:
                    </p><pre class="literallayout">
     RRECOMMENDS_${PN}-dev += "&lt;wireless_package_name&gt;"
                    </pre><p>
                    In the example, the package name (<code class="filename">${PN}-dev</code>) must 
                    appear as it would in the 
                    <code class="filename"><a class="link" href="#var-PACKAGES" title="PACKAGES">PACKAGES</a></code> namespace before any 
                    renaming of the output package by classes like <code class="filename">debian.bbclass</code>.
                </p></dd><dt><a id="var-RREPLACES"></a>RREPLACES</dt><dd><p>The list of packages that are replaced with this package.</p></dd></dl></div><div class="glossdiv" title="S"><h3 class="title">S</h3><dl><dt><a id="var-S"></a>S</dt><dd><p>
                    The location in the <a class="link" href="#build-directory" target="_top">build directory</a>
                    where unpacked package source code resides.
                    This location is within the working directory 
                    (<code class="filename"><a class="link" href="#var-WORKDIR" title="WORKDIR">WORKDIR</a></code>), which 
                    is not static.
                    The unpacked source location depends on the package name 
                    (<code class="filename"><a class="link" href="#var-PN" title="PN">PN</a></code>) and 
                    package version (<code class="filename"><a class="link" href="#var-PV" title="PV">PV</a></code>) as 
                    follows:
                    </p><pre class="literallayout">
 ${WORKDIR}/${PN}-${PV}
                    </pre><p>
                    As an example, assume a 
                    <a class="link" href="#source-directory" target="_top">source directory</a> top-level 
                    folder named <code class="filename">poky</code> 
                    and a default <a class="link" href="#build-directory" target="_top">build directory</a>
                    at <code class="filename">poky/build</code>.
                    In this case, the working directory the build system uses to build 
                    the <code class="filename">db</code> package is the following:
                    </p><pre class="literallayout">
 ~/poky/build/tmp/work/qemux86-poky-linux/db-5.1.19-r3/db-5.1.19
                    </pre><p>
                </p></dd><dt><a id="var-SECTION"></a>SECTION</dt><dd><p>The section where package should be put.
                    Package managers use this variable.</p></dd><dt><a id="var-SELECTED_OPTIMIZATION"></a>SELECTED_OPTIMIZATION</dt><dd><p>
                    The variable takes the value of 
                    <code class="filename"><a class="link" href="#var-FULL_OPTIMIZATION" title="FULL_OPTIMIZATION">FULL_OPTIMIZATION</a></code>
                    unless <code class="filename"><a class="link" href="#var-DEBUG_BUILD" title="DEBUG_BUILD">DEBUG_BUILD</a></code> = "1".
                    In this case the value of 
                    <code class="filename"><a class="link" href="#var-DEBUG_OPTIMIZATION" title="DEBUG_OPTIMIZATION">DEBUG_OPTIMIZATION</a></code> is used.
                </p></dd><dt><a id="var-SERIAL_CONSOLE"></a>SERIAL_CONSOLE</dt><dd><p>The speed and device for the serial port used to attach the serial console. 
                    This variable is given to the kernel as the "console"
                    parameter and after booting occurs <code class="filename">getty</code> is started on that port
                    so remote login is possible.</p></dd><dt><a id="var-SSTATE_DIR"></a>SSTATE_DIR</dt><dd><p>The directory for the shared state.</p></dd><dt><a id="var-SITEINFO_ENDIANNESS"></a>SITEINFO_ENDIANNESS</dt><dd><p>
                    Specifies the endian byte order of the target system. 
                    The variable is either "le" for little-endian or "be" for big-endian.
                </p></dd><dt><a id="var-SITEINFO_BITS"></a>SITEINFO_BITS</dt><dd><p>
                    Specifies the number of bits for the target system CPU.
                    The variable is either "32" or "64".
                </p></dd><dt><a id="var-SRC_URI"></a>SRC_URI</dt><dd><p>The list of source files - local or remote.</p></dd><dt><a id="var-SRC_URI_OVERRIDES_PACKAGE_ARCH"></a>SRC_URI_OVERRIDES_PACKAGE_ARCH</dt><dd><p></p><p>
                    By default, the OpenEmbedded build system automatically detects whether 
                    <code class="filename"><a class="link" href="#var-SRC_URI" title="SRC_URI">SRC_URI</a></code>  
                    contains files that are machine-specific.
                    If so, the build system automatically changes 
                    <code class="filename"><a class="link" href="#var-PACKAGE_ARCH" title="PACKAGE_ARCH">PACKAGE_ARCH</a></code>. 
                    Setting this variable to "0" disables this behavior.
                </p></dd><dt><a id="var-SRCDATE"></a>SRCDATE</dt><dd><p>
                    The date of the source code used to build the package.
                    This variable applies only if the source was fetched from a Source Code Manager (SCM).
                </p></dd><dt><a id="var-SRCREV"></a>SRCREV</dt><dd><p>
                    The revision of the source code used to build the package.
                    This variable applies to Subversion, Git, Mercurial and Bazaar
                    only. 
                    Note that if you wish to build a fixed revision and you wish
                    to avoid performing a query on the remote repository every time
                    BitBake parses your recipe, you should specify a <code class="filename">SRCREV</code> that is a
                    full revision identifier and not just a tag.
                </p></dd><dt><a id="var-STAGING_KERNEL_DIR"></a>STAGING_KERNEL_DIR</dt><dd><p>
                    The directory with kernel headers that are required to build out-of-tree
                    modules.
                </p></dd><dt><a id="var-STAMP"></a>STAMP</dt><dd><p>
                    The directory (usually <code class="filename">TMPDIR/stamps</code>) with timestamps of
                    executed tasks.
                </p></dd><dt><a id="var-SUMMARY"></a>SUMMARY</dt><dd><p>The short (72 characters or less) summary of the binary package for packaging 
                    systems such as <code class="filename">ipkg</code>, <code class="filename">rpm</code> or 
                    <code class="filename">debian</code>.
                    By default, this variable inherits <code class="filename">DESCRIPTION</code>.</p></dd></dl></div><div class="glossdiv" title="T"><h3 class="title">T</h3><dl><dt><a id="var-TARGET_ARCH"></a>TARGET_ARCH</dt><dd><p>The architecture of the device being built. 
                While a number of values are possible, the OpenEmbedded build system primarily supports
                <code class="filename">arm</code> and <code class="filename">i586</code>.</p></dd><dt><a id="var-TARGET_CFLAGS"></a>TARGET_CFLAGS</dt><dd><p>
                    Flags passed to the C compiler for the target system. 
