1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
<chapter id='dev-manual-start'>
<title>Getting Started with the Yocto Project</title>
<para>
This chapter provides procedures related to getting set up to use the
Yocto Project.
For a more front-to-end process that takes you from minimally preparing
a build host through building an image, see the
<ulink url='&YOCTO_DOCS_QS_URL;'>Yocto Project Quick Start</ulink>.
</para>
<section id='getting-setup'>
<title>Getting Set Up</title>
<para>
Here is what you need to use the Yocto Project:
<itemizedlist>
<listitem><para><emphasis>Host System:</emphasis> You should have a reasonably current
Linux-based host system.
You will have the best results with a recent release of Fedora,
openSUSE, Debian, Ubuntu, or CentOS as these releases are frequently tested against the Yocto Project
and officially supported.
For a list of the distributions under validation and their status, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#detailed-supported-distros'>Supported Linux Distributions</ulink>" section
in the Yocto Project Reference Manual and the wiki page at
<ulink url='&YOCTO_WIKI_URL;/wiki/Distribution_Support'>Distribution Support</ulink>.</para>
<para>
You should also have about 50 Gbytes of free disk space for building images.
</para></listitem>
<listitem><para><emphasis>Packages:</emphasis> The OpenEmbedded build system
requires that certain packages exist on your development system (e.g. Python 2.7).
See "<ulink url='&YOCTO_DOCS_QS_URL;#packages'>The Build Host Packages</ulink>"
section in the Yocto Project Quick Start and the
"<ulink url='&YOCTO_DOCS_REF_URL;#required-packages-for-the-host-development-system'>Required Packages for the Host Development System</ulink>"
section in the Yocto Project Reference Manual for the exact
package requirements and the installation commands to install
them for the supported distributions.
</para></listitem>
<listitem id='local-yp-release'><para><emphasis>Yocto Project Release:</emphasis>
You need a release of the Yocto Project locally installed on
your development system.
The documentation refers to this set of locally installed files
as the <ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>.
You create your Source Directory by using
<ulink url='&YOCTO_DOCS_REF_URL;#git'>Git</ulink> to clone a local copy
of the upstream <filename>poky</filename> repository,
or by downloading and unpacking a tarball of an official
Yocto Project release.
The preferred method is to create a clone of the repository.
</para>
<para>Working from a copy of the upstream repository allows you
to contribute back into the Yocto Project or simply work with
the latest software on a development branch.
Because Git maintains and creates an upstream repository with
a complete history of changes and you are working with a local
clone of that repository, you have access to all the Yocto
Project development branches and tag names used in the upstream
repository.</para>
<note>You can view the Yocto Project Source Repositories at
<ulink url='&YOCTO_GIT_URL;/cgit.cgi'></ulink>
</note>
<para>The following transcript shows how to clone the
<filename>poky</filename> Git repository into the current
working directory.
The command creates the local repository in a directory
named <filename>poky</filename>.
For information on Git used within the Yocto Project, see
the "<ulink url='&YOCTO_DOCS_REF_URL;#git'>Git</ulink>" section.
<literallayout class='monospaced'>
$ git clone git://git.yoctoproject.org/poky
Cloning into 'poky'...
remote: Counting objects: 226790, done.
remote: Compressing objects: 100% (57465/57465), done.
remote: Total 226790 (delta 165212), reused 225887 (delta 164327)
Receiving objects: 100% (226790/226790), 100.98 MiB | 263 KiB/s, done.
Resolving deltas: 100% (165212/165212), done.
</literallayout></para>
<para>For another example of how to set up your own local Git
repositories, see this
<ulink url='&YOCTO_WIKI_URL;/wiki/Transcript:_from_git_checkout_to_meta-intel_BSP'>
wiki page</ulink>, which describes how to create local
Git repositories for both
<filename>poky</filename> and <filename>meta-intel</filename>.
</para>
<para>
You can also get the Yocto Project Files by downloading
Yocto Project releases from the
<ulink url="&YOCTO_HOME_URL;">Yocto Project website</ulink>.
From the website, you just click "Downloads" in the navigation
pane to the left to display all Yocto Project downloads.
Current and archived releases are available for download.
Nightly and developmental builds are also maintained at
<ulink url="&YOCTO_AB_NIGHTLY_URL;"></ulink>.
