1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
<chapter id='dev-manual-newbie'>
<title>The Yocto Project Open Source Development Environment</title>
<para>
This chapter helps you understand the Yocto Project as an open source development project.
In general, working in an open source environment is very different from working in a
closed, proprietary environment.
Additionally, the Yocto Project uses specific tools and constructs as part of its development
environment.
This chapter specifically addresses open source philosophy, using the
Yocto Project in a team environment, source repositories, Yocto Project
terms, licensing, the open source distributed version control system Git,
workflows, bug tracking, and how to submit changes.
</para>
<section id='open-source-philosophy'>
<title>Open Source Philosophy</title>
<para>
Open source philosophy is characterized by software development directed by peer production
and collaboration through an active community of developers.
Contrast this to the more standard centralized development models used by commercial software
companies where a finite set of developers produces a product for sale using a defined set
of procedures that ultimately result in an end product whose architecture and source material
are closed to the public.
</para>
<para>
Open source projects conceptually have differing concurrent agendas, approaches, and production.
These facets of the development process can come from anyone in the public (community) that has a
stake in the software project.
The open source environment contains new copyright, licensing, domain, and consumer issues
that differ from the more traditional development environment.
In an open source environment, the end product, source material, and documentation are
all available to the public at no cost.
</para>
<para>
A benchmark example of an open source project is the Linux kernel, which was initially conceived
and created by Finnish computer science student Linus Torvalds in 1991.
Conversely, a good example of a non-open source project is the
<trademark class='registered'>Windows</trademark> family of operating
systems developed by <trademark class='registered'>Microsoft</trademark> Corporation.
</para>
<para>
Wikipedia has a good historical description of the Open Source Philosophy
<ulink url='http://en.wikipedia.org/wiki/Open_source'>here</ulink>.
You can also find helpful information on how to participate in the Linux Community
<ulink url='http://ldn.linuxfoundation.org/book/how-participate-linux-community'>here</ulink>.
</para>
</section>
<section id="usingpoky-changes-collaborate">
<title>Using the Yocto Project in a Team Environment</title>
<para>
It might not be immediately clear how you can use the Yocto
Project in a team environment, or scale it for a large team of
developers.
One of the strengths of the Yocto Project is that it is extremely
flexible.
Thus, you can adapt it to many different use cases and scenarios.
However, these characteristics can cause a struggle if you are trying
to create a working setup that scales across a large team.
</para>
<para>
To help with these types of situations, this section presents
some of the project's most successful experiences,
practices, solutions, and available technologies that work well.
Keep in mind, the information here is a starting point.
You can build off it and customize it to fit any
particular working environment and set of practices.
</para>
<section id='best-practices-system-configurations'>
<title>System Configurations</title>
<para>
Systems across a large team should meet the needs of
two types of developers: those working on the contents of the
operating system image itself and those developing applications.
Regardless of the type of developer, their workstations must
be both reasonably powerful and run Linux.
</para>
<section id='best-practices-application-development'>
<title>Application Development</title>
<para>
For developers who mainly do application level work
on top of an existing software stack,
here are some practices that work best:
<itemizedlist>
<listitem><para>Use a pre-built toolchain that
contains the software stack itself.
Then, develop the application code on top of the
stack.
This method works well for small numbers of relatively
isolated applications.</para></listitem>
<listitem><para>When possible, use the Yocto Project
plug-in for the <trademark class='trade'>Eclipse</trademark> IDE
and other pieces of Application Development
Technology (ADT).
For more information, see the
"<link linkend='application-development-workflow'>Application
Development Workflow</link>" section as well as the
<ulink url='&YOCTO_DOCS_ADT_URL;'>Yocto Project Application Developer's Guide</ulink>.
</para></listitem>
<listitem><para>Keep your cross-development toolchains
updated.
You can do this through provisioning either as new
toolchain downloads or as updates through a package
update mechanism using <filename>opkg</filename>
to provide updates to an existing toolchain.
The exact mechanics of how and when to do this are a
question for local policy.</para></listitem>
<listitem><para>Use multiple toolchains installed locally
into different locations to allow development across
versions.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='best-practices-core-system-development'>
<title>Core System Development</title>
<para>
For core system development, it is often best to have the
build system itself available on the developer workstations
so developers can run their own builds and directly
rebuild the software stack.
You should keep the core system unchanged as much as
possible and do your work in layers on top of the core system.
Doing so gives you a greater level of portability when
upgrading to new versions of the core system or Board
Support Packages (BSPs).
You can share layers amongst the developers of a particular
project and contain the policy configuration that defines
the project.
</para>
<para>
Aside from the previous best practices, there exists a number
of tips and tricks that can help speed up core development
projects:
<itemizedlist>
<listitem><para>Use a
<ulink url='&YOCTO_DOCS_REF_URL;#shared-state-cache'>Shared State Cache</ulink>
(sstate) among groups of developers who are on a
fast network.
The best way to share sstate is through a
Network File System (NFS) share.
The first user to build a given component for the
first time contributes that object to the sstate,
while subsequent builds from other developers then
reuse the object rather than rebuild it themselves.
</para>
<para>Although it is possible to use other protocols for the
sstate such as HTTP and FTP, you should avoid these.
Using HTTP limits the sstate to read-only and
FTP provides poor performance.
</para></listitem>
<listitem><para>Have autobuilders contribute to the sstate
pool similarly to how the developer workstations
contribute.
For information, see the
"<link linkend='best-practices-autobuilders'>Autobuilders</link>"
section.</para></listitem>
<listitem><para>Build stand-alone tarballs that contain
"missing" system requirements if for some reason
developer workstations do not meet minimum system
requirements such as latest Python versions,
<filename>chrpath</filename>, or other tools.
You can install and relocate the tarball exactly as you
would the usual cross-development toolchain so that
all developers can meet minimum version requirements
on most distributions.</para></listitem>
<listitem><para>Use a small number of shared,
high performance systems for testing purposes
(e.g. dual, six-core Xeons with 24 Gbytes of RAM
and plenty of disk space).
Developers can use these systems for wider, more
extensive testing while they continue to develop
locally using their primary development system.
</para></listitem>
<listitem><para>Enable the PR Service when package feeds
need to be incremental with continually increasing
<ulink url='&YOCTO_DOCS_REF_URL;#var-PR'>PR</ulink>
values.
Typically, this situation occurs when you use or
publish package feeds and use a shared state.
You should enable the PR Service for all users who
use the shared state pool.
For more information on the PR Service, see the
"<link linkend='working-with-a-pr-service'>Working With a PR Service</link>".
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
<section id='best-practices-source-control-management'>
<title>Source Control Management (SCM)</title>
<para>
Keeping your
<ulink url='&YOCTO_DOCS_DEV_URL;#metadata'>Metadata</ulink>
and any software you are developing under the
control of an SCM system that is compatible
with the OpenEmbedded build system is advisable.
Of the SCMs BitBake supports, the
Yocto Project team strongly recommends using
<link linkend='git'>Git</link>.
Git is a distributed system that is easy to backup,
allows you to work remotely, and then connects back to the
infrastructure.
<note>
For information about BitBake, see the
<ulink url='&YOCTO_DOCS_BB_URL;'>BitBake User Manual</ulink>.
</note>
</para>
<para>
It is relatively easy to set up Git services and create
infrastructure like
<ulink url='&YOCTO_GIT_URL;'>http://git.yoctoproject.org</ulink>,
which is based on server software called
<filename>gitolite</filename> with <filename>cgit</filename>
being used to generate the web interface that lets you view the
repositories.
The <filename>gitolite</filename> software identifies users
using SSH keys and allows branch-based
access controls to repositories that you can control as little
or as much as necessary.
</para>
<note>
The setup of these services is beyond the scope of this manual.