                    This variable evaluates to the same as 
                    <code class="filename"><a class="link" href="#var-CFLAGS" title="CFLAGS">CFLAGS</a></code>.
                </p></dd><dt><a id="var-TARGET_FPU"></a>TARGET_FPU</dt><dd><p>Specifies the method for handling FPU code. 
                    For FPU-less targets, which include most ARM CPUs, the variable must be
                    set to "soft".
                    If not, the kernel emulation gets used, which results in a performance penalty.</p></dd><dt><a id="var-TARGET_OS"></a>TARGET_OS</dt><dd><p>Specifies the target's operating system. 
                    The variable can be set to "linux" for <code class="filename">eglibc</code>-based systems and
                    to "linux-uclibc" for <code class="filename">uclibc</code>. 
                    For ARM/EABI targets, there are also "linux-gnueabi" and
                    "linux-uclibc-gnueabi" values possible.</p></dd><dt><a id="var-TCLIBC"></a>TCLIBC</dt><dd><p>
                    Specifies which variant of the GNU standard C library (<code class="filename">libc</code>)
                    to use during the build process.
                    This variable replaces <code class="filename">POKYLIBC</code>, which is no longer
                    supported.
                </p><p>
                    You can select <code class="filename">eglibc</code> or <code class="filename">uclibc</code>.
                    </p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
                        This release of the Yocto Project does not support the 
                        <code class="filename">glibc</code> implementation of <code class="filename">libc</code>.
                    </div><p>
                </p></dd><dt><a id="var-TCMODE"></a>TCMODE</dt><dd><p>
                    The toolchain selector. 
                    This variable replaces <code class="filename">POKYMODE</code>, which is no longer
                    supported.
                </p><p>
                    The <code class="filename">TCMODE</code> variable selects the external toolchain
                    built using the OpenEmbedded build system or a few supported combinations of
                    the upstream GCC or CodeSourcery Labs toolchain.
                    The variable determines which of the <code class="filename">tcmode-*</code> files in 
                    the <code class="filename">meta/conf/distro/include</code> directory, which is found in the
                    <a class="link" href="#source-directory" target="_top">source directory</a>,
                    is used. 
                </p><p>
                    By default, <code class="filename">TCMODE</code> is set to "default", which 
                    chooses the <code class="filename">tcmode-default.inc</code> file.
                    The variable is similar to 
                    <a class="link" href="#var-TCLIBC" title="TCLIBC"><code class="filename">TCLIBC</code></a>, which controls 
                    the variant of the GNU standard C library (<code class="filename">libc</code>)
                    used during the build process: <code class="filename">eglibc</code> or <code class="filename">uclibc</code>.
                </p></dd><dt><a id="var-TMPDIR"></a>TMPDIR</dt><dd><p>
                    This variable is the temporary directory the OpenEmbedded build system 
                    uses when it does its work building images. 
                    By default, the <code class="filename">TMPDIR</code> variable is named 
                    <code class="filename">tmp</code> within the 
                    <a class="link" href="#build-directory" target="_top">build directory</a>.
                </p><p>
                    If you want to establish this directory in a location other than the
                    default, you can uncomment the following statement in the 
                    <code class="filename">conf/local.conf</code> file in the 
                    <a class="link" href="#source-directory" target="_top">source directory</a>:
                    </p><pre class="literallayout">
     #TMPDIR = "${TOPDIR}/tmp"
                    </pre><p> 
                </p></dd><dt><a id="var-TOPDIR"></a>TOPDIR</dt><dd><p>
                    This variable is the 
                    <a class="link" href="#build-directory" target="_top">build directory</a>.
                    BitBake automatically sets this variable.
                    The OpenEmbedded build system uses the build directory when building images. 
                </p></dd></dl></div><div class="glossdiv" title="W"><h3 class="title">W</h3><dl><dt><a id="var-WORKDIR"></a>WORKDIR</dt><dd><p>
                    The pathname of the working directory in which the OpenEmbedded build system  
                    builds packages.
                    This directory is located within the
                    <a class="link" href="#var-TMPDIR" title="TMPDIR"><code class="filename">TMPDIR</code></a> directory structure and changes
                    as different packages are built.
                </p><p>
                    The actual <code class="filename">WORKDIR</code> directory depends on several things:
                    </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">The temporary directory - <a class="link" href="#var-TMPDIR" title="TMPDIR"><code class="filename">TMPDIR</code></a></li><li class="listitem">The package architecture - <a class="link" href="#var-PACKAGE_ARCH" title="PACKAGE_ARCH"><code class="filename">PACKAGE_ARCH</code></a></li><li class="listitem">The target machine - <a class="link" href="#var-MACHINE" title="MACHINE"><code class="filename">MACHINE</code></a></li><li class="listitem">The target operating system - <a class="link" href="#var-TARGET_OS" title="TARGET_OS"><code class="filename">TARGET_OS</code></a></li><li class="listitem">The package name - <a class="link" href="#var-PN" title="PN"><code class="filename">PN</code></a></li><li class="listitem">The package version - <a class="link" href="#var-PV" title="PV"><code class="filename">PV</code></a></li><li class="listitem">The package revision - <a class="link" href="#var-PR" title="PR"><code class="filename">PR</code></a></li></ul></div><p>
                </p><p>
                    For packages that are not dependent on a particular machine, 
                    <code class="filename">WORKDIR</code> is defined as follows:
                    </p><pre class="literallayout">
 ${TMPDIR}/work/${PACKAGE_ARCH}-poky-${TARGET_OS}/${PN}-${PV}-${PR}
                    </pre><p>
                    As an example, assume a 
                    <a class="link" href="#source-directory" target="_top">source directory</a> top-level 
                    folder name <code class="filename">poky</code> and a default 
                    <a class="link" href="#build-directory" target="_top">build directory</a> 
                    at <code class="filename">poky/build</code>.
                    In this case, the working directory the build system uses to build 
                    the <code class="filename">v86d</code> package is the following:
                    </p><pre class="literallayout">
     ~/poky/build/tmp/work/qemux86-poky-linux/v86d-01.9-r0
                    </pre><p>
                </p><p>
                    For packages that are dependent on a particular machine, <code class="filename">WORKDIR</code>
                    is defined slightly different:
                    </p><pre class="literallayout">
 ${TMPDIR}/work/${MACHINE}-poky-${TARGET_OS}/${PN}-${PV}-${PR}
                    </pre><p>
                    As an example, again assume a source directory top-level folder 
                    named <code class="filename">poky</code> and a default build directory 
                    at <code class="filename">poky/build</code>.