One final site you can visit for information on Yocto Project
releases is the
<ulink url='&YOCTO_WIKI_URL;/wiki/Releases'>Releases</ulink>
wiki.
</para></listitem>
<listitem id='local-kernel-files'><para><emphasis>Yocto Project Kernel:</emphasis>
If you are going to be making modifications to a supported Yocto Project kernel, you
need to establish local copies of the source.
You can find Git repositories of supported Yocto Project kernels organized under
"Yocto Linux Kernel" in the Yocto Project Source Repositories at
<ulink url='&YOCTO_GIT_URL;/cgit.cgi'></ulink>.</para>
<para>This setup can involve creating a bare clone of the Yocto Project kernel and then
copying that cloned repository.
You can create the bare clone and the copy of the bare clone anywhere you like.
For simplicity, it is recommended that you create these structures outside of the
Source Directory, which is usually named <filename>poky</filename>.</para>
<para>As an example, the following transcript shows how to create the bare clone
of the <filename>linux-yocto-3.19</filename> kernel and then create a copy of
that clone.
<note>When you have a local Yocto Project kernel Git repository, you can
reference that repository rather than the upstream Git repository as
part of the <filename>clone</filename> command.
Doing so can speed up the process.</note></para>
<para>In the following example, the bare clone is named
<filename>linux-yocto-3.19.git</filename>, while the
copy is named <filename>my-linux-yocto-3.19-work</filename>:
<literallayout class='monospaced'>
$ git clone --bare git://git.yoctoproject.org/linux-yocto-3.19 linux-yocto-3.19.git
Cloning into bare repository 'linux-yocto-3.19.git'...
remote: Counting objects: 3983256, done.
remote: Compressing objects: 100% (605006/605006), done.
remote: Total 3983256 (delta 3352832), reused 3974503 (delta 3344079)
Receiving objects: 100% (3983256/3983256), 843.66 MiB | 1.07 MiB/s, done.
Resolving deltas: 100% (3352832/3352832), done.
Checking connectivity... done.
</literallayout></para>
<para>Now create a clone of the bare clone just created:
<literallayout class='monospaced'>
$ git clone linux-yocto-3.19.git my-linux-yocto-3.19-work
Cloning into 'my-linux-yocto-3.19-work'...
done.
Checking out files: 100% (48440/48440), done.
</literallayout></para></listitem>
<listitem id='meta-yocto-kernel-extras-repo'><para><emphasis>
The <filename>meta-yocto-kernel-extras</filename> Git Repository</emphasis>:
The <filename>meta-yocto-kernel-extras</filename> Git repository contains Metadata needed
only if you are modifying and building the kernel image.
In particular, it contains the kernel BitBake append (<filename>.bbappend</filename>)
files that you
edit to point to your locally modified kernel source files and to build the kernel
image.
Pointing to these local files is much more efficient than requiring a download of the
kernel's source files from upstream each time you make changes to the kernel.</para>
<para>You can find the <filename>meta-yocto-kernel-extras</filename> Git Repository in the
"Yocto Metadata Layers" area of the Yocto Project Source Repositories at
<ulink url='&YOCTO_GIT_URL;/cgit.cgi'></ulink>.
It is good practice to create this Git repository inside the Source Directory.</para>
<para>Following is an example that creates the <filename>meta-yocto-kernel-extras</filename> Git
repository inside the Source Directory, which is named <filename>poky</filename>
in this case:
<literallayout class='monospaced'>
$ cd ~/poky
$ git clone git://git.yoctoproject.org/meta-yocto-kernel-extras meta-yocto-kernel-extras
Cloning into 'meta-yocto-kernel-extras'...
remote: Counting objects: 727, done.
remote: Compressing objects: 100% (452/452), done.
remote: Total 727 (delta 260), reused 719 (delta 252)
Receiving objects: 100% (727/727), 536.36 KiB | 240 KiB/s, done.
Resolving deltas: 100% (260/260), done.
</literallayout></para></listitem>
<listitem><para id='supported-board-support-packages-(bsps)'><emphasis>Supported Board Support Packages (BSPs):</emphasis>
The Yocto Project supports many BSPs, which are maintained in
their own layers or in layers designed to contain several
BSPs.
