1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
<chapter id='dev-manual-model'>
<title>Common Development Models</title>
<para>
Many development models exist for which you can use the Yocto Project.
This chapter overviews the following methods:
<itemizedlist>
<listitem><para><emphasis>System Development:</emphasis>
System Development covers Board Support Package (BSP) development and kernel
modification or configuration.
If you want to examine specific examples of the system development models,
see the "<link linkend='dev-manual-bsp-appendix'>BSP Development Example</link>"
appendix and the
"<link linkend='dev-manual-kernel-appendix'>Kernel Modification Example</link>" appendix.
</para></listitem>
<listitem><para><emphasis>User Application Development:</emphasis>
User Application Development covers development of applications that you intend
to run on some target hardware.
For information on how to set up your host development system for user-space
application development, see the
<ulink url='&YOCTO_DOCS_ADT_URL;'>Yocto Project Application Developer's Guide</ulink>.
For a simple example of user-space application development using the
<trademark class='trade'>Eclipse</trademark> IDE, see the
"<link linkend='application-development-workflow'>Application
Development Workflow</link>" section.
</para></listitem>
<listitem><para><emphasis>Temporary Source Code Modification:</emphasis>
Direct modification of temporary source code is a convenient development model
to quickly iterate and develop towards a solution.
Once the solution has been implemented, you should of course take steps to
get the changes upstream and applied in the affected recipes.</para></listitem>
<listitem><para><emphasis>Image Development using Hob:</emphasis>
You can use the <ulink url='&YOCTO_HOME_URL;/projects/hob'>Hob</ulink> to build
custom operating system images within the build environment.
Hob provides an efficient interface to the OpenEmbedded build system.</para></listitem>
<listitem><para><emphasis>Using a Development Shell:</emphasis>
You can use a <filename>devshell</filename> to efficiently debug commands or simply
edit packages.
Working inside a development shell is a quick way to set up the OpenEmbedded build
environment to work on parts of a project.</para></listitem>
</itemizedlist>
</para>
<section id='system-development-model'>
<title>System Development Workflow</title>
<para>
System development involves modification or creation of an image that you want to run on
a specific hardware target.
Usually, when you want to create an image that runs on embedded hardware, the image does
not require the same number of features that a full-fledged Linux distribution provides.
Thus, you can create a much smaller image that is designed to use only the
features for your particular hardware.
</para>
<para>
To help you understand how system development works in the Yocto Project, this section
covers two types of image development: BSP creation and kernel modification or
configuration.
</para>
<section id='developing-a-board-support-package-bsp'>
<title>Developing a Board Support Package (BSP)</title>
<para>
A BSP is a package of recipes that, when applied during a build, results in
an image that you can run on a particular board.
Thus, the package when compiled into the new image, supports the operation of the board.
</para>
<note>
For a brief list of terms used when describing the development process in the Yocto Project,
see the "<link linkend='yocto-project-terms'>Yocto Project Terms</link>" section.
</note>
<para>
The remainder of this section presents the basic steps used to create a BSP
based on an existing BSP that ships with the Yocto Project.
You can reference the "<link linkend='dev-manual-bsp-appendix'>BSP Development Example</link>"
appendix for a detailed example that uses the Crown Bay BSP as a base BSP from which to start.
</para>
<para>
The following illustration and list summarize the BSP creation general workflow.
</para>
<para>
<imagedata fileref="figures/bsp-dev-flow.png" width="6in" depth="7in" align="center" scalefit="1" />
</para>
<para>
<orderedlist>
<listitem><para><emphasis>Set up your host development system to support
development using the Yocto Project</emphasis>: See the
"<ulink url='&YOCTO_DOCS_QS_URL;#the-linux-distro'>The Linux Distributions</ulink>"
and the
"<ulink url='&YOCTO_DOCS_QS_URL;#packages'>The Packages</ulink>" sections both
in the Yocto Project Quick Start for requirements.</para></listitem>
<listitem><para><emphasis>Establish a local copy of the project files on your
system</emphasis>: You need this <link linkend='source-directory'>source
directory</link> available on your host system.
Having these files on your system gives you access to the build
process and to the tools you need.
For information on how to set up the source directory, see the
"<link linkend='getting-setup'>Getting Setup</link>" section.</para></listitem>
<listitem><para><emphasis>Establish a local copy of the base BSP files</emphasis>: Having
the BSP files on your system gives you access to the build
process and to the tools you need for creating a BSP.
For information on how to get these files, see the
"<link linkend='getting-setup'>Getting Setup</link>" section.</para></listitem>
<listitem><para><emphasis>Choose a BSP that is supported by the Yocto Project
as your base BSP</emphasis>:
The Yocto Project ships with several BSPs that support various hardware.
It is best to base your new BSP on an existing BSP rather than create all the
recipes and configuration files from scratch.
While it is possible to create everything from scratch, basing your new BSP
on something that is close is much easier.
Or, at a minimum, leveraging off an existing BSP
gives you some structure with which to start.</para>
<para>At this point you need to understand your target hardware well enough to determine which
existing BSP it most closely matches.
Things to consider are your hardware’s on-board features, such as CPU type and graphics support.
You should look at the README files for supported BSPs to get an idea of which one
you could use.
A generic <trademark class='registered'>Intel</trademark>
<trademark class='trade'>Atom</trademark>-based BSP to consider is the
Crown Bay that does not support the <trademark class='registered'>Intel</trademark>
Embedded Media Graphics Driver (EMGD).
The remainder of this example uses that base BSP.</para>
<para>To see the supported BSPs, go to the
<ulink url='&YOCTO_HOME_URL;/download'>Downloads</ulink> page on the Yocto Project
website and click on “BSP Downloads.”</para></listitem>
<listitem><para><emphasis>Create your own BSP layer</emphasis>: Layers are ideal for
isolating and storing work for a given piece of hardware.
A layer is really just a location or area in which you place the recipes for your BSP.
In fact, a BSP is, in itself, a special type of layer.
</para>
<para>
Another example that illustrates a layer is an application.