However, sites such as these exist that describe how to perform
setup:
<itemizedlist>
<listitem><para><ulink url='http://git-scm.com/book/ch4-8.html'>Git documentation</ulink>:
Describes how to install <filename>gitolite</filename>
on the server.</para></listitem>
<listitem><para><ulink url='http://sitaramc.github.com/gitolite/master-toc.html'>The <filename>gitolite</filename> master index</ulink>:
All topics for <filename>gitolite</filename>.
</para></listitem>
<listitem><para><ulink url='https://git.wiki.kernel.org/index.php/Interfaces,_frontends,_and_tools'>Interfaces, frontends, and tools</ulink>:
Documentation on how to create interfaces and frontends
for Git.</para></listitem>
</itemizedlist>
</note>
</section>
<section id='best-practices-autobuilders'>
<title>Autobuilders</title>
<para>
Autobuilders are often the core of a development project.
It is here that changes from individual developers are brought
together and centrally tested and subsequent decisions about
releases can be made.
Autobuilders also allow for "continuous integration" style
testing of software components and regression identification
and tracking.
</para>
<para>
See "<ulink url='http://autobuilder.yoctoproject.org'>Yocto Project Autobuilder</ulink>"
for more information and links to buildbot.
The Yocto Project team has found this implementation
works well in this role.
A public example of this is the Yocto Project
Autobuilders, which we use to test the overall health of the
project.
</para>
<para>
The features of this system are:
<itemizedlist>
<listitem><para>Highlights when commits break the build.
</para></listitem>
<listitem><para>Populates an sstate cache from which
developers can pull rather than requiring local
builds.</para></listitem>
<listitem><para>Allows commit hook triggers,
which trigger builds when commits are made.
</para></listitem>
<listitem><para>Allows triggering of automated image booting
and testing under the QuickEMUlator (QEMU).
</para></listitem>
<listitem><para>Supports incremental build testing and
from-scratch builds.</para></listitem>
<listitem><para>Shares output that allows developer
testing and historical regression investigation.
</para></listitem>
<listitem><para>Creates output that can be used for releases.
</para></listitem>
<listitem><para>Allows scheduling of builds so that resources
can be used efficiently.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='best-practices-policies-and-change-flow'>
<title>Policies and Change Flow</title>
<para>
The Yocto Project itself uses a hierarchical structure and a
pull model.
Scripts exist to create and send pull requests
(i.e. <filename>create-pull-request</filename> and
<filename>send-pull-request</filename>).
This model is in line with other open source projects where
maintainers are responsible for specific areas of the project
and a single maintainer handles the final "top-of-tree" merges.
</para>
<note>
You can also use a more collective push model.
The <filename>gitolite</filename> software supports both the
push and pull models quite easily.
</note>
<para>
As with any development environment, it is important
to document the policy used as well as any main project
guidelines so they are understood by everyone.
It is also a good idea to have well structured
commit messages, which are usually a part of a project's
guidelines.
Good commit messages are essential when looking back in time and
trying to understand why changes were made.
</para>
<para>
If you discover that changes are needed to the core layer of the
project, it is worth sharing those with the community as soon
as possible.
Chances are if you have discovered the need for changes, someone
else in the community needs them also.
</para>
</section>
<section id='best-practices-summary'>
<title>Summary</title>
<para>
This section summarizes the key recommendations described in the
previous sections:
<itemizedlist>
<listitem><para>Use <link linkend='git'>Git</link>
as the source control system.</para></listitem>
<listitem><para>Maintain your Metadata in layers that make sense
for your situation.
See the "<link linkend='understanding-and-creating-layers'>Understanding
and Creating Layers</link>" section for more information on
layers.</para></listitem>
<listitem><para>
Separate the project's Metadata and code by using
separate Git repositories.
See the
"<link linkend='yocto-project-repositories'>Yocto Project Source Repositories</link>"
section for information on these repositories.
See the
"<link linkend='getting-setup'>Getting Set Up</link>"
section for information on how to set up local Git
repositories for related upstream Yocto Project
Git repositories.
</para></listitem>
<listitem><para>Set up the directory for the shared state cache
(<ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_DIR'><filename>SSTATE_DIR</filename></ulink>)
where it makes sense.
For example, set up the sstate cache on a system used
by developers in the same organization and share the
same source directories on their machines.
</para></listitem>
<listitem><para>Set up an Autobuilder and have it populate the
sstate cache and source directories.</para></listitem>
<listitem><para>The Yocto Project community encourages you
to send patches to the project to fix bugs or add features.
If you do submit patches, follow the project commit
guidelines for writing good commit messages.
See the "<link linkend='how-to-submit-a-change'>How to Submit a Change</link>"
section.</para></listitem>
<listitem><para>Send changes to the core sooner than later
as others are likely to run into the same issues.
For some guidance on mailing lists to use, see the list in the
"<link linkend='how-to-submit-a-change'>How to Submit a Change</link>"
section.
For a description of the available mailing lists, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#resources-mailinglist'>Mailing Lists</ulink>"
section in the Yocto Project Reference Manual.
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
<section id='yocto-project-repositories'>
<title>Yocto Project Source Repositories</title>
<para>
The Yocto Project team maintains complete source repositories for all
Yocto Project files at
<ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi'></ulink>.
This web-based source code browser is organized into categories by
function such as IDE Plugins, Matchbox, Poky, Yocto Linux Kernel, and
so forth.
From the interface, you can click on any particular item in the "Name"
column and see the URL at the bottom of the page that you need to clone
a Git repository for that particular item.
Having a local Git repository of the
<link linkend='source-directory'>Source Directory</link>, which is
usually named "poky", allows
you to make changes, contribute to the history, and ultimately enhance
the Yocto Project's tools, Board Support Packages, and so forth.
</para>
<para>
For any supported release of Yocto Project, you can also go to the
<ulink url='&YOCTO_HOME_URL;'>Yocto Project Website</ulink> and
select the "Downloads" tab and get a released tarball of the
<filename>poky</filename> repository or any supported BSP tarballs.
Unpacking these tarballs gives you a snapshot of the released
files.
<note><title>Notes</title>
<itemizedlist>
<listitem><para>
The recommended method for setting up the Yocto Project
<link linkend='source-directory'>Source Directory</link>
and the files for supported BSPs
(e.g., <filename>meta-intel</filename>) is to use
<link linkend='git'>Git</link> to create a local copy of
the upstream repositories.
</para></listitem>
<listitem><para>
Be sure to always work in matching branches for both
the selected BSP repository and the
<link linkend='source-directory'>Source Directory</link>
(i.e. <filename>poky</filename>) repository.
For example, if you have checked out the "master" branch
of <filename>poky</filename> and you are going to use
<filename>meta-intel</filename>, be sure to checkout the
"master" branch of <filename>meta-intel</filename>.
</para></listitem>
</itemizedlist>
</note>
</para>
<para>
In summary, here is where you can get the project files needed for development:
<itemizedlist>
<listitem><para id='source-repositories'><emphasis><ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi'>Source Repositories:</ulink></emphasis>
This area contains IDE Plugins, Matchbox, Poky, Poky Support, Tools, Yocto Linux Kernel, and Yocto
Metadata Layers.
You can create local copies of Git repositories for each of these areas.</para>
<para>
<imagedata fileref="figures/source-repos.png" align="center" width="6in" depth="4in" />
</para></listitem>
<listitem><para><anchor id='index-downloads' /><emphasis><ulink url='&YOCTO_DL_URL;/releases/'>Index of /releases:</ulink></emphasis>
This is an index of releases such as
the <trademark class='trade'>Eclipse</trademark>
Yocto Plug-in, miscellaneous support, Poky, Pseudo, installers for cross-development toolchains,
and all released versions of Yocto Project in the form of images or tarballs.
Downloading and extracting these files does not produce a local copy of the
Git repository but rather a snapshot of a particular release or image.</para>
<para>
<imagedata fileref="figures/index-downloads.png" align="center" width="6in" depth="3.5in" />
</para></listitem>
<listitem><para><emphasis>"Downloads" page for the
<ulink url='&YOCTO_HOME_URL;'>Yocto Project Website</ulink>:</emphasis>
Access this page by going to the website and then selecting
the "Downloads" tab.