To get an idea of machine support through BSP layers, you can
look at the
<ulink url='&YOCTO_RELEASE_DL_URL;/machines'>index of machines</ulink>
for the release.</para>
<para>The Yocto Project uses the following BSP layer naming
scheme:
<literallayout class='monospaced'>
meta-<replaceable>bsp_name</replaceable>
</literallayout>
where <replaceable>bsp_name</replaceable> is the recognized
BSP name.
Here is an example:
<literallayout class='monospaced'>
meta-raspberrypi
</literallayout>
See the
"<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-layers'>BSP Layers</ulink>"
section in the Yocto Project Board Support Package (BSP)
Developer's Guide for more information on BSP Layers.</para>
<para>A useful Git repository released with the Yocto
Project is <filename>meta-intel</filename>, which is a
parent layer that contains many supported
<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-layers'>BSP Layers</ulink>.
You can locate the <filename>meta-intel</filename> Git
repository in the "Yocto Metadata Layers" area of the Yocto
Project Source Repositories at
<ulink url='&YOCTO_GIT_URL;/cgit.cgi'></ulink>.</para>
<para>Using
<ulink url='&YOCTO_DOCS_REF_URL;#git'>Git</ulink> to create a local clone of the
upstream repository can be helpful if you are working with
BSPs.
Typically, you set up the <filename>meta-intel</filename>
Git repository inside the Source Directory.
For example, the following transcript shows the steps to clone
<filename>meta-intel</filename>.
<note>
Be sure to work in the <filename>meta-intel</filename>
branch that matches your
<ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>
(i.e. <filename>poky</filename>) branch.
For example, if you have checked out the "master" branch
of <filename>poky</filename> and you are going to use
<filename>meta-intel</filename>, be sure to checkout the
"master" branch of <filename>meta-intel</filename>.
</note>
<literallayout class='monospaced'>
$ cd ~/poky
$ git clone git://git.yoctoproject.org/meta-intel.git
Cloning into 'meta-intel'...
remote: Counting objects: 11917, done.
remote: Compressing objects: 100% (3842/3842), done.
remote: Total 11917 (delta 6840), reused 11699 (delta 6622)
Receiving objects: 100% (11917/11917), 2.92 MiB | 2.88 MiB/s, done.
Resolving deltas: 100% (6840/6840), done.
Checking connectivity... done.
</literallayout></para>
<para>The same
<ulink url='&YOCTO_WIKI_URL;/wiki/Transcript:_from_git_checkout_to_meta-intel_BSP'>wiki page</ulink>
referenced earlier covers how to set up the
<filename>meta-intel</filename> Git repository.
</para></listitem>
<listitem><para><emphasis>Eclipse Yocto Plug-in:</emphasis> If you are developing
applications using the Eclipse Integrated Development Environment (IDE),
you will need this plug-in.
See the
"<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-appendix-latest-yp-eclipse-plug-in'>Using Eclipse</ulink>"
section in the Yocto Project Software Development Kit (SDK)
Developer's Guide for more information.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='working-with-yocto-project-source-files'>
<title>Working With Yocto Project Source Files</title>
<para>
This section contains procedures related to locating and securing
Yocto Project files.
You establish and use these local files to work on projects.
<note>
For concepts and introductory information about Git as it is used
in the Yocto Project, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#git'>Git</ulink>"
section in the Yocto Project Reference Manual.
</note>
</para>
<section id='cloning-the-poky-repository'>
<title>Cloning the <filename>poky</filename> Repository</title>
<para>
Follow these steps to create a local version of the
upstream
<ulink url='&YOCTO_DOCS_REF_URL;#poky'><filename>poky</filename></ulink>
Git repository.
<orderedlist>
<listitem><para>
<emphasis>Set Your Directory:</emphasis>
Be in the directory where you want to create your local
copy of poky.
</para></listitem>
<listitem><para>
<emphasis>Clone the Repository:</emphasis>
The following command clones the repository and uses
the default name "poky" for your local repository:
<literallayout class='monospaced'>
$ git clone git://git.yoctoproject.org/poky
Cloning into 'poky'...
remote: Counting objects: 367178, done.
remote: Compressing objects: 100% (88161/88161), done.
remote: Total 367178 (delta 272761), reused 366942 (delta 272525)
Receiving objects: 100% (367178/367178), 133.26 MiB | 6.40 MiB/s, done.
Resolving deltas: 100% (272761/272761), done.
Checking connectivity... done.