Suppose you are creating an application that has library or other dependencies in
order for it to compile and run.
The layer, in this case, would be where all the recipes that define those dependencies
are kept.
The key point for a layer is that it is an isolated area that contains
all the relevant information for the project that the OpenEmbedded build
system knows about.
For more information on layers, see the
"<link linkend='understanding-and-creating-layers'>Understanding and Creating Layers</link>"
section.
For more information on BSP layers, see the
"<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-layers'>BSP Layers</ulink>" section in the
Yocto Project Board Support Package (BSP) Developer's Guide.</para>
<note>Four BSPs exist that are part of the
Yocto Project release: <filename>atom-pc</filename>, <filename>beagleboard</filename>,
<filename>mpc8315e</filename>, and <filename>routerstationpro</filename>.
The recipes and configurations for these four BSPs are located and dispersed
within the <link linkend='source-directory'>source directory</link>.
On the other hand, BSP layers for Cedar Trail, Chief River, Crown Bay,
Crystal Forest, Emenlow, Fish River, Fish River 2, Jasper Forest, N450,
Romley, sys940x, Sugar Bay, and tlk exist in their own separate layers
within the larger <filename>meta-intel</filename> layer.</note>
<para>When you set up a layer for a new BSP, you should follow a standard layout.
This layout is described in the section
"<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-filelayout'>Example Filesystem Layout</ulink>"
section of the Board Support Package (BSP) Development Guide.
In the standard layout, you will notice a suggested structure for recipes and
configuration information.
You can see the standard layout for the Crown Bay BSP in this example by examining the
directory structure of the <filename>meta-crownbay</filename> layer inside the
source directory.</para></listitem>
<listitem><para><emphasis>Make configuration changes to your new BSP
layer</emphasis>: The standard BSP layer structure organizes the files you need
to edit in <filename>conf</filename> and several <filename>recipes-*</filename>
directories within the BSP layer.
Configuration changes identify where your new layer is on the local system
and identify which kernel you are going to use.
</para></listitem>
<listitem><para><emphasis>Make recipe changes to your new BSP layer</emphasis>: Recipe
changes include altering recipes (<filename>.bb</filename> files), removing
recipes you don't use, and adding new recipes that you need to support your hardware.
</para></listitem>
<listitem><para><emphasis>Prepare for the build</emphasis>: Once you have made all the
changes to your BSP layer, there remains a few things
you need to do for the OpenEmbedded build system in order for it to create your image.
You need to get the build environment ready by sourcing an environment setup script
and you need to be sure two key configuration files are configured appropriately.</para>
<para>The entire process for building an image is overviewed in the section
"<ulink url='&YOCTO_DOCS_QS_URL;#building-image'>Building an Image</ulink>" section
of the Yocto Project Quick Start.
You might want to reference this information.</para></listitem>
<listitem><para><emphasis>Build the image</emphasis>: The OpenEmbedded build system
uses the BitBake tool to build images based on the type of image you want to create.
You can find more information about BitBake in the user manual, which is found in the
<filename>bitbake/doc/manual</filename> directory of the
<link linkend='source-directory'>Source Directory</link>.</para>
<para>The build process supports several types of images to satisfy different needs.
See the
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>" chapter
in the Yocto Project Reference Manual for information on
supported images.</para></listitem>
</orderedlist>
</para>
<para>
You can view a video presentation on "Building Custom Embedded Images with Yocto"
at <ulink url='http://free-electrons.com/blog/elc-2011-videos'>Free Electrons</ulink>.
You can also find supplemental information in
<ulink url='&YOCTO_DOCS_BSP_URL;'>
The Board Support Package (BSP) Development Guide</ulink>.
Finally, there is wiki page write up of the example also located
<ulink url='&YOCTO_WIKI_URL;/wiki/Transcript:_creating_one_generic_Atom_BSP_from_another'>
here</ulink> that you might find helpful.
</para>
</section>
<section id='modifying-the-kernel'>
<title><anchor id='kernel-spot' />Modifying the Kernel</title>
<para>
Kernel modification involves changing the Yocto Project kernel, which could involve changing
configuration options as well as adding new kernel recipes.
Configuration changes can be added in the form of configuration fragments, while recipe
modification comes through the kernel's <filename>recipes-kernel</filename> area
in a kernel layer you create.
</para>
<para>
The remainder of this section presents a high-level overview of the Yocto Project
kernel architecture and the steps to modify the kernel.
For a complete discussion of the kernel, see the
<ulink url='&YOCTO_DOCS_KERNEL_URL;'>Yocto Project Kernel Architecture and Use Manual</ulink>.
You can reference the appendix
"<link linkend='dev-manual-kernel-appendix'>Kernel Modification Example</link>"
for a detailed example that changes the configuration of a kernel.
</para>
<section id='kernel-overview'>
<title>Kernel Overview</title>
<para>
Traditionally, when one thinks of a patched kernel, they think of a base kernel
source tree and a fixed structure that contains kernel patches.
The Yocto Project, however, employs mechanisms, that in a sense, result in a kernel source
generator.
By the end of this section, this analogy will become clearer.
</para>
<para>
You can find a web interface to the Yocto Project kernel source repositories at
<ulink url='&YOCTO_GIT_URL;'></ulink>.
If you look at the interface, you will see to the left a grouping of
Git repositories titled "Yocto Linux Kernel."