This page allows you to download any Yocto Project
release or Board Support Package (BSP) in tarball form.
The tarballs are similar to those found in the
<ulink url='&YOCTO_DL_URL;/releases/'>Index of /releases:</ulink> area.</para>
<para>
<imagedata fileref="figures/yp-download.png" align="center" width="6in" depth="4in" />
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='yocto-project-terms'>
<title>Yocto Project Terms</title>
<para>
Following is a list of terms and definitions users new to the Yocto Project development
environment might find helpful.
While some of these terms are universal, the list includes them just in case:
<itemizedlist>
<listitem><para><emphasis>Append Files:</emphasis> Files that append build information to
a recipe file.
Append files are known as BitBake append files and <filename>.bbappend</filename> files.
The OpenEmbedded build system expects every append file to have a corresponding
recipe (<filename>.bb</filename>) file.
Furthermore, the append file and corresponding recipe file
must use the same root filename.
The filenames can differ only in the file type suffix used (e.g.
<filename>formfactor_0.0.bb</filename> and <filename>formfactor_0.0.bbappend</filename>).
</para>
<para>Information in append files extends or overrides the
information in the similarly-named recipe file.
For an example of an append file in use, see the
"<link linkend='using-bbappend-files'>Using .bbappend Files</link>" section.
<note>
Append files can also use wildcard patterns in their version numbers
so they can be applied to more than one version of the underlying recipe file.
</note>
</para></listitem>
<listitem><para id='bitbake-term'><emphasis>BitBake:</emphasis>
The task executor and scheduler used by the OpenEmbedded build
system to build images.
For more information on BitBake, see the
<ulink url='&YOCTO_DOCS_BB_URL;'>BitBake User Manual</ulink>.
</para></listitem>
<listitem>
<para id='build-directory'><emphasis>Build Directory:</emphasis>
This term refers to the area used by the OpenEmbedded build
system for builds.
The area is created when you <filename>source</filename> the
setup environment script that is found in the Source Directory
(i.e. <ulink url='&YOCTO_DOCS_REF_URL;#structure-core-script'><filename>&OE_INIT_FILE;</filename></ulink>
or
<ulink url='&YOCTO_DOCS_REF_URL;#structure-memres-core-script'><filename>oe-init-build-env-memres</filename></ulink>).
The <ulink url='&YOCTO_DOCS_REF_URL;#var-TOPDIR'><filename>TOPDIR</filename></ulink>
variable points to the Build Directory.</para>
<para>
You have a lot of flexibility when creating the Build
Directory.
Following are some examples that show how to create the
directory.
The examples assume your
<link linkend='source-directory'>Source Directory</link> is
named <filename>poky</filename>:
<itemizedlist>
<listitem><para>Create the Build Directory inside your
Source Directory and let the name of the Build
Directory default to <filename>build</filename>:
<literallayout class='monospaced'>
$ cd $HOME/poky
$ source &OE_INIT_FILE;
</literallayout></para></listitem>
<listitem><para>Create the Build Directory inside your
home directory and specifically name it
<filename>test-builds</filename>:
<literallayout class='monospaced'>
$ cd $HOME
$ source poky/&OE_INIT_FILE; test-builds
</literallayout></para></listitem>
<listitem><para>
Provide a directory path and
specifically name the Build Directory.
Any intermediate folders in the pathname must
exist.
This next example creates a Build Directory named
<filename>YP-&POKYVERSION;</filename>
in your home directory within the existing
directory <filename>mybuilds</filename>:
<literallayout class='monospaced'>
$cd $HOME
$ source $HOME/poky/&OE_INIT_FILE; $HOME/mybuilds/YP-&POKYVERSION;
</literallayout></para></listitem>
</itemizedlist>
<note>
By default, the Build Directory contains
<ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>,
which is a temporary directory the build system uses for
its work.
<filename>TMPDIR</filename> cannot be under NFS.
Thus, by default, the Build Directory cannot be under NFS.
However, if you need the Build Directory to be under NFS,
you can set this up by setting <filename>TMPDIR</filename>
in your <filename>local.conf</filename> file
to use a local drive.
Doing so effectively separates <filename>TMPDIR</filename>
from <filename>TOPDIR</filename>, which is the Build
Directory.
</note>
</para></listitem>
<listitem><para id='build-system-term'><emphasis>Build System:</emphasis>
In the context of the Yocto Project,
this term refers to the OpenEmbedded build system used by the project.
This build system is based on the project known as "Poky."
For some historical information about Poky, see the
<link linkend='poky'>Poky</link> term.
</para></listitem>
<listitem><para><emphasis>Classes:</emphasis> Files that provide for logic encapsulation
and inheritance so that commonly used patterns can be defined once and then easily used
in multiple recipes.
For reference information on the Yocto Project classes, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes'>Classes</ulink>" chapter of the
Yocto Project Reference Manual.
Class files end with the <filename>.bbclass</filename> filename extension.
</para></listitem>
<listitem><para><emphasis>Configuration File:</emphasis>
Configuration information in various <filename>.conf</filename>
files provides global definitions of variables.
The <filename>conf/local.conf</filename> configuration file in
the
<link linkend='build-directory'>Build Directory</link>
contains user-defined variables that affect every build.
The <filename>meta-yocto/conf/distro/poky.conf</filename>
configuration file defines Yocto "distro" configuration
variables used only when building with this policy.
Machine configuration files, which
are located throughout the
<link linkend='source-directory'>Source Directory</link>, define
variables for specific hardware and are only used when building
for that target (e.g. the
<filename>machine/beaglebone.conf</filename> configuration
file defines variables for the Texas Instruments ARM Cortex-A8
development board).
Configuration files end with a <filename>.conf</filename>
filename extension.
</para></listitem>
<listitem><para id='cross-development-toolchain'>
<emphasis>Cross-Development Toolchain:</emphasis>
In general, a cross-development toolchain is a collection of
software development tools and utilities that run on one
architecture and allow you to develop software for a
different, or targeted, architecture.
These toolchains contain cross-compilers, linkers, and
debuggers that are specific to the target architecture.
</para>
<para>The Yocto Project supports two different cross-development
toolchains:
<itemizedlist>
<listitem><para>A toolchain only used by and within
BitBake when building an image for a target
architecture.</para></listitem>
<listitem><para>A relocatable toolchain used outside of
BitBake by developers when developing applications
that will run on a targeted device.
Sometimes this relocatable cross-development
toolchain is referred to as the meta-toolchain.
</para></listitem>
</itemizedlist>
</para>
<para>
Creation of these toolchains is simple and automated.
For information on toolchain concepts as they apply to the
Yocto Project, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#cross-development-toolchain-generation'>Cross-Development Toolchain Generation</ulink>"
section in the Yocto Project Reference Manual.
You can also find more information on using the
relocatable toolchain in the
<ulink url='&YOCTO_DOCS_ADT_URL;'>Yocto Project
Application Developer's Guide</ulink>.
</para></listitem>
<listitem><para><emphasis>Image:</emphasis>
An image is an artifact of the BitBake build process given
a collection of recipes and related Metadata.
Images are the binary output that run on specific hardware or
QEMU and are used for specific use-cases.
For a list of the supported image types that the Yocto Project provides, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>"
chapter in the Yocto Project Reference Manual.</para></listitem>
<listitem><para id='layer'><emphasis>Layer:</emphasis> A collection of recipes representing the core,
a BSP, or an application stack.
For a discussion specifically on BSP Layers, see the
"<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-layers'>BSP Layers</ulink>"
section in the Yocto Project Board Support Packages (BSP)
Developer's Guide.</para></listitem>
<listitem><para id='meta-toolchain'><emphasis>Meta-Toolchain:</emphasis>
A term sometimes used for
<link linkend='cross-development-toolchain'>Cross-Development Toolchain</link>.