                    In this case, the working directory the build system uses to build
                    the <code class="filename">acl</code> package, which is dependent on a 
                    MIPS-based device, is the following:
                    </p><pre class="literallayout">
     ~/poky/build/tmp/work/mips-poky-linux/acl-2.2.51-r2
                    </pre><p>
                </p></dd></dl></div></div></div>

    <div class="chapter" title="Chapter 10. Variable Context"><div class="titlepage"><div><div><h2 class="title"><a id="ref-varlocality"></a>Chapter 10. Variable Context</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#ref-varlocality-configuration">10.1. Configuration</a></span></dt><dd><dl><dt><span class="section"><a href="#ref-varlocality-config-distro">10.1.1. Distribution (Distro)</a></span></dt><dt><span class="section"><a href="#ref-varlocality-config-machine">10.1.2. Machine</a></span></dt><dt><span class="section"><a href="#ref-varlocality-config-local">10.1.3. Local</a></span></dt></dl></dd><dt><span class="section"><a href="#ref-varlocality-recipes">10.2. Recipes</a></span></dt><dd><dl><dt><span class="section"><a href="#ref-varlocality-recipe-required">10.2.1. Required</a></span></dt><dt><span class="section"><a href="#ref-varlocality-recipe-dependencies">10.2.2. Dependencies</a></span></dt><dt><span class="section"><a href="#ref-varlocality-recipe-paths">10.2.3. Paths</a></span></dt><dt><span class="section"><a href="#ref-varlocality-recipe-build">10.2.4. Extra Build Information</a></span></dt></dl></dd></dl></div><p>
        While most variables can be used in almost any context such as 
        <code class="filename">.conf</code>, <code class="filename">.bbclass</code>,
        <code class="filename">.inc</code>, and <code class="filename">.bb</code> files,
        some variables are often associated with a particular locality or context. 
        This chapter describes some common associations.
    </p><div class="section" title="10.1. Configuration"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-varlocality-configuration"></a>10.1. Configuration</h2></div></div></div><p>
            The following subsections provide lists of variables whose context is
            configuration: distribution, machine, and local.
        </p><div class="section" title="10.1.1. Distribution (Distro)"><div class="titlepage"><div><div><h3 class="title"><a id="ref-varlocality-config-distro"></a>10.1.1. Distribution (Distro)</h3></div></div></div><p>
               This section lists variables whose context is the distribution, or distro.
               </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-DISTRO" title="DISTRO">DISTRO</a></code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-DISTRO_NAME" title="DISTRO_NAME">DISTRO_NAME</a></code>
                       </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-DISTRO_VERSION" title="DISTRO_VERSION">DISTRO_VERSION</a>
                       </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-MAINTAINER" title="MAINTAINER">MAINTAINER</a></code>
                       </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-PACKAGE_CLASSES" title="PACKAGE_CLASSES">PACKAGE_CLASSES</a>
                       </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-TARGET_OS" title="TARGET_OS">TARGET_OS</a></code>
                       </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-TARGET_FPU" title="TARGET_FPU">TARGET_FPU</a></code>
                       </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-TCMODE" title="TCMODE">TCMODE</a></code>
                       </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-TCLIBC" title="TCLIBC">TCLIBC</a></code>
                       </p></li></ul></div><p>
            </p></div><div class="section" title="10.1.2. Machine"><div class="titlepage"><div><div><h3 class="title"><a id="ref-varlocality-config-machine"></a>10.1.2. Machine</h3></div></div></div><p>
                This section lists variables whose context is the machine.
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-TARGET_ARCH" title="TARGET_ARCH">TARGET_ARCH</a></code>
                        </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-SERIAL_CONSOLE" title="SERIAL_CONSOLE">SERIAL_CONSOLE</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-PACKAGE_EXTRA_ARCHS" title="PACKAGE_EXTRA_ARCHS">PACKAGE_EXTRA_ARCHS</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-IMAGE_FSTYPES" title="IMAGE_FSTYPES">IMAGE_FSTYPES</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-MACHINE_FEATURES" title="MACHINE_FEATURES">MACHINE_FEATURES</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-MACHINE_EXTRA_RDEPENDS" title="MACHINE_EXTRA_RDEPENDS">MACHINE_EXTRA_RDEPENDS
                        </a></code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-MACHINE_EXTRA_RRECOMMENDS" title="MACHINE_EXTRA_RRECOMMENDS">MACHINE_EXTRA_RRECOMMENDS
                        </a></code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS" title="MACHINE_ESSENTIAL_EXTRA_RDEPENDS">MACHINE_ESSENTIAL_EXTRA_RDEPENDS
                        </a></code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS" title="MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS">
                        MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS</a></code></p></li></ul></div><p>
            </p></div><div class="section" title="10.1.3. Local"><div class="titlepage"><div><div><h3 class="title"><a id="ref-varlocality-config-local"></a>10.1.3. Local</h3></div></div></div><p>
                This section lists variables whose context is the local configuration through the 
                <code class="filename">local.conf</code> file.
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-DISTRO" title="DISTRO">DISTRO</a></code>
                        </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-MACHINE" title="MACHINE">MACHINE</a></code>
                        </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-DL_DIR" title="DL_DIR">DL_DIR</a></code>
                        </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-BBFILES" title="BBFILES">BBFILES</a></code>
                        </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-EXTRA_IMAGE_FEATURES" title="EXTRA_IMAGE_FEATURES">EXTRA_IMAGE_FEATURES
                        </a></code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-PACKAGE_CLASSES" title="PACKAGE_CLASSES">PACKAGE_CLASSES</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-BB_NUMBER_THREADS" title="BB_NUMBER_THREADS">BB_NUMBER_THREADS</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-BBINCLUDELOGS" title="BBINCLUDELOGS">BBINCLUDELOGS</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-ENABLE_BINARY_LOCALE_GENERATION" title="ENABLE_BINARY_LOCALE_GENERATION">
                        ENABLE_BINARY_LOCALE_GENERATION</a></code></p></li></ul></div><p>
            </p></div></div><div class="section" title="10.2. Recipes"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="ref-varlocality-recipes"></a>10.2. Recipes</h2></div></div></div><p>
            The following subsections provide lists of variables whose context is
            recipes: required, dependencies, path, and extra build information.