Within this group, you will find several kernels supported by
the Yocto Project:
<itemizedlist>
<listitem><para><emphasis><filename>linux-yocto-2.6.34</filename></emphasis> - The
stable Yocto Project kernel that is based on the Linux 2.6.34 released kernel.</para></listitem>
<listitem><para><emphasis><filename>linux-yocto-2.6.37</filename></emphasis> - The
stable Yocto Project kernel that is based on the Linux 2.6.37 released kernel.</para></listitem>
<listitem><para><emphasis><filename>linux-yocto-3.0</filename></emphasis> - The stable
Yocto Project kernel that is based on the Linux 3.0 released kernel.</para></listitem>
<listitem><para><emphasis><filename>linux-yocto-3.0-1.1.x</filename></emphasis> - The
stable Yocto Project kernel to use with the Yocto Project Release 1.1.x. This kernel
is based on the Linux 3.0 released kernel.</para></listitem>
<listitem><para><emphasis><filename>linux-yocto-3.2</filename></emphasis> - The
stable Yocto Project kernel to use with the Yocto Project Release 1.2. This kernel
is based on the Linux 3.2 released kernel.</para></listitem>
<listitem><para><emphasis><filename>linux-yocto-3.4</filename></emphasis> - The
stable Yocto Project kernel to use with the Yocto Project Release 1.3. This kernel
is based on the Linux 3.4 released kernel.</para></listitem>
<listitem><para><emphasis><filename>linux-yocto-dev</filename></emphasis> - A development
kernel based on the latest upstream release candidate available.</para></listitem>
</itemizedlist>
</para>
<para>
The kernels are maintained using the Git revision control system
that structures them using the familiar "tree", "branch", and "leaf" scheme.
Branches represent diversions from general code to more specific code, while leaves
represent the end-points for a complete and unique kernel whose source files
when gathered from the root of the tree to the leaf accumulate to create the files
necessary for a specific piece of hardware and its features.
The following figure displays this concept:
<para>
<imagedata fileref="figures/kernel-overview-1.png"
width="6in" depth="6in" align="center" scale="100" />
</para>
<para>
Within the figure, the "Kernel.org Branch Point" represents the point in the tree
where a supported base kernel is modified from the Linux kernel.
For example, this could be the branch point for the <filename>linux-yocto-3.0</filename>
kernel.
Thus, everything further to the right in the structure is based on the
<filename>linux-yocto-3.0</filename> kernel.
Branch points to right in the figure represent where the
<filename>linux-yocto-3.0</filename> kernel is modified for specific hardware
or types of kernels, such as real-time kernels.
Each leaf thus represents the end-point for a kernel designed to run on a specific
targeted device.
</para>
<para>
The overall result is a Git-maintained repository from which all the supported
kernel types can be derived for all the supported devices.
A big advantage to this scheme is the sharing of common features by keeping them in
"larger" branches within the tree.
This practice eliminates redundant storage of similar features shared among kernels.
</para>
<note>
Keep in mind the figure does not take into account all the supported Yocto
Project kernel types, but rather shows a single generic kernel just for conceptual purposes.
Also keep in mind that this structure represents the Yocto Project source repositories
that are either pulled from during the build or established on the host development system
prior to the build by either cloning a particular kernel's Git repository or by
downloading and unpacking a tarball.
</note>
<para>
Storage of all the available kernel source code is one thing, while representing the
code on your host development system is another.
Conceptually, you can think of the kernel source repositories as all the
source files necessary for all the supported kernels.
As a developer, you are just interested in the source files for the kernel on
on which you are working.
And, furthermore, you need them available on your host system.
</para>
<para>
You make kernel source code available on your host development system by using
Git to create a bare clone of the Yocto Project kernel Git repository
in which you are interested.
Then, you use Git again to clone a copy of that bare clone.
This copy represents the directory structure on your host system that is particular
to the kernel you want.
These are the files you actually modify to change the kernel.
See the <link linkend='local-kernel-files'>Yocto Project Kernel</link> item earlier
in this manual for an example of how to set up the kernel source directory
structure on your host system.
</para>
<para>
This next figure illustrates how the kernel source files might be arranged on
your host system.
</para>
<para>
<imagedata fileref="figures/kernel-overview-3-denzil.png"
width="6in" depth="4in" align="center" scale="100" />
</para>
<para>
In the previous figure, the file structure on the left represents the bare clone
set up to track the Yocto Project kernel Git repository.
The structure on the right represents the copy of the bare clone.
When you make modifcations to the kernel source code, this is the area in which
you work.
Once you make corrections, you must use Git to push the committed changes to the
bare clone.
The example in <xref linkend='modifying-the-kernel-source-code'>
Modifying the Kernel Source Code</xref> provides a detailed example.
</para>
<para>
What happens during the build?
When you build the kernel on your development system all files needed for the build
are taken from the source repositories pointed to by the
<filename>SRC_URI</filename> variable and gathered in a temporary work area
where they are subsequently used to create the unique kernel.
Thus, in a sense, the process constructs a local source tree specific to your
kernel to generate the new kernel image - a source generator if you will.
</para>
The following figure shows the temporary file structure
created on your host system when the build occurs.
This build directory contains all the source files used during the build.
</para>
<para>
<imagedata fileref="figures/kernel-overview-2.png"
width="6in" depth="5in" align="center" scale="100" />
</para>
<para>
Again, for a complete discussion of the Yocto Project kernel's architecture and its
branching strategy, see the
<ulink url='&YOCTO_DOCS_KERNEL_URL;'>Yocto Project Kernel Architecture and Use Manual</ulink>.
You can also reference the
"<link linkend='modifying-the-kernel-source-code'>Modifying the Kernel Source Code</link>"
section for a detailed example that modifies the kernel.
</para>
</section>
<section id='kernel-modification-workflow'>
<title>Kernel Modification Workflow</title>
<para>
This illustration and the following list summarizes the kernel modification general workflow.
</para>
<para>
<imagedata fileref="figures/kernel-dev-flow.png"
width="6in" depth="7.5in" align="center" scalefit="1" />
</para>
<para>
<orderedlist>
<listitem><para><emphasis>Set up your host development system to support
development using the Yocto Project</emphasis>: See
"<ulink url='&YOCTO_DOCS_QS_URL;#the-linux-distro'>The Linux Distributions</ulink>" and
"<ulink url='&YOCTO_DOCS_QS_URL;#packages'>The Packages</ulink>" sections both
in the Yocto Project Quick Start for requirements.</para></listitem>
<listitem><para><emphasis>Establish a local copy of project files on your
system</emphasis>: Having the <link linkend='source-directory'>source
directory</link> on your system gives you access to the build process and tools
you need.