</para></listitem>
<listitem><para id='metadata'><emphasis>Metadata:</emphasis>
The files that BitBake parses when building an image.
In general, Metadata includes recipes, classes, and
configuration files.
In the context of the kernel ("kernel Metadata"),
it refers to Metadata in the <filename>meta</filename>
branches of the kernel source Git repositories.
</para></listitem>
<listitem><para id='oe-core'><emphasis>OE-Core:</emphasis> A core set of Metadata originating
with OpenEmbedded (OE) that is shared between OE and the Yocto Project.
This Metadata is found in the <filename>meta</filename> directory of the
<link linkend='source-directory'>Source Directory</link>.</para></listitem>
<listitem><para><emphasis>Package:</emphasis>
In the context of the Yocto Project, this term refers to a
recipe's packaged output produced by BitBake (i.e. a
"baked recipe").
A package is generally the compiled binaries produced from the
recipe's sources.
You "bake" something by running it through BitBake.</para>
<para>It is worth noting that the term "package" can, in general, have subtle
meanings. For example, the packages referred to in the
"<ulink url='&YOCTO_DOCS_QS_URL;#packages'>The Packages</ulink>" section are
compiled binaries that, when installed, add functionality to your Linux
distribution.</para>
<para>Another point worth noting is that historically within the Yocto Project,
recipes were referred to as packages - thus, the existence of several BitBake
variables that are seemingly mis-named,
(e.g. <ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-PV'><filename>PV</filename></ulink>, and
<ulink url='&YOCTO_DOCS_REF_URL;#var-PE'><filename>PE</filename></ulink>).
</para></listitem>
<listitem><para><emphasis>Package Groups:</emphasis>
Arbitrary groups of software Recipes.
You use package groups to hold recipes that, when built,
usually accomplish a single task.
For example, a package group could contain the recipes for a
company’s proprietary or value-add software.
Or, the package group could contain the recipes that enable
graphics.
A package group is really just another recipe.
Because package group files are recipes, they end with the
<filename>.bb</filename> filename extension.</para></listitem>
<listitem><para id='poky'><emphasis>Poky:</emphasis> The term "poky" can mean several things.
In its most general sense, it is an open-source project that was initially developed
by OpenedHand. With OpenedHand, poky was developed off of the existing OpenEmbedded
build system becoming a build system for embedded images.
After Intel Corporation acquired OpenedHand, the project poky became the basis for
the Yocto Project's build system.</para>
<para>
Within the Yocto Project source repositories, <filename>poky</filename>
exists as a separate Git repository
that can be cloned to yield a local copy on the host system.
Thus, "poky" can refer to the local copy of the Source Directory used to develop within
the Yocto Project.</para></listitem>
<listitem><para><emphasis>Recipe:</emphasis>
A set of instructions for building packages.
A recipe describes where you get source code, which patches
to apply, how to configure the source, how to compile it and so on.
Recipes also describe dependencies for libraries or for other
recipes.
Recipes represent the logical unit of execution, the software
to build, the images to build, and use the
<filename>.bb</filename> file extension.
</para></listitem>
<listitem>
<para id='source-directory'><emphasis>Source Directory:</emphasis>
This term refers to the directory structure created as a result
of creating a local copy of the <filename>poky</filename> Git
repository <filename>git://git.yoctoproject.org/poky</filename>
or expanding a released <filename>poky</filename> tarball.
<note>
Creating a local copy of the <filename>poky</filename>
Git repository is the recommended method for setting up
your Source Directory.
</note>
Sometimes you might hear the term "poky directory" used to refer
to this directory structure.
<note>
The OpenEmbedded build system does not support file or
directory names that contain spaces.
Be sure that the Source Directory you use does not contain
these types of names.
</note></para>
<para>The Source Directory contains BitBake, Documentation,
Metadata and other files that all support the Yocto Project.
Consequently, you must have the Source Directory in place on
your development system in order to do any development using
the Yocto Project.</para>
<para>When you create a local copy of the Git repository, you
can name the repository anything you like.
Throughout much of the documentation, "poky"
is used as the name of the top-level folder of the local copy of
the poky Git repository.
So, for example, cloning the <filename>poky</filename> Git
repository results in a local Git repository whose top-level
folder is also named "poky".</para>
<para>While it is not recommended that you use tarball expansion
to set up the Source Directory, if you do, the top-level
directory name of the Source Directory is derived from the
Yocto Project release tarball.
For example, downloading and unpacking
<filename>&YOCTO_POKY_TARBALL;</filename> results in a
Source Directory whose root folder is named
<filename>&YOCTO_POKY;</filename>.</para>
<para>It is important to understand the differences between the
Source Directory created by unpacking a released tarball as
compared to cloning
<filename>git://git.yoctoproject.org/poky</filename>.
When you unpack a tarball, you have an exact copy of the files
based on the time of release - a fixed release point.
Any changes you make to your local files in the Source Directory
are on top of the release and will remain local only.
On the other hand, when you clone the <filename>poky</filename>
Git repository, you have an active development repository with
access to the upstream repository's branches and tags.
In this case, any local changes you make to the local
Source Directory can be later applied to active development
branches of the upstream <filename>poky</filename> Git
repository.</para>
<para>For more information on concepts related to Git
repositories, branches, and tags, see the
"<link linkend='repositories-tags-and-branches'>Repositories, Tags, and Branches</link>"
section.</para></listitem>
<listitem><para><emphasis>Task:</emphasis>
A unit of execution for BitBake (e.g.
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-compile'><filename>do_compile</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-fetch'><filename>do_fetch</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-patch'><filename>do_patch</filename></ulink>,
and so forth).
</para></listitem>
<listitem><para><emphasis>Upstream:</emphasis> A reference to source code or repositories
that are not local to the development system but located in a master area that is controlled
by the maintainer of the source code.
For example, in order for a developer to work on a particular piece of code, they need to
first get a copy of it from an "upstream" source.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='licensing'>
<title>Licensing</title>
<para>
Because open source projects are open to the public, they have different licensing structures in place.
License evolution for both Open Source and Free Software has an interesting history.
If you are interested in this history, you can find basic information here:
<itemizedlist>
<listitem><para><ulink url='http://en.wikipedia.org/wiki/Open-source_license'>Open source license history</ulink>
</para></listitem>
<listitem><para><ulink url='http://en.wikipedia.org/wiki/Free_software_license'>Free software license
history</ulink></para></listitem>
</itemizedlist>
</para>
<para>
In general, the Yocto Project is broadly licensed under the Massachusetts Institute of Technology
(MIT) License.
MIT licensing permits the reuse of software within proprietary software as long as the
license is distributed with that software.
MIT is also compatible with the GNU General Public License (GPL).
Patches to the Yocto Project follow the upstream licensing scheme.
You can find information on the MIT license
<ulink url='http://www.opensource.org/licenses/mit-license.php'>here</ulink>.
You can find information on the GNU GPL <ulink url='http://www.opensource.org/licenses/LGPL-3.0'>
here</ulink>.
</para>
<para>
When you build an image using the Yocto Project, the build process uses a
known list of licenses to ensure compliance.
You can find this list in the
<link linkend='source-directory'>Source Directory</link> at
<filename>meta/files/common-licenses</filename>.
Once the build completes, the list of all licenses found and used during that build are
kept in the
<link linkend='build-directory'>Build Directory</link> at
<filename>tmp/deploy/licenses</filename>.
</para>
<para>
If a module requires a license that is not in the base list, the build process
generates a warning during the build.
These tools make it easier for a developer to be certain of the licenses with which
their shipped products must comply.
However, even with these tools it is still up to the developer to resolve potential licensing issues.
</para>
<para>
The base list of licenses used by the build process is a combination of the Software Package
Data Exchange (SPDX) list and the Open Source Initiative (OSI) projects.
<ulink url='http://spdx.org'>SPDX Group</ulink> is a working group of the Linux Foundation
that maintains a specification
for a standard format for communicating the components, licenses, and copyrights
associated with a software package.