        </p><div class="section" title="10.2.1. Required"><div class="titlepage"><div><div><h3 class="title"><a id="ref-varlocality-recipe-required"></a>10.2.1. Required</h3></div></div></div><p>
                This section lists variables that are required for recipes.
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-DESCRIPTION" title="DESCRIPTION">DESCRIPTION</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-LICENSE" title="LICENSE">LICENSE</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-LIC_FILES_CHKSUM" title="LIC_FILES_CHKSUM">LIC_FILES_CHKSUM</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-SECTION" title="SECTION">SECTION</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-HOMEPAGE" title="HOMEPAGE">HOMEPAGE</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-AUTHOR" title="AUTHOR">AUTHOR</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-SRC_URI" title="SRC_URI">SRC_URI</a>
                        </code></p></li></ul></div><p>
            </p></div><div class="section" title="10.2.2. Dependencies"><div class="titlepage"><div><div><h3 class="title"><a id="ref-varlocality-recipe-dependencies"></a>10.2.2. Dependencies</h3></div></div></div><p>
                This section lists variables that define recipe dependencies.
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-DEPENDS" title="DEPENDS">DEPENDS</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-RDEPENDS" title="RDEPENDS">RDEPENDS</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-RRECOMMENDS" title="RRECOMMENDS">RRECOMMENDS</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-RCONFLICTS" title="RCONFLICTS">RCONFLICTS</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-RREPLACES" title="RREPLACES">RREPLACES</a>
                        </code></p></li></ul></div><p>
            </p></div><div class="section" title="10.2.3. Paths"><div class="titlepage"><div><div><h3 class="title"><a id="ref-varlocality-recipe-paths"></a>10.2.3. Paths</h3></div></div></div><p>
                This section lists variables that define recipe paths.
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-WORKDIR" title="WORKDIR">WORKDIR</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-S" title="S">S</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-FILES" title="FILES">FILES</a>
                        </code></p></li></ul></div><p>
            </p></div><div class="section" title="10.2.4. Extra Build Information"><div class="titlepage"><div><div><h3 class="title"><a id="ref-varlocality-recipe-build"></a>10.2.4. Extra Build Information</h3></div></div></div><p>
                This section lists variables that define extra build information for recipes.
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename"><a class="link" href="#var-DISTRO_PN_ALIAS" title="DISTRO_PN_ALIAS">DISTRO_PN_ALIAS</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-EXTRA_OECMAKE" title="EXTRA_OECMAKE">EXTRA_OECMAKE</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-EXTRA_OECONF" title="EXTRA_OECONF">EXTRA_OECONF</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-EXTRA_OEMAKE" title="EXTRA_OEMAKE">EXTRA_OEMAKE</a>
                        </code></p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-PACKAGES" title="PACKAGES">PACKAGES</a></code>
                        </p></li><li class="listitem"><p><code class="filename"><a class="link" href="#var-DEFAULT_PREFERENCE" title="DEFAULT_PREFERENCE">DEFAULT_PREFERENCE
                        </a></code></p></li></ul></div><p>
            </p></div></div></div>

    <div class="chapter" title="Chapter 11. FAQ"><div class="titlepage"><div><div><h2 class="title"><a id="faq"></a>Chapter 11. FAQ</h2></div></div></div><div class="qandaset" title="Frequently Asked Questions"><a id="id1519542"></a><table border="0" width="100%" summary="Q and A Set"><col align="left" width="1%" /><col /><tbody><tr class="question" title="11.1."><td align="left" valign="top"><a id="id1519546"></a><a id="id1519547"></a><p><b>11.1.</b></p></td><td align="left" valign="top"><p>
                How does Poky differ from <a class="ulink" href="http://www.openembedded.org" target="_top">OpenEmbedded</a>?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                The term "Poky" is sometimes used to refer to the build system that the 
                Yocto Project uses.  
                The build system used in the Yocto project is referred to as the 
                OpenEmbedded build system because "Poky" was derived from <a class="ulink" href="http://www.openembedded.org" target="_top">OpenEmbedded</a>.
                Poky is a stable, smaller subset focused on the mobile environment. 
                Development in the Yocto Project using Poky is closely tied to OpenEmbedded with 
                features being merged regularly between the two for mutual benefit.
                For a fuller description of the term "Poky", see the 
                <a class="link" href="#poky" target="_top">poky</a> term in the Yocto Project
                Development Manual.
            </p></td></tr><tr class="question" title="11.2."><td align="left" valign="top"><a id="id1519579"></a><a id="id1519580"></a><p><b>11.2.</b></p></td><td align="left" valign="top"><p>
                I only have Python 2.4 or 2.5 but BitBake requires Python 2.6 or 2.7.
                Can I still use the Yocto Project?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                You can use a stand-alone tarball to provide Python 2.6.
                You can find pre-built 32 and 64-bit versions of Python 2.6 at the following locations:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><a class="ulink" href="http://downloads.yoctoproject.org/releases/miscsupport/python-nativesdk-standalone-i686.tar.bz2" target="_top">32-bit tarball</a></p></li><li class="listitem"><p><a class="ulink" href="http://downloads.yoctoproject.org/releases/miscsupport/python-nativesdk-standalone-x86_64.tar.bz2" target="_top">64-bit tarball</a></p></li></ul></div><p>
            </p><p>
                These tarballs are self-contained with all required libraries and should work 
                on most Linux systems.  
                To use the tarballs extract them into the root 
                directory and run the appropriate command:
                </p><pre class="literallayout">
     $ export PATH=/opt/poky/sysroots/i586-pokysdk-linux/usr/bin/:$PATH
     $ export PATH=/opt/poky/sysroots/x86_64-pokysdk-linux/usr/bin/:$PATH
                </pre><p>
            </p><p>
                Once you run the command, BitBake uses Python 2.6.
            </p></td></tr><tr class="question" title="11.3."><td align="left" valign="top"><a id="id1519623"></a><a id="id1519624"></a><p><b>11.3.</b></p></td><td align="left" valign="top"><p>
                How can you claim Poky is stable?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                There are three areas that help with stability;
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The Yocto Project team keeps 
                        <a class="link" href="#poky" target="_top">Poky</a> small and focused.