</literallayout>
Once the repository is created, you can change to that
directory and check its status and list its branches:
<literallayout class='monospaced'>
$ cd ~/poky
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean
$ git branch
* master
</literallayout>
Your local repository of poky is identical to the
upstream poky repository at the time from which it was
cloned.
By default, Git creates the "master" branch and checks
it out.
</para></listitem>
</orderedlist>
</para>
</section>
<section id='checking-out-by-branch-in-poky'>
<title>Checking Out by Branch in Poky</title>
<para>
When you clone the upstream poky repository, you have access to
all its development branches.
Each development branch in a repository is unique as it forks
off the repositories "master" branch.
To see and use the files of any branch locally, you need to
know the branch name and then checkout the branch.
<orderedlist>
<listitem><para>
<emphasis>Switch to the Poky Directory:</emphasis>
If you have a local poky Git repository, switch to that
directory.
If you do not have the local copy of poky, see the
"<link linkend='cloning-the-poky-repository'>Cloning the <filename>poky</filename> Repository</link>"
section.
</para></listitem>
<listitem><para>
<emphasis>Determine Existing Branch Names:</emphasis>
<literallayout class='monospaced'>
$ git branch -a
* master
remotes/origin/1.1_M1
remotes/origin/1.1_M2
remotes/origin/1.1_M3
remotes/origin/1.1_M4
remotes/origin/1.2_M1
remotes/origin/1.2_M2
remotes/origin/1.2_M3
.
.
.
remotes/origin/master-next
remotes/origin/master-next2
remotes/origin/morty
remotes/origin/pinky
remotes/origin/purple
remotes/origin/pyro
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Checkout the Branch:</emphasis>
Checkout the branch in which you want to work.
For example, to access the files for the Yocto Project
2.3 Release (Pyro), use the following command:
<literallayout class='monospaced'>
$ git checkout -b pyro origin/pyro
Branch pyro set up to track remote branch pyro from origin.
Switched to a new branch 'pyro'
</literallayout>
The previous command checks out the "pyro" branch and
reports that the branch is tracking the upstream
"origin/pyro" branch.</para>
<para>The following command displays the branches
that are now part of your local poky repository.
The asterisk character indicates the branch that is
currently checked out for work:
<literallayout class='monospaced'>
$ git branch
master
* pyro
</literallayout>
</para></listitem>
</orderedlist>
</para>
</section>
<section id='checkout-out-by-tag-in-poky'>
<title>Checking Out by Tag in Poky</title>
<para>
Similar to branches, the upstream repository has tags used
to mark significant commits such as a completed release or
stage of a release.
You might want to set up a local branch based on one of those
points in the repository.
The process is similar to checking out by branch name except you
use tag names.
<orderedlist>
<listitem><para>
<emphasis>Switch to the Poky Directory:</emphasis>
If you have a local poky Git repository, switch to that
directory.
If you do not have the local copy of poky, see the
"<link linkend='cloning-the-poky-repository'>Cloning the <filename>poky</filename> Repository</link>"
section.
</para></listitem>
<listitem><para>
<emphasis>Fetch the Tag Names:</emphasis>
To checkout the branch based on a tag name, you need to
fetch the upstream tags into your local repository:
<literallayout class='monospaced'>
$ git fetch --tags
$
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>List the Tag Names:</emphasis>
You can list the tag names now:
<literallayout class='monospaced'>
$ git tag
1.1_M1.final
1.1_M1.rc1
1.1_M1.rc2
1.1_M2.final
1.1_M2.rc1
.
.
.
yocto-2.2
yocto-2.2.1
yocto-2.3
yocto_1.5_M5.rc8
</literallayout>
</para></listitem>
<listitem><para>
<emphasis>Checkout the Branch:</emphasis>
<literallayout class='monospaced'>
$ git checkout tags/2.2_M2 -b my_yocto_2.2_M2
Switched to a new branch 'my_yocto_2.2_M2'
$ git branch
master
* my_yocto_2.2_M2
</literallayout>
The previous command creates and checks out a local
branch named "my_yocto_2.2_M2", which is based on
the commit in the upstream poky repository that has
the same tag.
The files you have available locally when you are
checked out to that branch are a snapshot of the
"morty" development branch at the point where
milestone two was reached.