<ulink url='http://opensource.org'>OSI</ulink> is a corporation dedicated to the Open Source
Definition and the effort for reviewing and approving licenses that
conform to the Open Source Definition (OSD).
</para>
<para>
You can find a list of the combined SPDX and OSI licenses that the
Yocto Project uses in the
<filename>meta/files/common-licenses</filename> directory in your
<link linkend='source-directory'>Source Directory</link>.
</para>
<para>
For information that can help you maintain compliance with various
open source licensing during the lifecycle of a product created using
the Yocto Project, see the
"<link linkend='maintaining-open-source-license-compliance-during-your-products-lifecycle'>Maintaining Open Source License Compliance During Your Product's Lifecycle</link>"
section.
</para>
</section>
<section id='git'>
<title>Git</title>
<para>
The Yocto Project makes extensive use of Git,
which is a free, open source distributed version control system.
Git supports distributed development, non-linear development, and can handle large projects.
It is best that you have some fundamental understanding of how Git tracks projects and
how to work with Git if you are going to use the Yocto Project for development.
This section provides a quick overview of how Git works and provides you with a summary
of some essential Git commands.
</para>
<para>
For more information on Git, see
<ulink url='http://git-scm.com/documentation'></ulink>.
If you need to download Git, go to <ulink url='http://git-scm.com/download'></ulink>.
</para>
<section id='repositories-tags-and-branches'>
<title>Repositories, Tags, and Branches</title>
<para>
As mentioned earlier in the section
"<link linkend='yocto-project-repositories'>Yocto Project Source Repositories</link>",
the Yocto Project maintains source repositories at
<ulink url='&YOCTO_GIT_URL;/cgit.cgi'></ulink>.
If you look at this web-interface of the repositories, each item is a separate
Git repository.
</para>
<para>
Git repositories use branching techniques that track content change (not files)
within a project (e.g. a new feature or updated documentation).
Creating a tree-like structure based on project divergence allows for excellent historical
information over the life of a project.
This methodology also allows for an environment from which you can do lots of
local experimentation on projects as you develop changes or new features.
</para>
<para>
A Git repository represents all development efforts for a given project.
For example, the Git repository <filename>poky</filename> contains all changes
and developments for Poky over the course of its entire life.
That means that all changes that make up all releases are captured.
The repository maintains a complete history of changes.
</para>
<para>
You can create a local copy of any repository by "cloning" it with the Git
<filename>clone</filename> command.
When you clone a Git repository, you end up with an identical copy of the
repository on your development system.
Once you have a local copy of a repository, you can take steps to develop locally.
For examples on how to clone Git repositories, see the
"<link linkend='getting-setup'>Getting Set Up</link>" section.
</para>
<para>
It is important to understand that Git tracks content change and
not files.
Git uses "branches" to organize different development efforts.
For example, the <filename>poky</filename> repository has
<filename>denzil</filename>, <filename>danny</filename>,
<filename>dylan</filename>, <filename>dora</filename>,
<filename>daisy</filename>, and <filename>master</filename> branches
among others.
You can see all the branches by going to
<ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/'></ulink> and
clicking on the
<filename><ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/refs/heads'>[...]</ulink></filename>
link beneath the "Branch" heading.
</para>
<para>
Each of these branches represents a specific area of development.
The <filename>master</filename> branch represents the current or most recent
development.
All other branches represent offshoots of the <filename>master</filename>
branch.
</para>
<para>
When you create a local copy of a Git repository, the copy has the same set
of branches as the original.
This means you can use Git to create a local working area (also called a branch)
that tracks a specific development branch from the source Git repository.
in other words, you can define your local Git environment to work on any development
branch in the repository.
To help illustrate, here is a set of commands that creates a local copy of the
<filename>poky</filename> Git repository and then creates and checks out a local
Git branch that tracks the Yocto Project &DISTRO; Release (&DISTRO_NAME;) development:
<literallayout class='monospaced'>
$ cd ~
$ git clone git://git.yoctoproject.org/poky
$ cd poky
$ git checkout -b &DISTRO_NAME; origin/&DISTRO_NAME;
</literallayout>
In this example, the name of the top-level directory of your local
<link linkend='source-directory'>Source Directory</link>
is "poky" and the name of that local working area (local branch)
you just created and checked out is "&DISTRO_NAME;".
The files in your local repository now reflect the same files that
are in the "&DISTRO_NAME;" development branch of the
Yocto Project's "poky" upstream repository.
It is important to understand that when you create and checkout a
local working branch based on a branch name,
your local environment matches the "tip" of that development branch
at the time you created your local branch, which could be
different from the files at the time of a similarly named release.
In other words, creating and checking out a local branch based on
the "&DISTRO_NAME;" branch name is not the same as
cloning and checking out the "master" branch.
Keep reading to see how you create a local snapshot of a Yocto
Project Release.
</para>
<para>
Git uses "tags" to mark specific changes in a repository.
Typically, a tag is used to mark a special point such as the final
change before a project is released.
You can see the tags used with the <filename>poky</filename> Git
repository by going to
<ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/'></ulink> and
clicking on the
<filename><ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/refs/tags'>[...]</ulink></filename>
link beneath the "Tag" heading.
</para>
<para>
Some key tags are <filename>dylan-9.0.0</filename>,
<filename>dora-10.0.0</filename>, <filename>daisy-11.0.0</filename>,
and <filename>&DISTRO_NAME;-&POKYVERSION;</filename>.
These tags represent Yocto Project releases.
</para>
<para>
When you create a local copy of the Git repository, you also have access to all the
tags.
Similar to branches, you can create and checkout a local working Git branch based
on a tag name.
When you do this, you get a snapshot of the Git repository that reflects
the state of the files when the change was made associated with that tag.
The most common use is to checkout a working branch that matches a specific
Yocto Project release.
Here is an example:
<literallayout class='monospaced'>
$ cd ~
$ git clone git://git.yoctoproject.org/poky
$ cd poky
$ git checkout -b my-&DISTRO_NAME;-&POKYVERSION; &DISTRO_NAME;-&POKYVERSION;
</literallayout>
In this example, the name of the top-level directory of your local Yocto Project
Files Git repository is <filename>poky</filename>.
And, the name of the local branch you have created and checked out is
<filename>my-&DISTRO_NAME;-&POKYVERSION;</filename>.
The files in your repository now exactly match the Yocto Project &DISTRO;
Release tag (<filename>&DISTRO_NAME;-&POKYVERSION;</filename>).
It is important to understand that when you create and checkout a local
working branch based on a tag, your environment matches a specific point
in time and not the entire development branch.
</para>
</section>
<section id='basic-commands'>
<title>Basic Commands</title>
<para>
Git has an extensive set of commands that lets you manage changes and perform
collaboration over the life of a project.
Conveniently though, you can manage with a small set of basic operations and workflows
once you understand the basic philosophy behind Git.
You do not have to be an expert in Git to be functional.
A good place to look for instruction on a minimal set of Git commands is
<ulink url='http://git-scm.com/documentation'>here</ulink>.
If you need to download Git, you can do so
<ulink url='http://git-scm.com/download'>here</ulink>.
</para>
<para>
If you do not know much about Git, you should educate
yourself by visiting the links previously mentioned.
</para>
<para>
The following list briefly describes some basic Git operations as a way to get started.
As with any set of commands, this list (in most cases) simply shows the base command and
omits the many arguments they support.
See the Git documentation for complete descriptions and strategies on how to use these commands:
<itemizedlist>
<listitem><para><emphasis><filename>git init</filename>:</emphasis> Initializes an empty Git repository.
You cannot use Git commands unless you have a <filename>.git</filename> repository.</para></listitem>
<listitem><para><emphasis><filename>git clone</filename>:</emphasis>
Creates a local clone of a Git repository.
During collaboration, this command allows you to create a
local Git repository that is on equal footing with a fellow
developer’s Git repository.