                        It contains around 650 packages as compared to over 5000 for full 
                        OpenEmbedded.</p></li><li class="listitem"><p>The Yocto Project only supports hardware that the 
                        team has access to for testing.</p></li><li class="listitem"><p>The Yocto Project uses an an autobuilder,
                        which provides continuous build and integration tests.</p></li></ul></div><p>
            </p></td></tr><tr class="question" title="11.4."><td align="left" valign="top"><a id="id1519656"></a><a id="id1519657"></a><p><b>11.4.</b></p></td><td align="left" valign="top"><p>
                How do I get support for my board added to the Yocto Project?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                There are two main ways to get a board supported in the Yocto Project;
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Send the Yocto Project team information on the board
                        and if the team does not have it yet they will consider adding it.</p></li><li class="listitem"><p>Send the Yocto Project team the BitBake recipes if you have them.
                        </p></li></ul></div><p>
                Usually, if the board is not completely exotic, adding support in 
                the Yocto Project is fairly straightforward.
            </p></td></tr><tr class="question" title="11.5."><td align="left" valign="top"><a id="id1519678"></a><a id="id1519679"></a><p><b>11.5.</b></p></td><td align="left" valign="top"><p>
                Are there any products using the OpenEmbedded build system (poky)?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                The <a class="ulink" href="http://vernier.com/labquest/" target="_top">Vernier LabQuest</a> is using 
                the OpenEmbedded build system.  
                See the <a class="ulink" href="http://www.vernier.com/products/interfaces/labq/" target="_top">Vernier LabQuest</a>
                for more information.
                There are a number of pre-production devices using the OpenEmbedded build system 
                and the Yocto Project team
                announces them as soon as they are released.
            </p></td></tr><tr class="question" title="11.6."><td align="left" valign="top"><a id="id1519700"></a><a id="id1519702"></a><p><b>11.6.</b></p></td><td align="left" valign="top"><p>
                What does the OpenEmbedded build system produce as output?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                Because the same set of recipes can be used to create output of various formats, the 
                output of an OpenEmbedded build depends on how it was started. 
                Usually, the output is a flashable image ready for the target device.
            </p></td></tr><tr class="question" title="11.7."><td align="left" valign="top"><a id="id1519711"></a><a id="id1519712"></a><p><b>11.7.</b></p></td><td align="left" valign="top"><p>
                How do I add my package to the Yocto Project?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                To add a package, you need to create a BitBake recipe.
                For information on how to add a package, see the section
                "<a class="link" href="#usingpoky-extend-addpkg" target="_top">Adding a Package</a>" 
                in the Yocto Project Development Manual.
            </p></td></tr><tr class="question" title="11.8."><td align="left" valign="top"><a id="id1519726"></a><a id="id1519727"></a><p><b>11.8.</b></p></td><td align="left" valign="top"><p>
                Do I have to reflash my entire board with a new Yocto Project image when recompiling 
                a package?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                The OpenEmbedded build system can build packages in various formats such as
                <code class="filename">ipk</code> for <code class="filename">ipkg</code>/<code class="filename">opkg</code>, 
                Debian package (<code class="filename">.deb</code>), or RPM. 
                The packages can then be upgraded using the package tools on the device, much like 
                on a desktop distribution such as Ubuntu or Fedora.
            </p></td></tr><tr class="question" title="11.9."><td align="left" valign="top"><a id="id1519761"></a><a id="id1519762"></a><p><b>11.9.</b></p></td><td align="left" valign="top"><p>
                What is GNOME Mobile and what is the difference between GNOME Mobile and GNOME?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                GNOME Mobile is a subset of the <a class="ulink" href="http://www.gnome.org" target="_top">GNOME</a> 
                platform targeted at mobile and embedded devices. 
                The the main difference between GNOME Mobile and standard GNOME is that 
                desktop-orientated libraries have been removed, along with deprecated libraries, 
                creating a much smaller footprint. 
            </p></td></tr><tr class="question" title="11.10."><td align="left" valign="top"><a id="id1519778"></a><a id="id1519780"></a><p><b>11.10.</b></p></td><td align="left" valign="top"><p>
                I see the error '<code class="filename">chmod: XXXXX new permissions are r-xrwxrwx, not r-xr-xr-x</code>'.
                What is wrong?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                You are probably running the build on an NTFS filesystem. 
                Use <code class="filename">ext2</code>, <code class="filename">ext3</code>, or <code class="filename">ext4</code> instead.
            </p></td></tr><tr class="question" title="11.11."><td align="left" valign="top"><a id="id1519811"></a><a id="id1519812"></a><p><b>11.11.</b></p></td><td align="left" valign="top"><p>
                How do I make the Yocto Project work in RHEL/CentOS?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                To get the Yocto Project working under RHEL/CentOS 5.1 you need to first 
                install some required packages. 
                The standard CentOS packages needed are:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>"Development tools" (selected during installation)</p></li><li class="listitem"><p><code class="filename">texi2html</code></p></li><li class="listitem"><p><code class="filename">compat-gcc-34</code></p></li></ul></div><p>
                On top of these, you need the following external packages:
                </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename">python-sqlite2</code> from 
                        <a class="ulink" href="http://dag.wieers.com/rpm/packages/python-sqlite2/" target="_top">DAG repository</a>
                        </p></li><li class="listitem"><p><code class="filename">help2man</code> from 
                        <a class="ulink" href="http://centos.karan.org/el4/extras/stable/x86_64/RPMS/repodata/repoview/help2man-0-1.33.1-2.html" target="_top">Karan repository</a></p></li></ul></div><p>
            </p><p>
                Once these packages are installed, the OpenEmbedded build system will be able 
                to build standard images.
                However, there might be a problem with the QEMU emulator segfaulting. 
                You can either disable the generation of binary locales by setting 
                <code class="filename"><a class="link" href="#var-ENABLE_BINARY_LOCALE_GENERATION" title="ENABLE_BINARY_LOCALE_GENERATION">ENABLE_BINARY_LOCALE_GENERATION</a>
                </code> to "0" or by removing the <code class="filename">linux-2.6-execshield.patch</code>
                from the kernel and rebuilding it since that is the patch that causes the problems with QEMU.
            </p></td></tr><tr class="question" title="11.12."><td align="left" valign="top"><a id="id1519899"></a><a id="id1519900"></a><p><b>11.12.</b></p></td><td align="left" valign="top"><p>
                I see lots of 404 responses for files on 
                <code class="filename">http://www.yoctoproject.org/sources/*</code>. Is something wrong?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                Nothing is wrong.
                The OpenEmbedded build system checks any configured source mirrors before downloading 
                from the upstream sources. 
                The build system does this searching for both source archives and 
                pre-checked out versions of SCM managed software. 
                These checks help in large installations because it can reduce load on the SCM servers 
                themselves. 