For information on how to get these files, see the bulleted item
"<link linkend='local-yp-release'>Yocto Project Release</link>" earlier in this manual.
</para></listitem>
<listitem><para><emphasis>Set up a local copy of the <filename>poky-extras</filename> Git
repository</emphasis>: This local repository is the area for your configuration
fragments, new kernel recipes, and the kernel <filename>.bbappend</filename>
file used during the build.
It is good practice to set this repository up inside your local
source directory.
For information on how to get these files, see the bulleted item
"<link linkend='poky-extras-repo'>The <filename>poky-extras</filename> Git Repository</link>"
earlier in this manual.
<note>While it is certainly possible to modify the kernel without involving
a local Git repository, the suggested workflow for kernel modification
using the Yocto Project does use a Git repository.</note></para></listitem>
<listitem><para><emphasis>Establish a local copy of the Yocto Project kernel files on your
system</emphasis>: In order to make modifications to the kernel you need two things:
a bare clone of the Yocto Project kernel you are modifying and
a copy of that bare clone.
The bare clone is required by the build process and is the area to which you
push your kernel source changes (pulling does not work with bare clones).
The copy of the bare clone is a local Git repository that contains all the kernel's
source files.
You make your changes to the files in this copy of the bare clone.
For information on how to set these two items up, see the bulleted item
"<link linkend='local-kernel-files'>Yocto Project Kernel</link>"
earlier in this manual.</para></listitem>
<listitem><para><emphasis>Make changes to the kernel source code if
applicable</emphasis>: Modifying the kernel does not always mean directly
changing source files.
However, if you have to do this, you make the changes in the local
Git repository you set up to hold the source files (i.e. the copy of the
bare clone).
Once the changes are made, you need to use Git commands to commit the changes
and then push them to the bare clone.</para></listitem>
<listitem><para><emphasis>Make kernel configuration changes
if applicable</emphasis>:
If your situation calls for changing the kernel's configuration, you can
use <filename>menuconfig</filename>
to enable and disable kernel configurations.
Using <filename>menuconfig</filename> allows you to interactively develop and test the
configuration changes you are making to the kernel.
When saved, changes using <filename>menuconfig</filename> update the kernel's
<filename>.config</filename>.
Try to resist the temptation of directly editing the <filename>.config</filename>
file found in the
<link linkend='build-directory'>build directory</link> at
<filename>tmp/sysroots/<machine-name>/kernel</filename>.
Doing so, can produce unexpected results when the OpenEmbedded build system
regenerates the configuration file.</para>
<para>Once you are satisfied with the configuration changes made using
<filename>menuconfig</filename>, you can directly examine the
<filename>.config</filename> file against a saved original and gather those
changes into a config fragment to be referenced from within the kernel's
<filename>.bbappend</filename> file.</para></listitem>
<listitem><para><emphasis>Add or extend kernel recipes if applicable</emphasis>:
The standard
layer structure organizes recipe files inside the
<filename>meta-kernel-dev</filename> layer that is within the local
<filename>poky-extras</filename> Git repository.
If you need to add new kernel recipes, you add them within this layer.
Also within this area, you will find the <filename>.bbappend</filename>
file that appends information to the kernel's recipe file used during the
build.
</para></listitem>
<listitem><para><emphasis>Prepare for the build</emphasis>: Once you have made all the
changes to your kernel (configurations, source code changes, recipe additions,
or recipe changes), there remains a few things
you need to do in order for the build system to create your image.
If you have not done so, you need to get the build environment ready by sourcing
the environment setup script described earlier.
You also need to be sure two key configuration files
(<filename>local.conf</filename> and <filename>bblayers.conf</filename>)
are configured appropriately.</para>
<para>The entire process for building an image is overviewed in the
"<ulink url='&YOCTO_DOCS_QS_URL;#building-image'>Building an Image</ulink>"
section of the Yocto Project Quick Start.
You might want to reference this information.
Also, you should look at the detailed examples found in the appendices at
at the end of this manual.</para></listitem>
<listitem><para><emphasis>Build the image</emphasis>: The OpenEmbedded
build system uses the BitBake
tool to build images based on the type of image you want to create.
You can find more information on BitBake in the user manual, which is found in the
<filename>bitbake/doc/manual</filename> directory of the
<link linkend='source-directory'>Source Directory</link>.</para>
<para>The build process supports several types of images to satisfy different needs.
See the "<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>" chapter in
the Yocto Project Reference Manual for information on supported images.</para></listitem>
<listitem><para><emphasis>Make your configuration changes available
in the kernel layer</emphasis>: Up to this point, all the configuration changes to the
kernel have been done and tested iteratively.
Once they are tested and ready to go, you can move them into the kernel layer,
which allows you to distribute the layer.</para></listitem>
<listitem><para><emphasis>If applicable, share your in-tree changes</emphasis>:
If the changes you made
are suited for all Yocto Project kernel users, you might want to send them on
for inclusion into the upstream kernel's Git repository.
If the changes are accepted, the Yocto Project Maintainer pulls them into
the master branch of the kernel tree.
Doing so makes them available to everyone using the kernel.</para></listitem>
</orderedlist>
</para>
</section>
</section>
</section>
<section id='application-development-workflow'>
<title>Application Development Workflow</title>
<para>
Application development involves creating an application that you want
to run on your target hardware, which is running a kernel image created using the
OpenEmbedded build system.
The Yocto Project provides an Application Development Toolkit (ADT) and
stand-alone cross-development toolchains that
facilitate quick development and integration of your application into its run-time environment.
Using the ADT and toolchains, you can compile and link your application.
You can then deploy your application to the actual hardware or to the QEMU emulator for testing.
If you are familiar with the popular Eclipse IDE, you can use an Eclipse Yocto Plug-in to
allow you to develop, deploy, and test your application all from within Eclipse.
</para>
<para>
While we strongly suggest using the ADT to develop your application, this option might not
be best for you.
If this is the case, you can still use pieces of the Yocto Project for your development process.
However, because the process can vary greatly, this manual does not provide detail on the process.