</para></listitem>
<listitem><para><emphasis><filename>git add</filename>:</emphasis> Stages updated file contents
to the index that
Git uses to track changes.
You must stage all files that have changed before you can commit them.</para></listitem>
<listitem><para><emphasis><filename>git commit</filename>:</emphasis> Creates a "commit" that documents
the changes you made.
Commits are used for historical purposes, for determining if a maintainer of a project
will allow the change, and for ultimately pushing the change from your local Git repository
into the project’s upstream (or master) repository.</para></listitem>
<listitem><para><emphasis><filename>git status</filename>:</emphasis> Reports any modified files that
possibly need to be staged and committed.</para></listitem>
<listitem><para><emphasis><filename>git checkout <branch-name></filename>:</emphasis> Changes
your working branch.
This command is analogous to "cd".</para></listitem>
<listitem><para><emphasis><filename>git checkout –b <working-branch></filename>:</emphasis> Creates
a working branch on your local machine where you can isolate work.
It is a good idea to use local branches when adding specific features or changes.
This way if you do not like what you have done you can easily get rid of the work.</para></listitem>
<listitem><para><emphasis><filename>git branch</filename>:</emphasis> Reports
existing local branches and
tells you the branch in which you are currently working.</para></listitem>
<listitem><para><emphasis><filename>git branch -D <branch-name></filename>:</emphasis>
Deletes an existing local branch.
You need to be in a local branch other than the one you are deleting
in order to delete <filename><branch-name></filename>.</para></listitem>
<listitem><para><emphasis><filename>git pull</filename>:</emphasis> Retrieves information
from an upstream Git
repository and places it in your local Git repository.
You use this command to make sure you are synchronized with the repository
from which you are basing changes (.e.g. the master branch).</para></listitem>
<listitem><para><emphasis><filename>git push</filename>:</emphasis>
Sends all your committed local changes to an upstream Git
repository (e.g. a contribution repository).
The maintainer of the project draws from these repositories
when adding changes to the project’s master repository or
other development branch.
</para></listitem>
<listitem><para><emphasis><filename>git merge</filename>:</emphasis> Combines or adds changes from one
local branch of your repository with another branch.
When you create a local Git repository, the default branch is named "master".
A typical workflow is to create a temporary branch for isolated work, make and commit your
changes, switch to your local master branch, merge the changes from the temporary branch into the
local master branch, and then delete the temporary branch.</para></listitem>
<listitem><para><emphasis><filename>git cherry-pick</filename>:</emphasis> Choose and apply specific
commits from one branch into another branch.
There are times when you might not be able to merge all the changes in one branch with
another but need to pick out certain ones.</para></listitem>
<listitem><para><emphasis><filename>gitk</filename>:</emphasis> Provides a GUI view of the branches
and changes in your local Git repository.
This command is a good way to graphically see where things have diverged in your
local repository.</para></listitem>
<listitem><para><emphasis><filename>git log</filename>:</emphasis> Reports a history of your changes to the
repository.</para></listitem>
<listitem><para><emphasis><filename>git diff</filename>:</emphasis> Displays line-by-line differences
between your local working files and the same files in the upstream Git repository that your
branch currently tracks.</para></listitem>
</itemizedlist>
</para>
</section>
</section>
<section id='workflows'>
<title>Workflows</title>
<para>
This section provides some overview on workflows using Git.
In particular, the information covers basic practices that describe roles and actions in a
collaborative development environment.
Again, if you are familiar with this type of development environment, you might want to just
skip this section.
</para>
<para>
The Yocto Project files are maintained using Git in a "master" branch whose Git history
tracks every change and whose structure provides branches for all diverging functionality.
Although there is no need to use Git, many open source projects do so.
For the Yocto Project, a key individual called the "maintainer" is responsible for the "master"
branch of a given Git repository.
The "master" branch is the “upstream” repository where the final builds of the project occur.
The maintainer is responsible for accepting changes from other developers and for
organizing the underlying branch structure to reflect release strategies and so forth.
<note>For information on finding out who is responsible for (maintains)
a particular area of code, see the
"<link linkend='how-to-submit-a-change'>How to Submit a Change</link>"
section.
</note>
</para>
<para>
The project also has an upstream contribution Git repository named
<filename>poky-contrib</filename>.
You can see all the branches in this repository using the web interface
of the
<ulink url='&YOCTO_GIT_URL;'>Source Repositories</ulink> organized
within the "Poky Support" area.
These branches temporarily hold changes to the project that have been
submitted or committed by the Yocto Project development team and by
community members who contribute to the project.
The maintainer determines if the changes are qualified to be moved
from the "contrib" branches into the "master" branch of the Git
repository.
</para>
<para>
Developers (including contributing community members) create and maintain cloned repositories
of the upstream "master" branch.
These repositories are local to their development platforms and are used to develop changes.
When a developer is satisfied with a particular feature or change, they "push" the changes
to the appropriate "contrib" repository.
</para>
<para>
Developers are responsible for keeping their local repository up-to-date with "master".
They are also responsible for straightening out any conflicts that might arise within files
that are being worked on simultaneously by more than one person.
All this work is done locally on the developer’s machines before anything is pushed to a
"contrib" area and examined at the maintainer’s level.
</para>
<para>
A somewhat formal method exists by which developers commit changes and push them into the
"contrib" area and subsequently request that the maintainer include them into "master"
This process is called “submitting a patch” or "submitting a change."
For information on submitting patches and changes, see the
"<link linkend='how-to-submit-a-change'>How to Submit a Change</link>" section.
</para>
<para>
To summarize the environment: a single point of entry exists for
changes into the project’s "master" branch of the Git repository,
which is controlled by the project’s maintainer.
And, a set of developers exist who independently develop, test, and
submit changes to "contrib" areas for the maintainer to examine.
The maintainer then chooses which changes are going to become a
permanent part of the project.
</para>
<para>
<imagedata fileref="figures/git-workflow.png" width="6in" depth="3in" align="left" scalefit="1" />
</para>
<para>
While each development environment is unique, there are some best practices or methods
that help development run smoothly.
The following list describes some of these practices.
For more information about Git workflows, see the workflow topics in the
<ulink url='http://book.git-scm.com'>Git Community Book</ulink>.
<itemizedlist>
<listitem><para><emphasis>Make Small Changes:</emphasis> It is best to keep the changes you commit
small as compared to bundling many disparate changes into a single commit.
This practice not only keeps things manageable but also allows the maintainer
to more easily include or refuse changes.</para>
<para>It is also good practice to leave the repository in a state that allows you to
still successfully build your project. In other words, do not commit half of a feature,
then add the other half as a separate, later commit.
Each commit should take you from one buildable project state to another
buildable state.</para></listitem>
<listitem><para><emphasis>Use Branches Liberally:</emphasis> It is very easy to create, use, and
delete local branches in your working Git repository.
You can name these branches anything you like.
It is helpful to give them names associated with the particular feature or change
on which you are working.
Once you are done with a feature or change and have merged it
into your local master branch, simply discard the temporary
branch.</para></listitem>
<listitem><para><emphasis>Merge Changes:</emphasis> The <filename>git merge</filename>
command allows you to take the
changes from one branch and fold them into another branch.
This process is especially helpful when more than a single developer might be working
on different parts of the same feature.
Merging changes also automatically identifies any collisions or "conflicts"
that might happen as a result of the same lines of code being altered by two different
developers.</para></listitem>
<listitem><para><emphasis>Manage Branches:</emphasis> Because branches are easy to use, you should
use a system where branches indicate varying levels of code readiness.
For example, you can have a "work" branch to develop in, a "test" branch where the code or
change is tested, a "stage" branch where changes are ready to be committed, and so forth.
As your project develops, you can merge code across the branches to reflect ever-increasing
stable states of the development.</para></listitem>
<listitem><para><emphasis>Use Push and Pull:</emphasis> The push-pull workflow is based on the
concept of developers "pushing" local commits to a remote repository, which is
usually a contribution repository.