                The address above is one of the default mirrors configured into the 
                build system.
                Consequently, if an upstream source disappears, the team 
                can place sources there so builds continue to work.
            </p></td></tr><tr class="question" title="11.13."><td align="left" valign="top"><a id="id1519919"></a><a id="id1519920"></a><p><b>11.13.</b></p></td><td align="left" valign="top"><p>
                I have machine-specific data in a package for one machine only but the package is 
                being marked as machine-specific in all cases, how do I prevent this?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                Set <code class="filename"><a class="link" href="#var-SRC_URI_OVERRIDES_PACKAGE_ARCH" title="SRC_URI_OVERRIDES_PACKAGE_ARCH">SRC_URI_OVERRIDES_PACKAGE_ARCH</a>
                </code> = "0" in the <code class="filename">.bb</code> file but make sure the package is 
                manually marked as 
                machine-specific in the case that needs it. 
                The code that handles <code class="filename">SRC_URI_OVERRIDES_PACKAGE_ARCH</code> is in <code class="filename">base.bbclass</code>.
            </p></td></tr><tr class="question" title="11.14."><td align="left" valign="top"><a id="id1519958"></a><a id="id1519959"></a><p><b>11.14.</b></p></td><td align="left" valign="top"><p>
                I'm behind a firewall and need to use a proxy server. How do I do that?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                Most source fetching by the OpenEmbedded build system is done by <code class="filename">wget</code>
                and you therefore need to specify the proxy settings in a 
                <code class="filename">.wgetrc</code> file in your home directory. 
                Example settings in that file would be 
                </p><pre class="literallayout">
     http_proxy = http://proxy.yoyodyne.com:18023/
     ftp_proxy = http://proxy.yoyodyne.com:18023/
                </pre><p>
                The Yocto Project also includes a <code class="filename">site.conf.sample</code>
                file that shows how to configure CVS and Git proxy servers
                if needed.
            </p></td></tr><tr class="question" title="11.15."><td align="left" valign="top"><a id="id1519996"></a><a id="id1519997"></a><p><b>11.15.</b></p></td><td align="left" valign="top"><p>
                I'm using Ubuntu Intrepid and am seeing build failures. What’s wrong?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
	            In Intrepid, Ubuntu turns on by default the normally optional compile-time security features 
		        and warnings. 
                There are more details at 
                <a class="ulink" href="https://wiki.ubuntu.com/CompilerFlags" target="_top">https://wiki.ubuntu.com/CompilerFlags</a>.
		        You can work around this problem by disabling those options by adding 
                the following to the <code class="filename">BUILD_CPPFLAGS</code> variable in the
                <code class="filename">conf/bitbake.conf</code> file.
                </p><pre class="literallayout">
     " -Wno-format-security -U_FORTIFY_SOURCE" 
                </pre><p>
            </p></td></tr><tr class="question" title="11.16."><td align="left" valign="top"><a id="id1520034"></a><a id="id1520035"></a><p><b>11.16.</b></p></td><td align="left" valign="top"><p>
                What’s the difference between <code class="filename">foo</code> and <code class="filename">foo-native</code>?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                The <code class="filename">*-native</code> targets are designed to run on the system 
                being used for the build.
                These are usually tools that are needed to assist the build in some way such as 
                <code class="filename">quilt-native</code>, which is used to apply patches. 
                The non-native version is the one that runs on the target device.
            </p></td></tr><tr class="question" title="11.17."><td align="left" valign="top"><a id="id1520068"></a><a id="id1520070"></a><p><b>11.17.</b></p></td><td align="left" valign="top"><p>
                I'm seeing random build failures. Help?!
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                If the same build is failing in totally different and random ways,
                the most likely explanation is that either the hardware you're running the 
                build on has some problem, or, if you are running the build under virtualisation, 
                the virtualisation probably has bugs. 
                The OpenEmbedded build system processes a massive amount of data causing lots of network, disk and 
                CPU activity and is sensitive to even single bit failures in any of these areas. 
                True random failures have always been traced back to hardware or virtualisation issues.
            </p></td></tr><tr class="question" title="11.18."><td align="left" valign="top"><a id="id1520082"></a><a id="id1520083"></a><p><b>11.18.</b></p></td><td align="left" valign="top"><p>
                What do we need to ship for license compliance?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                This is a difficult question and you need to consult your lawyer for the answer
                for your specific case.
                It is worth bearing in mind that for GPL compliance there needs to be enough
                information shipped to allow someone else to rebuild the same end result 
                you are shipping. 
                This means sharing the source code, any patches applied to it, and also any
                configuration information about how that package was configured and built.
            </p></td></tr><tr class="question" title="11.19."><td align="left" valign="top"><a id="id1520094"></a><a id="id1520095"></a><p><b>11.19.</b></p></td><td align="left" valign="top"><p>
                How do I disable the cursor on my touchscreen device?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                You need to create a form factor file as described in the
                "<a class="link" href="#bsp-filelayout-misc-recipes" target="_top">Miscellaneous Recipe Files</a>"
                section and set the <code class="filename">HAVE_TOUCHSCREEN</code> variable equal to one as follows:
                </p><pre class="literallayout">
     HAVE_TOUCHSCREEN=1
                </pre><p>
            </p></td></tr><tr class="question" title="11.20."><td align="left" valign="top"><a id="id1520125"></a><a id="id1520126"></a><p><b>11.20.</b></p></td><td align="left" valign="top"><p>
                How do I make sure connected network interfaces are brought up by default?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                The default interfaces file provided by the netbase recipe does not 
                automatically bring up network interfaces. 
                Therefore, you will need to add a BSP-specific netbase that includes an interfaces 
                file.
                See the "<a class="link" href="#bsp-filelayout-misc-recipes" target="_top">Miscellaneous Recipe Files</a>"
                section for information on creating these types of miscellaneous recipe files.
            </p><p>
                For example, add the following files to your layer:
                </p><pre class="literallayout">
     meta-MACHINE/recipes-bsp/netbase/netbase/MACHINE/interfaces
     meta-MACHINE/recipes-bsp/netbase/netbase_4.44.bbappend
                </pre><p>
            </p></td></tr><tr class="question" title="11.21."><td align="left" valign="top"><a id="id1520156"></a><a id="id1520157"></a><p><b>11.21.</b></p></td><td align="left" valign="top"><p>
                How do I create images with more free space?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                Images are created to be 1.2 times the size of the populated root filesystem. 