</para>
<section id='workflow-using-the-adt-and-eclipse'>
<title>Workflow Using the ADT and <trademark class='trade'>Eclipse</trademark></title>
<para>
To help you understand how application development works using the ADT, this section
provides an overview of the general development process and a detailed example of the process
as it is used from within the Eclipse IDE.
</para>
<para>
The following illustration and list summarize the application development general workflow.
</para>
<para>
<imagedata fileref="figures/app-dev-flow.png"
width="7in" depth="8in" align="center" scale="100" />
</para>
<para>
<orderedlist>
<listitem><para><emphasis>Prepare the Host System for the Yocto Project</emphasis>:
See
"<ulink url='&YOCTO_DOCS_QS_URL;#the-linux-distro'>The Linux Distributions</ulink>" and
"<ulink url='&YOCTO_DOCS_QS_URL;#packages'>The Packages</ulink>" sections both
in the Yocto Project Quick Start for requirements.</para></listitem>
<listitem><para><emphasis>Secure the Yocto Project Kernel Target Image</emphasis>:
You must have a target kernel image that has been built using the OpenEmbeded
build system.</para>
<para>Depending on whether the Yocto Project has a pre-built image that matches your target
architecture and where you are going to run the image while you develop your application
(QEMU or real hardware), the area from which you get the image differs.
<itemizedlist>
<listitem><para>Download the image from
<ulink url='&YOCTO_MACHINES_DL_URL;'>
<filename>machines</filename></ulink> if your target architecture is supported
and you are going to develop and test your application on actual hardware.
</para></listitem>
<listitem><para>Download the image from the
<ulink url='&YOCTO_QEMU_DL_URL;'>
<filename>machines/qemu</filename></ulink> if your target architecture is supported
and you are going to develop and test your application using the QEMU
emulator.</para></listitem>
<listitem><para>Build your image if you cannot find a pre-built image that matches
your target architecture.
If your target architecture is similar to a supported architecture, you can
modify the kernel image before you build it.
See the
"<link linkend='kernel-modification-workflow'>Kernel Modification Workflow</link>"
section earlier in this manual for information on how to create a modified
Yocto Project kernel.</para></listitem>
</itemizedlist></para>
<para>For information on pre-built kernel image naming schemes for images
that can run on the QEMU emulator, see the
"<ulink url='&YOCTO_DOCS_QS_URL;#downloading-the-pre-built-linux-kernel'>Downloading the Pre-Built Linux Kernel</ulink>"
section in the Yocto Project Quick Start.</para></listitem>
<listitem><para><emphasis>Install the ADT</emphasis>:
The ADT provides a target-specific cross-development toolchain, the root filesystem,
the QEMU emulator, and other tools that can help you develop your application.
While it is possible to get these pieces separately, the ADT Installer provides an
easy method.
You can get these pieces by running an ADT installer script, which is configurable.
For information on how to install the ADT, see the
"<ulink url='&YOCTO_DOCS_ADT_URL;#using-the-adt-installer'>Using the ADT Installer</ulink>"
section
in the Yocto Project Application Developer's Guide.</para></listitem>
<listitem><para><emphasis>If Applicable, Secure the Target Root Filesystem</emphasis>:
If you choose not to install the ADT using the ADT Installer,
you need to find and download the
appropriate root filesystems.
You can find these tarballs in the same areas used for the kernel images.
Depending on the type of image you are running, the root filesystem you need differs.
For example, if you are developing an application that runs on an image that
supports Sato, you need to get root filesystem that supports Sato.
</para></listitem>
<listitem><para><emphasis>Create and Build your Application</emphasis>:
At this point, you need to have source files for your application.
Once you have the files, you can use the Eclipse IDE to import them and build the
project.
If you are not using Eclipse, you need to use the cross-development tools you have
installed to create the image.</para></listitem>
<listitem><para><emphasis>Deploy the Image with the Application</emphasis>:
If you are using the Eclipse IDE, you can deploy your image to the hardware or to
QEMU through the project's preferences.
If you are not using the Eclipse IDE, then you need to deploy the application using
other methods to the hardware.
Or, if you are using QEMU, you need to use that tool and load your image in for testing.
</para></listitem>
<listitem><para><emphasis>Test and Debug the Application</emphasis>:
Once your application is deployed, you need to test it.
Within the Eclipse IDE, you can use the debubbing environment along with the
set of user-space tools installed along with the ADT to debug your application.
Of course, the same user-space tools are available separately if you choose
not to use the Eclipse IDE.</para></listitem>
</orderedlist>
</para>
</section>
<section id='adt-eclipse'>
<title>Working Within Eclipse</title>
<para>
The Eclipse IDE is a popular development environment and it fully supports
development using the Yocto Project.
<note>This release of the Yocto Project supports both the Juno and Indigo versions
of the Eclipse IDE.
Thus, the following information provides setup information for both versions.
</note>
</para>
<para>
When you install and configure the Eclipse Yocto Project Plug-in into
the Eclipse IDE, you maximize your Yocto Project experience.
Installing and configuring the Plug-in results in an environment that
has extensions specifically designed to let you more easily develop software.
These extensions allow for cross-compilation, deployment, and execution of
your output into a QEMU emulation session.
You can also perform cross-debugging and profiling.
The environment also supports a suite of tools that allows you to perform
remote profiling, tracing, collection of power data, collection of
latency data, and collection of performance data.
</para>
<para>
This section describes how to install and configure the Eclipse IDE
Yocto Plug-in and how to use it to develop your application.
</para>
<section id='setting-up-the-eclipse-ide'>
<title>Setting Up the Eclipse IDE</title>
<para>
To develop within the Eclipse IDE, you need to do the following:
<orderedlist>
<listitem><para>Install the optimal version of the Eclipse IDE.</para></listitem>
<listitem><para>Configure the Eclipse IDE.</para></listitem>
<listitem><para>Install the Eclipse Yocto Plug-in.</para></listitem>
<listitem><para>Configure the Eclipse Yocto Plug-in.</para></listitem>
</orderedlist>
<note>
Do not install Eclipse from your distribution's package repository.