This workflow is also based on developers "pulling" known states of the project down into their
local development repositories.
The workflow easily allows you to pull changes submitted by other developers from the
upstream repository into your work area ensuring that you have the most recent software
on which to develop.
The Yocto Project has two scripts named <filename>create-pull-request</filename> and
<filename>send-pull-request</filename> that ship with the release to facilitate this
workflow.
You can find these scripts in the <filename>scripts</filename>
folder of the
<link linkend='source-directory'>Source Directory</link>.
For information on how to use these scripts, see the
"<link linkend='pushing-a-change-upstream'>Using Scripts to Push a Change Upstream and Request a Pull</link>" section.
</para></listitem>
<listitem><para><emphasis>Patch Workflow:</emphasis> This workflow allows you to notify the
maintainer through an email that you have a change (or patch) you would like considered
for the "master" branch of the Git repository.
To send this type of change, you format the patch and then send the email using the Git commands
<filename>git format-patch</filename> and <filename>git send-email</filename>.
For information on how to use these scripts, see the
"<link linkend='how-to-submit-a-change'>How to Submit a Change</link>"
section.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='tracking-bugs'>
<title>Tracking Bugs</title>
<para>
The Yocto Project uses its own implementation of
<ulink url='http://www.bugzilla.org/about/'>Bugzilla</ulink> to track bugs.
Implementations of Bugzilla work well for group development because they track bugs and code
changes, can be used to communicate changes and problems with developers, can be used to
submit and review patches, and can be used to manage quality assurance.
The home page for the Yocto Project implementation of Bugzilla is
<ulink url='&YOCTO_BUGZILLA_URL;'>&YOCTO_BUGZILLA_URL;</ulink>.
</para>
<para>
Sometimes it is helpful to submit, investigate, or track a bug against the Yocto Project itself
such as when discovering an issue with some component of the build system that acts contrary
to the documentation or your expectations.
Following is the general procedure for submitting a new bug using the Yocto Project
Bugzilla.
You can find more information on defect management, bug tracking, and feature request
processes all accomplished through the Yocto Project Bugzilla on the wiki page
<ulink url='&YOCTO_WIKI_URL;/wiki/Bugzilla_Configuration_and_Bug_Tracking'>here</ulink>.
<orderedlist>
<listitem><para>Always use the Yocto Project implementation of Bugzilla to submit
a bug.</para></listitem>
<listitem><para>When submitting a new bug, be sure to choose the appropriate
Classification, Product, and Component for which the issue was found.
Defects for the Yocto Project fall into one of seven classifications:
Yocto Project Components, Infrastructure, Build System & Metadata,
Documentation, QA/Testing, Runtime and Hardware.
Each of these Classifications break down into multiple Products and, in some
cases, multiple Components.</para></listitem>
<listitem><para>Use the bug form to choose the correct Hardware and Architecture
for which the bug applies.</para></listitem>
<listitem><para>Indicate the Yocto Project version you were using when the issue
occurred.</para></listitem>
<listitem><para>Be sure to indicate the Severity of the bug.
Severity communicates how the bug impacted your work.</para></listitem>
<listitem><para>Select the appropriate "Documentation change" item
for the bug.
Fixing a bug may or may not affect the Yocto Project
documentation.</para></listitem>
<listitem><para>Provide a brief summary of the issue.
Try to limit your summary to just a line or two and be sure to capture the
essence of the issue.</para></listitem>
<listitem><para>Provide a detailed description of the issue.
You should provide as much detail as you can about the context, behavior, output,
and so forth that surrounds the issue.
You can even attach supporting files for output from logs by
using the "Add an attachment" button.</para></listitem>
<listitem><para>Be sure to copy the appropriate people in the
"CC List" for the bug.
See the "<link linkend='how-to-submit-a-change'>How to Submit a Change</link>"
section for information about finding out who is responsible
for code.</para></listitem>
<listitem><para>Submit the bug by clicking the "Submit Bug" button.</para></listitem>
</orderedlist>
</para>
</section>
<section id='how-to-submit-a-change'>
<title>How to Submit a Change</title>
<para>
Contributions to the Yocto Project and OpenEmbedded are very welcome.
Because the system is extremely configurable and flexible, we recognize that developers
will want to extend, configure or optimize it for their specific uses.
You should send patches to the appropriate mailing list so that they
can be reviewed and merged by the appropriate maintainer.
</para>
<para>
Before submitting any change, be sure to find out who you should be
notifying.
Several methods exist through which you find out who you should be copying
or notifying:
<itemizedlist>
<listitem><para><emphasis>Maintenance File:</emphasis>
Examine the <filename>maintainers.inc</filename> file, which is
located in the
<link linkend='source-directory'>Source Directory</link>
at <filename>meta-yocto/conf/distro/include</filename>, to
see who is responsible for code.
</para></listitem>
<listitem><para><emphasis>Board Support Package (BSP) README Files:</emphasis>
For BSP maintainers of supported BSPs, you can examine
individual BSP <filename>README</filename> files.
In addition, some layers (such as the <filename>meta-intel</filename> layer),
include a <filename>MAINTAINERS</filename> file which contains
a list of all supported BSP maintainers for that layer.
</para></listitem>
<listitem><para><emphasis>Search by File:</emphasis>
Using <link linkend='git'>Git</link>, you can enter the
following command to bring up a short list of all commits
against a specific file:
<literallayout class='monospaced'>
git shortlog -- <replaceable>filename</replaceable>
</literallayout>
Just provide the name of the file for which you are interested.
The information returned is not ordered by history but does
include a list of all committers grouped by name.
From the list, you can see who is responsible for the bulk of
the changes against the file.
</para></listitem>
</itemizedlist>
</para>
<para>
For a list of the Yocto Project and related mailing lists, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#resources-mailinglist'>Mailing lists</ulink>" section in
the Yocto Project Reference Manual.
</para>
<para>
Here is some guidance on which mailing list to use for what type of change:
<itemizedlist>
<listitem><para>For changes to the core
<link linkend='metadata'>Metadata</link>, send your patch to the
<ulink url='&OE_LISTS_URL;/listinfo/openembedded-core'>openembedded-core</ulink> mailing list.
For example, a change to anything under the <filename>meta</filename> or
<filename>scripts</filename> directories
should be sent to this mailing list.</para></listitem>
<listitem><para>For changes to BitBake (anything under the <filename>bitbake</filename>
directory), send your patch to the
<ulink url='&OE_LISTS_URL;/listinfo/bitbake-devel'>bitbake-devel</ulink> mailing list.</para></listitem>
<listitem><para>For changes to <filename>meta-yocto</filename>, send your patch to the
<ulink url='&YOCTO_LISTS_URL;/listinfo/poky'>poky</ulink> mailing list.</para></listitem>
<listitem><para>For changes to other layers hosted on
<filename>yoctoproject.org</filename> (unless the
layer's documentation specifies otherwise), tools, and Yocto Project
documentation, use the
<ulink url='&YOCTO_LISTS_URL;/listinfo/yocto'>yocto</ulink> mailing list.</para></listitem>
<listitem><para>For additional recipes that do not fit into the core Metadata,
you should determine which layer the recipe should go into and submit the
change in the manner recommended by the documentation (e.g. README) supplied
with the layer. If in doubt, please ask on the
<ulink url='&YOCTO_LISTS_URL;/listinfo/yocto'>yocto</ulink> or
<ulink url='&OE_LISTS_URL;/listinfo/openembedded-devel'>openembedded-devel</ulink>
mailing lists.</para></listitem>
</itemizedlist>
</para>
<para>
When you send a patch, be sure to include a "Signed-off-by:"
line in the same style as required by the Linux kernel.
Adding this line signifies that you, the submitter, have agreed to the Developer's Certificate of Origin 1.1
as follows:
<literallayout class='monospaced'>
Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:
(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or
(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or
(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.
(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.