                To modify this ratio so that there is more free space available, you need to 
                set the configuration value <code class="filename">IMAGE_OVERHEAD_FACTOR</code>.  
                For example, setting <code class="filename">IMAGE_OVERHEAD_FACTOR</code> to 1.5 sets 
                the image size ratio to one and a half times the size of the populated 
                root filesystem.
                </p><pre class="literallayout">
     IMAGE_OVERHEAD_FACTOR = "1.5"
                </pre><p>
            </p></td></tr><tr class="question" title="11.22."><td align="left" valign="top"><a id="id1520188"></a><a id="id1520190"></a><p><b>11.22.</b></p></td><td align="left" valign="top"><p>
                Why don't you support directories with spaces in the pathnames?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                The Yocto Project team has tried to do this before but too many of the tools 
                the OpenEmbedded build system depends on such as <code class="filename">autoconf</code> 
                break when they find spaces in pathnames.  
                Until that situation changes, the team will not support spaces in pathnames.
            </p></td></tr><tr class="question" title="11.23."><td align="left" valign="top"><a id="id1520206"></a><a id="id1520207"></a><p><b>11.23.</b></p></td><td align="left" valign="top"><p>
                How do I use an external toolchain?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                The toolchain configuration is very flexible and customizable.
                It is primarily controlled with the 
                <code class="filename"><a class="link" href="#var-TCMODE" title="TCMODE">TCMODE</a></code> variable.
                This variable controls which <code class="filename">tcmode-*.inc</code> file to include 
                from the <code class="filename">meta/conf/distro/include</code> directory within the 
                <a class="link" href="#source-directory" target="_top">source directory</a>.
            </p><p>
                The default value of <code class="filename">TCMODE</code> is "default"
                (i.e. <code class="filename">tcmode-default.inc</code>).
                However, other patterns are accepted.
                In particular, "external-*" refers to external toolchains of which there are some
                basic examples included in the OpenEmbedded Core (<code class="filename">meta</code>).
                You can use your own custom toolchain definition in your own layer 
                (or as defined in the <code class="filename">local.conf</code> file) at the location 
                <code class="filename">conf/distro/include/tcmode-*.inc</code>.
            </p><p>
                In addition to the toolchain configuration, you also need a corresponding toolchain recipe file.
                This recipe file needs to package up any pre-built objects in the toolchain such as 
                <code class="filename">libgcc</code>, <code class="filename">libstdcc++</code>, 
                any locales, and <code class="filename">libc</code>.
                An example is the <code class="filename">external-sourcery-toolchain.bb</code>, which is located
                in <code class="filename">meta/recipes-core/meta/</code> within the source directory.
            </p></td></tr><tr class="question" title="11.24."><td align="left" valign="top"><a id="id1520281"></a><a id="id1520316"></a><p><b>11.24.</b></p></td><td align="left" valign="top"><p><a id="how-does-the-yocto-project-obtain-source-code-and-will-it-work-behind-my-firewall-or-proxy-server"></a>
                How does the OpenEmbedded build system obtain source code and will it work behind my 
                firewall or proxy server?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                The way the build system obtains source code is highly configurable.
                You can setup the build system to get source code in most environments if
                HTTP transport is available.
            </p><p>
                When the build system searches for source code, it first tries the local download directory.
                If that location fails, Poky tries PREMIRRORS, the upstream source, 
                and then MIRRORS in that order.
            </p><p>
                By default, the OpenEmbedded build system uses the Yocto Project source PREMIRRORS 
                for SCM-based sources, 
                upstreams for normal tarballs, and then falls back to a number of other mirrors 
                including the Yocto Project source mirror if those fail.
            </p><p>
                As an example, you could add a specific server for Poky to attempt before any
                others by adding something like the following to the <code class="filename">local.conf</code>
                configuration file:
                </p><pre class="literallayout">
     PREMIRRORS_prepend = "\
     git://.*/.* http://www.yoctoproject.org/sources/ \n \
     ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
     http://.*/.* http://www.yoctoproject.org/sources/ \n \
     https://.*/.* http://www.yoctoproject.org/sources/ \n"
                </pre><p>
            </p><p>
                These changes cause Poky to intercept Git, FTP, HTTP, and HTTPS
                requests and direct them to the <code class="filename">http://</code> sources mirror.
                You can use <code class="filename">file://</code> URLs to point to local directories 
                or network shares as well.
            </p><p>
                Aside from the previous technique, these options also exist:
                </p><pre class="literallayout">
     BB_NO_NETWORK = "1"
                </pre><p>
                 This statement tells BitBake to throw an error instead of trying to access the 
                 Internet.
                 This technique is useful if you want to ensure code builds only from local sources.
             </p><p>
                 Here is another technique:
                 </p><pre class="literallayout">
     BB_FETCH_PREMIRRORONLY = "1"
                 </pre><p>
                 This statement limits Poky to pulling source from the PREMIRRORS only.
                 Again, this technique is useful for reproducing builds.
             </p><p>
                 Here is another technique:
                 </p><pre class="literallayout">
     BB_GENERATE_MIRROR_TARBALLS = "1"
                 </pre><p>
                 This statement tells Poky to generate mirror tarballs.
                 This technique is useful if you want to create a mirror server.
                 If not, however, the technique can simply waste time during the build.
             </p><p>
                 Finally, consider an example where you are behind an HTTP-only firewall.
                 You could make the following changes to the <code class="filename">local.conf</code>
                 configuration file as long as the PREMIRROR server is up to date:
                 </p><pre class="literallayout">
     PREMIRRORS_prepend = "\
     ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
     http://.*/.* http://www.yoctoproject.org/sources/ \n \
     https://.*/.* http://www.yoctoproject.org/sources/ \n"
     BB_FETCH_PREMIRRORONLY = "1" 
                 </pre><p>
                 These changes would cause Poky to successfully fetch source over HTTP and 
                 any network accesses to anything other than the PREMIRROR would fail.
             </p><p>
                 The build system also honors the standard shell environment variables 
                 <code class="filename">http_proxy</code>, <code class="filename">ftp_proxy</code>, 
                 <code class="filename">https_proxy</code>, and <code class="filename">all_proxy</code>
                 to redirect requests through proxy servers.
             </p></td></tr><tr class="question" title="11.25."><td align="left" valign="top"><a id="id1520463"></a><a id="id1520464"></a><p><b>11.25.</b></p></td><td align="left" valign="top"><p>
                Can I get rid of build output so I can start over?
            </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
                Yes - you can easily do this.