Be sure to install Eclipse from the official Eclipse download site as directed
in the next section.
</note>
</para>
<section id='installing-eclipse-ide'>
<title>Installing the Eclipse IDE</title>
<para>
It is recommended that you have the Juno 4.2 version of the
Eclipse IDE installed on your development system.
However, if you currently have the Indigo 3.7.2 version installed and you do
not want to upgrade the IDE, you can configure Indigo to work with the
Yocto Project.
See the
"<link linkend='configuring-the-eclipse-ide-indigo'>Configuring the Eclipse IDE (Indigo)</link>"
section.
</para>
<para>
If you don’t have the Juno 4.2 Eclipse IDE installed, you can find the tarball at
<ulink url='&ECLIPSE_MAIN_URL;'></ulink>.
From that site, choose the Eclipse Classic version particular to your development
host.
This version contains the Eclipse Platform, the Java Development
Tools (JDT), and the Plug-in Development Environment.
</para>
<para>
Once you have downloaded the tarball, extract it into a clean
directory.
For example, the following commands unpack and install the Eclipse IDE
tarball found in the <filename>Downloads</filename> area
into a clean directory using the default name <filename>eclipse</filename>:
<literallayout class='monospaced'>
$ cd ~
$ tar -xzvf ~/Downloads/eclipse-SDK-4.2-linux-gtk-x86_64.tar.gz
</literallayout>
</para>
<para>
If you have the Indigo 3.7.2 Eclipse IDE already installed and you want to use that
version, one issue exists that you need to be aware of regarding the Java
Virtual machine’s garbage collection (GC) process.
The GC process does not clean up the permanent generation
space (PermGen).
This space stores metadata descriptions of classes.
The default value is set too small and it could trigger an
out-of-memory error such as the following:
<literallayout class='monospaced'>
Java.lang.OutOfMemoryError: PermGen space
</literallayout>
</para>
<para>
This error causes the application to hang.
</para>
<para>
To fix this issue, you can use the <filename>--vmargs</filename>
option when you start the Indigo 3.7.2 Eclipse IDE
to increase the size of the permanent generation space:
<literallayout class='monospaced'>
eclipse --vmargs --XX:PermSize=256M
</literallayout>
</para>
</section>
<section id='configuring-the-eclipse-ide-juno'>
<title>Configuring the Eclipse IDE (Juno)</title>
<para>
This section presents the steps needed to configure the Juno 4.2 Eclipse IDE.
If you are using Indigo 3.7.2, see the
"<link linkend='configuring-the-eclipse-ide-indigo'>Configuring the Eclipse IDE (Indigo)</link>".
</para>
<para>
Before installing and configuring the Eclipse Yocto Plug-in, you need to configure
the Juno 4.2 Eclipse IDE.
Follow these general steps:
<orderedlist>
<listitem><para>Start the Eclipse IDE.</para></listitem>
<listitem><para>Make sure you are in your Workbench and select
"Install New Software" from the "Help" pull-down menu.
</para></listitem>
<listitem><para>Select <filename>Juno - &ECLIPSE_JUNO_URL;</filename>
from the "Work with:" pull-down menu.</para></listitem>
<listitem><para>Expand the box next to "Linux Tools" and select the
"LTTng - Linux Tracing Toolkit" boxes.</para></listitem>
<listitem><para>Expand the box next to "Mobile and Device Development" and select the
following boxes:
<itemizedlist>
<listitem><para><filename>C/C++ Remote Launch</filename></para></listitem>
<listitem><para><filename>Remote System Explorer End-user Runtime</filename></para></listitem>
<listitem><para><filename>Remote System Explorer User Actions</filename></para></listitem>
<listitem><para><filename>Target Management Terminal</filename></para></listitem>
<listitem><para><filename>TCF Remote System Explorer add-in</filename></para></listitem>
<listitem><para><filename>TCF Target Explorer</filename></para></listitem>
</itemizedlist></para></listitem>
<listitem><para>Expand the box next to <filename>Programming Languages</filename>
and select the <filename>Autotools Support for CDT</filename>
and <filename>C/C++ Development Tools</filename> boxes.</para></listitem>
<listitem><para>Complete the installation and restart the Eclipse IDE.</para></listitem>
</orderedlist>
</para>
</section>
<section id='configuring-the-eclipse-ide-indigo'>
<title>Configuring the Eclipse IDE (Indigo)</title>
<para>
This section presents the steps needed to configure the Indigo 3.7.2 Eclipse IDE.
If you are using Juno 4.2, see the
"<link linkend='configuring-the-eclipse-ide-juno'>Configuring the Eclipse IDE (Juno)</link>".
</para>
<para>
Before installing and configuring the Eclipse Yocto Plug-in, you need to configure
the Indigo 3.7.2 Eclipse IDE.
Follow these general steps:
<orderedlist>
<listitem><para>Start the Eclipse IDE.</para></listitem>
<listitem><para>Make sure you are in your Workbench and select
"Install New Software" from the "Help" pull-down menu.
</para></listitem>
<listitem><para>Select <filename>indigo - &ECLIPSE_INDIGO_URL;</filename>
from the "Work with:" pull-down menu.</para></listitem>
<listitem><para>Expand the box next to <filename>Programming Languages</filename>
and select the <filename>Autotools Support for CDT (incubation)</filename>
and <filename>C/C++ Development Tools</filename> boxes.</para></listitem>
<listitem><para>Expand the box next to "Linux Tools" and select the
"LTTng - Linux Tracing Toolkit(incubation)" boxes.</para></listitem>
<listitem><para>Complete the installation and restart the Eclipse IDE.</para></listitem>
<listitem><para>After the Eclipse IDE restarts and from the Workbench, select
"Install New Software" from the "Help" pull-down menu.</para></listitem>
<listitem><para>Click the
"Available Software Sites" link.</para></listitem>
<listitem><para>Check the box next to
<filename>&ECLIPSE_UPDATES_URL;</filename>
and click "OK".</para></listitem>
<listitem><para>Select <filename>&ECLIPSE_UPDATES_URL;</filename>
from the "Work with:" pull-down menu.</para></listitem>
<listitem><para>Check the box next to <filename>TM and RSE Main Features</filename>.