</para></listitem>
</orderedlist>
</para>
</section>
</section>
<section id='building-images'>
<title>Building Images</title>
<para>
The build process creates an entire Linux distribution, including the toolchain, from source.
For more information on this topic, see the
"<ulink url='&YOCTO_DOCS_QS_URL;#qs-building-images'>Building Images</ulink>"
section in the Yocto Project Quick Start.
</para>
<para>
The build process is as follows:
<orderedlist>
<listitem><para>Make sure you have set up the Source Directory described in the
previous section.</para></listitem>
<listitem><para>Initialize the build environment by sourcing a build
environment script (i.e.
<ulink url='&YOCTO_DOCS_REF_URL;#structure-core-script'><filename>&OE_INIT_FILE;</filename></ulink>
or
<ulink url='&YOCTO_DOCS_REF_URL;#structure-memres-core-script'><filename>oe-init-build-env-memres</filename></ulink>).
</para></listitem>
<listitem><para>Optionally ensure the <filename>conf/local.conf</filename> configuration file,
which is found in the
<ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>,
is set up how you want it.
This file defines many aspects of the build environment including
the target machine architecture through the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'>MACHINE</ulink></filename> variable,
the packaging format used during the build
(<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>),
and a centralized tarball download directory through the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'>DL_DIR</ulink></filename> variable.</para></listitem>
<listitem><para>
Build the image using the <filename>bitbake</filename> command.
If you want information on BitBake, see the
<ulink url='&YOCTO_DOCS_BB_URL;'>BitBake User Manual</ulink>.
</para></listitem>
<listitem><para>Run the image either on the actual hardware or using the QEMU
emulator.</para></listitem>
</orderedlist>
</para>
</section>
<section id='flashing-images-using-bmaptool'>
<title>Flashing Images Using <filename>bmaptool</filename></title>
<para>
An easy way to flash an image to a bootable device is to use
<filename>bmaptool</filename>, which is integrated into the
OpenEmbedded build system.
</para>
<para>
Following, is an example that shows how to flash a Wic image.
<note>
You can use <filename>bmaptool</filename> to flash any
type of image.
</note>
Use these steps to flash an image using
<filename>bmaptool</filename>:
<note>
Unless you are able to install the
<filename>bmap-tools</filename> package as mentioned in the note
in the second bullet of step 3 further down, you will need to build
<filename>bmaptool</filename> before using it.
Build the tool using the following command:
<literallayout class='monospaced'>
$ bitbake bmap-tools-native
</literallayout>
</note>
<orderedlist>
<listitem><para>
Add the following to your <filename>local.conf</filename>
file:
<literallayout class='monospaced'>
IMAGE_FSTYPES += "wic wic.bmap"
</literallayout>
</para></listitem>
<listitem><para>
Either have your image ready (pre-built) or take the step
build the image:
<literallayout class='monospaced'>
$ bitbake <replaceable>image</replaceable>
</literallayout>
</para></listitem>
<listitem><para>
Flash the image to the media by using
<filename>bmaptool</filename> depending on your particular
setup:
<itemizedlist>
<listitem><para>
If you have write access to the media,
use this command form:
<literallayout class='monospaced'>
$ oe-run-native bmaptool-native bmaptool copy ./tmp/deploy/images/qemux86-64-core-image-minimal-<replaceable>machine</replaceable>.wic /dev/sd<replaceable>X</replaceable>
</literallayout>
</para></listitem>
<listitem><para>
If you do not have write access to
the media, use the following
commands:
<literallayout class='monospaced'>
$ sudo bash
$ PATH=tmp/sysroots/x86_64-linux/usr/bin/ bmaptool copy ./tmp/deploy/images/qemux86-64/core-image-minimal-<replaceable>machine</replaceable>.wic /dev/sd<replaceable>X</replaceable>
</literallayout>
<note>
If you are using Ubuntu or Debian distributions,
you can install the
<filename>bmap-tools</filename> package using the
following command and then use the tool
without specifying
<filename>PATH</filename> even from the
root account:
<literallayout class='monospaced'>
$ sudo apt-get install bmap-tools
</literallayout>
</note>
</para></listitem>
</itemizedlist>
</para></listitem>
</orderedlist>
</para>
<para>
For help on the <filename>bmaptool</filename> command, use the
following command:
<literallayout class='monospaced'>
$ bmaptool --help
</literallayout>
</para>
</section>
<section id='using-pre-built-binaries-and-qemu'>
<title>Using Pre-Built Binaries and QEMU</title>
<para>
Another option you have to get started is to use pre-built binaries.