                When you use BitBake to build an image, all the build output goes into the 
                directory created when you source the <code class="filename">oe-init-build-env</code>
                setup file.
                By default, this <a class="link" href="#build-directory" target="_top">build directory</a> 
                is named <code class="filename">build</code> but can be named
                anything you want.
            </p><p>
                Within the build directory is the <code class="filename">tmp</code> directory. 
                To remove all the build output yet preserve any source code or downloaded files
                from previous builds, simply remove the <code class="filename">tmp</code> directory.
            </p></td></tr></tbody></table></div></div>

    <div class="chapter" title="Chapter 12. Contributing to the Yocto Project"><div class="titlepage"><div><div><h2 class="title"><a id="resources"></a>Chapter 12. Contributing to the Yocto Project</h2></div></div></div><div class="toc"><dl><dt><span class="section"><a href="#resources-intro">12.1. Introduction</a></span></dt><dt><span class="section"><a href="#resources-bugtracker">12.2. Tracking Bugs</a></span></dt><dt><span class="section"><a href="#resources-mailinglist">12.3. Mailing lists</a></span></dt><dt><span class="section"><a href="#resources-irc">12.4. Internet Relay Chat (IRC)</a></span></dt><dt><span class="section"><a href="#resources-links">12.5. Links</a></span></dt><dt><span class="section"><a href="#resources-contributions">12.6. Contributions</a></span></dt></dl></div><div class="section" title="12.1. Introduction"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="resources-intro"></a>12.1. Introduction</h2></div></div></div><p>
        The Yocto Project team is happy for people to experiment with the Yocto Project.
        A number of places exist to find help if you run into difficulties or find bugs. 
        To find out how to download source code,
        see the "<a class="link" href="#local-yp-release" target="_top">Yocto Project Release</a>"
        list item in the Yocto Project Development Manual.
    </p></div><div class="section" title="12.2. Tracking Bugs"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="resources-bugtracker"></a>12.2. Tracking Bugs</h2></div></div></div><p>
        If you find problems with the Yocto Project, you should report them using the 
        Bugzilla application at <a class="ulink" href="http://bugzilla.yoctoproject.org" target="_top">http://bugzilla.yoctoproject.org</a>.
    </p></div><div class="section" title="12.3. Mailing lists"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="resources-mailinglist"></a>12.3. Mailing lists</h2></div></div></div><p>
        There are a number of mailing lists maintained by the Yocto Project as well as
        related OpenEmbedded mailing lists for discussion, patch submission and announcements.
        To subscribe to one of the following mailing lists, click on the appropriate URL
        in the following list and follow the instructions:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><a class="ulink" href="http://lists.yoctoproject.org/listinfo/yocto" target="_top">http://lists.yoctoproject.org/listinfo/yocto</a> -
                General Yocto Project discussion mailing list. </p></li><li class="listitem"><p><a class="ulink" href="http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/openembedded-core" target="_top">http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/openembedded-core</a> -
                Discussion mailing list about OpenEmbedded-Core (the core metadata).</p></li><li class="listitem"><p><a class="ulink" href="http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/openembedded-devel" target="_top">http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/openembedded-devel</a> -
                Discussion mailing list about OpenEmbedded.</p></li><li class="listitem"><p><a class="ulink" href="http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/bitbake-devel" target="_top">http://lists.linuxtogo.org/cgi-bin/mailman/listinfo/bitbake-devel</a> -
                Discussion mailing list about the BitBake build tool.</p></li><li class="listitem"><p><a class="ulink" href="http://lists.yoctoproject.org/listinfo/poky" target="_top">http://lists.yoctoproject.org/listinfo/poky</a> -
                Discussion mailing list about Poky.</p></li><li class="listitem"><p><a class="ulink" href="http://lists.yoctoproject.org/listinfo/yocto-announce" target="_top">http://lists.yoctoproject.org/listinfo/yocto-announce</a> -
                Mailing list to receive official Yocto Project release and milestone
                announcements.</p></li></ul></div><p>
    </p></div><div class="section" title="12.4. Internet Relay Chat (IRC)"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="resources-irc"></a>12.4. Internet Relay Chat (IRC)</h2></div></div></div><p>
        Two IRC channels on freenode are available for the Yocto Project and Poky discussions:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="filename">#yocto</code></p></li><li class="listitem"><p><code class="filename">#poky</code></p></li></ul></div><p>
    </p></div><div class="section" title="12.5. Links"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="resources-links"></a>12.5. Links</h2></div></div></div><p>
        Following is a list of resources you will find helpful:
        </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><span class="emphasis"><em><a class="ulink" href="http://www.yoctoproject.org" target="_top">The Yocto Project website</a>:
                </em></span> The home site for the Yocto Project.</p></li><li class="listitem"><p><span class="emphasis"><em><a class="ulink" href="http://www.intel.com/" target="_top">Intel Corporation</a>:</em></span>
                The company who acquired OpenedHand in 2008 and began development on the 
                Yocto Project.</p></li><li class="listitem"><p><span class="emphasis"><em><a class="ulink" href="http://www.openembedded.org" target="_top">OpenEmbedded</a>:</em></span>
                The upstream, generic, embedded distribution used as the basis for the build system in the 
                Yocto Project.
                Poky derives from and contributes back to the OpenEmbedded project.</p></li><li class="listitem"><p><span class="emphasis"><em><a class="ulink" href="http://developer.berlios.de/projects/bitbake/" target="_top">
                BitBake</a>:</em></span> The tool used to process metadata.</p></li><li class="listitem"><p><span class="emphasis"><em><a class="ulink" href="http://docs.openembedded.org/bitbake/html/" target="_top">
                BitBake User Manual</a>:</em></span> A comprehensive guide to the BitBake tool.
                </p></li><li class="listitem"><p><span class="emphasis"><em><a class="ulink" href="http://wiki.qemu.org/Index.html" target="_top">QEMU</a>:
                </em></span> An open source machine emulator and virtualizer.</p></li></ul></div><p>
    </p></div><div class="section" title="12.6. Contributions"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="resources-contributions"></a>12.6. Contributions</h2></div></div></div><p>
        The Yocto Project gladly accepts contributions.
        You can submit changes to the project either by creating and sending pull requests, 
        or by submitting patches through email.
        For information on how to do both, see the
        "<a class="link" href="#how-to-submit-a-change" target="_top">How to Submit a Change</a>"
        section in the Yocto Project Development Manual.
    </p></div></div>



</div>



</div></body></html>