</para></listitem>
<listitem><para>Expand the box next to <filename>TM and RSE Optional Add-ons</filename>
and select every item except <filename>RSE Unit Tests</filename> and
<filename>RSE WinCE Services (incubation)</filename>.</para></listitem>
<listitem><para>Complete the installation and restart the Eclipse IDE.</para></listitem>
<listitem><para>If necessary, select
"Install New Software" from the "Help" pull-down menu so you can click the
"Available Software Sites" link again.</para></listitem>
<listitem><para>After clicking "Available Software Sites", check the box next to
<filename>http://download.eclipse.org/tools/cdt/releases/indigo</filename>
and click "OK".</para></listitem>
<listitem><para>Select <filename>&ECLIPSE_INDIGO_CDT_URL;</filename>
from the "Work with:" pull-down menu.</para></listitem>
<listitem><para>Check the box next to <filename>CDT Main Features</filename>.
</para></listitem>
<listitem><para>Expand the box next to <filename>CDT Optional Features</filename>
and select <filename>C/C++ Remote Launch</filename> and
<filename>Target Communication Framework (incubation)</filename>.</para></listitem>
<listitem><para>Complete the installation and restart the Eclipse IDE.</para></listitem>
</orderedlist>
</para>
</section>
<section id='installing-the-eclipse-yocto-plug-in'>
<title>Installing or Accessing the Eclipse Yocto Plug-in</title>
<para>
You can install the Eclipse Yocto Plug-in into the Eclipse IDE
one of two ways: use the Yocto Project's Eclipse Update site to install the pre-built plug-in,
or build and install the plug-in from the latest source code.
If you don't want to permanently install the plug-in but just want to try it out
within the Eclipse environment, you can import the plug-in project from the
Yocto Project source repositories.
</para>
<section id='new-software'>
<title>Installing the Pre-built Plug-in from the Yocto Project Eclipse Update Site</title>
<para>
To install the Eclipse Yocto Plug-in from the update site,
follow these steps:
<orderedlist>
<listitem><para>Start up the Eclipse IDE.</para></listitem>
<listitem><para>In Eclipse, select "Install New Software" from the "Help" menu.</para></listitem>
<listitem><para>Click "Add..." in the "Work with:" area.</para></listitem>
<listitem><para>Enter
<filename>&ECLIPSE_DL_PLUGIN_URL;</filename>
in the URL field and provide a meaningful name in the "Name" field.</para></listitem>
<listitem><para>Click "OK" to have the entry added to the "Work with:"
drop-down list.</para></listitem>
<listitem><para>Select the entry for the plug-in from the "Work with:" drop-down
list.</para></listitem>
<listitem><para>Check the box next to <filename>Development tools and SDKs for Yocto Linux</filename>.
</para></listitem>
<listitem><para>Complete the remaining software installation steps and
then restart the Eclipse IDE to finish the installation of the plug-in.
</para></listitem>
</orderedlist>
</para>
</section>
<section id='zip-file-method'>
<title>Installing the Plug-in Using the Latest Source Code</title>
<para>
To install the Eclipse Yocto Plug-in from the latest source code, follow these steps:
<orderedlist>
<listitem><para>Open a shell and create a Git repository with:
<literallayout class='monospaced'>
$ git clone git://git.yoctoproject.org/eclipse-poky yocto-eclipse
</literallayout>
For this example, the repository is named
<filename>~/yocto-eclipse</filename>.</para></listitem>
<listitem><para>Be sure you are in the right branch for your Git repository.
For this release set the branch to <filename>1.3_beta</filename>:
<literallayout class='monospaced'>
$ git checkout -b 1.3_beta origin/1.3_beta
</literallayout></para></listitem>
<listitem><para>Locate the <filename>build.sh</filename> script in the
Git repository you created in the previous step.
The script is located in the <filename>scripts</filename>.</para></listitem>
<listitem><para>Be sure to set and export the <filename>ECLIPSE_HOME</filename> environment
variable to the top-level directory in which you installed your version of Eclipse.
For example, if your Eclipse directory is <filename>$HOME/eclipse</filename>,
use the following:
<literallayout class='monospaced'>
$ export ECLIPSE_HOME=$HOME/eclipse
</literallayout></para></listitem>
<listitem><para>Be sure you have the right branch in the Poky Git repository
checked out.
For example, the following commands checkout the <filename>1.3_beta</filename>
branch in the local Poky Git repository:
<literallayout class='monospaced'>
$ cd ~/poky
$ git checkout -b 1.3_beta origin/1.3_beta
</literallayout></para></listitem>
<listitem><para>Move back to your Yocto Eclipse directory and
run the <filename>build.sh</filename> script.
Provide the name of the Git branch along with the Yocto Project release you are
using.
Here is an example that uses the <filename>1.3_beta</filename> branches:
<literallayout class='monospaced'>
$ scripts/build.sh 1.3_beta 1.3_beta
</literallayout>
After running the script, the file
<filename>org.yocto.sdk-<release>-<date>-archive.zip</filename>
is in the current directory.</para></listitem>
<listitem><para>If necessary, start the Eclipse IDE and be sure you are in the
Workbench.</para></listitem>
<listitem><para>Select "Install New Software" from the "Help" pull-down menu.
</para></listitem>
<listitem><para>Click "Add".</para></listitem>
<listitem><para>Provide anything you want in the "Name" field.</para></listitem>
<listitem><para>Click "Archive" and browse to the ZIP file you built
in step four.