</literallayout>
</para>
<para>
In a collaborative environment, it is necessary to have some sort of standard
or method through which you submit changes.
Otherwise, things could get quite chaotic.
One general practice to follow is to make small, controlled changes.
Keeping changes small and isolated aids review, makes merging/rebasing easier
and keeps the change history clean when anyone needs to refer to it in future.
</para>
<para>
When you make a commit, you must follow certain standards established by the
OpenEmbedded and Yocto Project development teams.
For each commit, you must provide a single-line summary of the change and you
should almost always provide a more detailed description of what you did (i.e.
the body of the commit message).
The only exceptions for not providing a detailed description would be if your
change is a simple, self-explanatory change that needs no further description
beyond the summary.
Here are the guidelines for composing a commit message:
<itemizedlist>
<listitem><para>Provide a single-line, short summary of the change.
This summary is typically viewable in the "shortlist" of changes.
Thus, providing something short and descriptive that gives the reader
a summary of the change is useful when viewing a list of many commits.
This short description should be prefixed by the recipe name (if changing a recipe), or
else the short form path to the file being changed.
</para></listitem>
<listitem><para>For the body of the commit message, provide detailed information
that describes what you changed, why you made the change, and the approach
you used. It may also be helpful if you mention how you tested the change.
Provide as much detail as you can in the body of the commit message.
</para></listitem>
<listitem><para>
If the change addresses a specific bug or issue that is
associated with a bug-tracking ID, include a reference to that
ID in your detailed description.
For example, the Yocto Project uses a specific convention for
bug references - any commit that addresses a specific bug should
use the following form for the detailed description:
<literallayout class='monospaced'>
Fixes [YOCTO #<replaceable>bug-id</replaceable>]
<replaceable>detailed description of change</replaceable>
</literallayout></para></listitem>
Where <replaceable>bug-id</replaceable> is replaced with the
specific bug ID from the Yocto Project Bugzilla instance.
</itemizedlist>
</para>
<para>
You can find more guidance on creating well-formed commit messages at this OpenEmbedded
wiki page:
<ulink url='&OE_HOME_URL;/wiki/Commit_Patch_Message_Guidelines'></ulink>.
</para>
<para>
The next two sections describe general instructions for both pushing
changes upstream and for submitting changes as patches.
</para>
<section id='pushing-a-change-upstream'>
<title>Using Scripts to Push a Change Upstream and Request a Pull</title>
<para>
The basic flow for pushing a change to an upstream "contrib" Git repository is as follows:
<itemizedlist>
<listitem><para>Make your changes in your local Git repository.</para></listitem>
<listitem><para>Stage your changes by using the <filename>git add</filename>
command on each file you changed.</para></listitem>
<listitem><para>
Commit the change by using the
<filename>git commit</filename> command.
Be sure to provide a commit message that follows the
project’s commit message standards as described earlier.
</para></listitem>
<listitem><para>
Push the change to the upstream "contrib" repository by
using the <filename>git push</filename> command.
</para></listitem>
<listitem><para>Notify the maintainer that you have pushed a change by making a pull
request.
The Yocto Project provides two scripts that conveniently let you generate and send
pull requests to the Yocto Project.
These scripts are <filename>create-pull-request</filename> and
<filename>send-pull-request</filename>.
You can find these scripts in the <filename>scripts</filename> directory
within the <link linkend='source-directory'>Source Directory</link>.</para>
<para>Using these scripts correctly formats the requests without introducing any
whitespace or HTML formatting.
The maintainer that receives your patches needs to be able to save and apply them
directly from your emails.
Using these scripts is the preferred method for sending patches.</para>
<para>For help on using these scripts, simply provide the
<filename>-h</filename> argument as follows:
<literallayout class='monospaced'>
$ poky/scripts/create-pull-request -h
$ poky/scripts/send-pull-request -h
</literallayout></para></listitem>
</itemizedlist>
</para>
<para>
You can find general Git information on how to push a change upstream in the
<ulink url='http://book.git-scm.com/3_distributed_workflows.html'>Git Community Book</ulink>.
</para>
</section>
<section id='submitting-a-patch'>
<title>Using Email to Submit a Patch</title>
<para>
You can submit patches without using the <filename>create-pull-request</filename> and
<filename>send-pull-request</filename> scripts described in the previous section.
However, keep in mind, the preferred method is to use the scripts.
</para>
<para>
Depending on the components changed, you need to submit the email to a specific
mailing list.
For some guidance on which mailing list to use, see the list in the
"<link linkend='how-to-submit-a-change'>How to Submit a Change</link>"
section.
For a description of the available mailing lists, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#resources-mailinglist'>Mailing Lists</ulink>"
section in the Yocto Project Reference Manual.
</para>
<para>
Here is the general procedure on how to submit a patch through email without using the
scripts:
<itemizedlist>
<listitem><para>Make your changes in your local Git repository.</para></listitem>
<listitem><para>Stage your changes by using the <filename>git add</filename>
command on each file you changed.</para></listitem>
<listitem><para>Commit the change by using the
<filename>git commit --signoff</filename> command.
Using the <filename>--signoff</filename> option identifies you as the person
making the change and also satisfies the Developer's Certificate of
Origin (DCO) shown earlier.</para>
<para>When you form a commit, you must follow certain standards established by the
Yocto Project development team.
See the earlier section
"<link linkend='how-to-submit-a-change'>How to Submit a Change</link>"
for Yocto Project commit message standards.</para></listitem>
<listitem><para>Format the commit into an email message.
To format commits, use the <filename>git format-patch</filename> command.
When you provide the command, you must include a revision list or a number of patches
as part of the command.
For example, either of these two commands takes your most
recent single commit and formats it as an email message in
the current directory:
<literallayout class='monospaced'>
$ git format-patch -1
</literallayout>
or
<literallayout class='monospaced'>
$ git format-patch HEAD~
</literallayout></para>
<para>After the command is run, the current directory contains a
numbered <filename>.patch</filename> file for the commit.</para>
<para>If you provide several commits as part of the command,
the <filename>git format-patch</filename> command produces a
series of numbered files in the current directory – one for each commit.
If you have more than one patch, you should also use the
<filename>--cover</filename> option with the command, which generates a
cover letter as the first "patch" in the series.
You can then edit the cover letter to provide a description for
the series of patches.
For information on the <filename>git format-patch</filename> command,
see <filename>GIT_FORMAT_PATCH(1)</filename> displayed using the
<filename>man git-format-patch</filename> command.</para>
<note>If you are or will be a frequent contributor to the Yocto Project
or to OpenEmbedded, you might consider requesting a contrib area and the
necessary associated rights.</note></listitem>
<listitem><para>Import the files into your mail client by using the
<filename>git send-email</filename> command.
<note>In order to use <filename>git send-email</filename>, you must have the
the proper Git packages installed.
For Ubuntu, Debian, and Fedora the package is <filename>git-email</filename>.</note></para>
<para>The <filename>git send-email</filename> command sends email by using a local
or remote Mail Transport Agent (MTA) such as
<filename>msmtp</filename>, <filename>sendmail</filename>, or through a direct
<filename>smtp</filename> configuration in your Git <filename>config</filename>
file.
If you are submitting patches through email only, it is very important
that you submit them without any whitespace or HTML formatting that
either you or your mailer introduces.
The maintainer that receives your patches needs to be able to save and
apply them directly from your emails.
A good way to verify that what you are sending will be applicable by the
maintainer is to do a dry run and send them to yourself and then
save and apply them as the maintainer would.</para>
<para>The <filename>git send-email</filename> command is the preferred method
for sending your patches since there is no risk of compromising whitespace
in the body of the message, which can occur when you use your own mail client.
The command also has several options that let you
specify recipients and perform further editing of the email message.
For information on how to use the <filename>git send-email</filename> command,
see <filename>GIT-SEND-EMAIL(1)</filename> displayed using
the <filename>man git-send-email</filename> command.
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->
|