The Yocto Project provides many types of binaries with each release.
See the "<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>"
chapter in the Yocto Project Reference Manual
for descriptions of the types of binaries that ship with a Yocto Project
release.
</para>
<para>
Using a pre-built binary is ideal for developing software
applications to run on your target hardware.
To do this, you need to be able to access the appropriate
cross-toolchain tarball for the architecture on which you are
developing.
If you are using an SDK type image, the image ships with the complete
toolchain native to the architecture (i.e. a toolchain designed to
run on the
<ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>).
If you are not using an SDK type image, you need to separately download
and install the stand-alone Yocto Project cross-toolchain tarball.
See the
"<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-appendix-obtain'>Obtaining the SDK</ulink>"
appendix in the Yocto Project Software Development Kit (SDK)
Developer's Guide for more information on locating and installing
cross-toolchains.
</para>
<para>
Regardless of the type of image you are using, you need to download the pre-built kernel
that you will boot in the QEMU emulator and then download and extract the target root
filesystem for your target machine’s architecture.
You can get architecture-specific binaries and file systems from
<ulink url='&YOCTO_MACHINES_DL_URL;'>machines</ulink>.
You can get installation scripts for stand-alone toolchains from
<ulink url='&YOCTO_TOOLCHAIN_DL_URL;'>toolchains</ulink>.
Once you have all your files, you set up the environment to emulate the hardware
by sourcing an environment setup script.
Finally, you start the QEMU emulator.
You can find details on all these steps in the
<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-manual'>Yocto Project Software Development Kit (SDK) Developer's Guide</ulink>.
You can learn more about using QEMU with the Yocto Project in the
"<link linkend='dev-manual-qemu'>Using the Quick EMUlator (QEMU)</link>"
section.
</para>
<para>
Using QEMU to emulate your hardware can result in speed issues
depending on the target and host architecture mix.
For example, using the <filename>qemux86</filename> image in the emulator
on an Intel-based 32-bit (x86) host machine is fast because the target and
host architectures match.
On the other hand, using the <filename>qemuarm</filename> image on the same Intel-based
host can be slower.
But, you still achieve faithful emulation of ARM-specific issues.
</para>
<para>
To speed things up, the QEMU images support using <filename>distcc</filename>
to call a cross-compiler outside the emulated system.
If you used <filename>runqemu</filename> to start QEMU, and the
<filename>distccd</filename> application is present on the host system, any
BitBake cross-compiling toolchain available from the build system is automatically
used from within QEMU simply by calling <filename>distcc</filename>.
You can accomplish this by defining the cross-compiler variable
(e.g. <filename>export CC="distcc"</filename>).
Alternatively, if you are using a suitable SDK image or the appropriate
stand-alone toolchain is present,
the toolchain is also automatically used.
</para>
<note>
Several mechanisms exist that let you connect to the system running on the
QEMU emulator:
<itemizedlist>
<listitem><para>QEMU provides a framebuffer interface that makes standard
consoles available.</para></listitem>
<listitem><para>Generally, headless embedded devices have a serial port.
If so, you can configure the operating system of the running image
to use that port to run a console.
The connection uses standard IP networking.</para></listitem>
<listitem><para>
SSH servers exist in some QEMU images.
The <filename>core-image-sato</filename> QEMU image has a
Dropbear secure shell (SSH) server that runs with the root
password disabled.
The <filename>core-image-full-cmdline</filename> and
<filename>core-image-lsb</filename> QEMU images
have OpenSSH instead of Dropbear.
Including these SSH servers allow you to use standard
<filename>ssh</filename> and <filename>scp</filename> commands.
The <filename>core-image-minimal</filename> QEMU image,
however, contains no SSH server.
</para></listitem>
<listitem><para>You can use a provided, user-space NFS server to boot the QEMU session
using a local copy of the root filesystem on the host.
In order to make this connection, you must extract a root filesystem tarball by using the
<filename>runqemu-extract-sdk</filename> command.
After running the command, you must then point the <filename>runqemu</filename>
script to the extracted directory instead of a root filesystem image file.</para></listitem>
</itemizedlist>
</note>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->
|