This ZIP file should not be "unzipped", and must be the
<filename>*archive.zip</filename> file created by running the
<filename>build.sh</filename> script.</para></listitem>
<listitem><para>Click through the "Okay" buttons.</para></listitem>
<listitem><para>Check the box next to the new entry in the installation window and complete
the installation.</para></listitem>
<listitem><para>Restart the Eclipse IDE if necessary.</para></listitem>
</orderedlist>
</para>
<para>
At this point you should be able to configure the Eclipse Yocto Plug-in as described in the
"<link linkend='configuring-the-eclipse-yocto-plug-in'>Configuring the Eclipse Yocto Plug-in</link>"
section.</para>
</section>
<section id='yocto-project-source'>
<title>Importing the Plug-in Project into the Eclipse Environment</title>
<para>
Importing the Eclipse Yocto Plug-in project from the Yocto Project source repositories
is useful when you want to try out the latest plug-in from the tip of plug-in's
development tree.
It is important to understand when you import the plug-in you are not installing
it into the Eclipse application.
Rather, you are importing the project and just using it.
To import the plug-in project, follow these steps:
<orderedlist>
<listitem><para>Open a shell and create a Git repository with:
<literallayout class='monospaced'>
$ git clone git://git.yoctoproject.org/eclipse-poky yocto-eclipse
</literallayout>
For this example, the repository is named
<filename>~/yocto-eclipse</filename>.</para></listitem>
<listitem><para>In Eclipse, select "Import" from the "File" menu.</para></listitem>
<listitem><para>Expand the "General" box and select "existing projects into workspace"
and then click "Next".</para></listitem>
<listitem><para>Select the root directory and browse to
<filename>~/yocto-eclipse/plugins</filename>.</para></listitem>
<listitem><para>Three plug-ins exist: "org.yocto.bc.ui", "org.yocto.sdk.ide", and
"org.yocto.sdk.remotetools".
Select and import all of them.</para></listitem>
</orderedlist>
</para>
<para>
The left navigation pane in the Eclipse application shows the default projects.
Right-click on one of these projects and run it as an Eclipse application.
This brings up a second instance of Eclipse IDE that has the Yocto Plug-in.
</para>
</section>
</section>
<section id='configuring-the-eclipse-yocto-plug-in'>
<title>Configuring the Eclipse Yocto Plug-in</title>
<para>
Configuring the Eclipse Yocto Plug-in involves setting the Cross
Compiler options and the Target options.
The configurations you choose become the default settings for all projects.
You do have opportunities to change them later when
you configure the project (see the following section).
</para>
<para>
To start, you need to do the following from within the Eclipse IDE:
<itemizedlist>
<listitem><para>Choose <filename>Windows -> Preferences</filename> to display
the <filename>Preferences</filename> Dialog</para></listitem>
<listitem><para>Click <filename>Yocto Project ADT</filename></para></listitem>
</itemizedlist>
</para>
<section id='configuring-the-cross-compiler-options'>
<title>Configuring the Cross-Compiler Options</title>
<para>
To configure the Cross Compiler Options, you must select the type of toolchain,
point to the toolchain, specify the sysroot location, and select the target architecture.
<itemizedlist>
<listitem><para><emphasis>Selecting the Toolchain Type:</emphasis>
Choose between <filename>Standalone pre-built toolchain</filename>
and <filename>Build system derived toolchain</filename> for Cross
Compiler Options.
<itemizedlist>
<listitem><para><emphasis>
<filename>Standalone Pre-built Toolchain:</filename></emphasis>
Select this mode when you are using a stand-alone cross-toolchain.
For example, suppose you are an application developer and do not
need to build a target image.
Instead, you just want to use an architecture-specific toolchain on an
existing kernel and target root filesystem.
</para></listitem>
<listitem><para><emphasis>
<filename>Build System Derived Toolchain:</filename></emphasis>
Select this mode if the cross-toolchain has been installed and built
as part of the build directory.
When you select <filename>Build system derived toolchain</filename>,
you are using the toolchain bundled
inside the build directory.
</para></listitem>
</itemizedlist>
</para></listitem>
<listitem><para><emphasis>Point to the Toolchain:</emphasis>
If you are using a stand-alone pre-built toolchain, you should be pointing to the
<filename>&YOCTO_ADTPATH_DIR;</filename> directory.
This is the location for toolchains installed by the ADT Installer or by hand.
Sections "<ulink url='&YOCTO_DOCS_ADT_URL;#configuring-and-running-the-adt-installer-script'>Configuring
and Running the ADT Installer Script</ulink>" and
"<ulink url='&YOCTO_DOCS_ADT_URL;#using-an-existing-toolchain-tarball'>Using a Cross-Toolchain Tarball</ulink>"
in the Yocto Project Application Developer's Guide
describe two ways to install a stand-alone cross-toolchain in the
<filename>/opt/poky</filename> directory.
<note>It is possible to install a stand-alone cross-toolchain in a directory
other than <filename>/opt/poky</filename>.
However, doing so is discouraged.</note></para>
<para>If you are using a system-derived toolchain, the path you provide
for the <filename>Toolchain Root Location</filename>
field is the build directory.
See the "<ulink url='&YOCTO_DOCS_ADT_URL;#using-the-toolchain-from-within-the-build-tree'>Using
BitBake and the build directory</ulink>" section in the Yocto Project Application
Developer's Guide for information on how to install the toolchain into the build
directory.</para></listitem>
<listitem><para><emphasis>Specify the Sysroot Location:</emphasis>
This location is where the root filesystem for the target hardware resides.
If you used the ADT Installer, then the location is
<filename>/opt/poky/<release></filename>.
Additionally, when you use the ADT Installer, the same location is used for
the QEMU user-space tools and the NFS boot process.</para>
<para>If you used either of the other two methods to install the toolchain, then the
location of the sysroot filesystem depends on where you separately
extracted and intalled the filesystem.</para>
<para>For information on how to install the toolchain and on how to extract
and install the sysroot filesystem, see the
"<ulink url='&YOCTO_DOCS_ADT_URL;#installing-the-adt'>Installing the ADT and Toolchains</ulink>" section.
</para></listitem>
<listitem><para><emphasis>Select the Target Architecture:</emphasis>
The target architecture is the type of hardware you are
going to use or emulate.
Use the pull-down <filename>Target Architecture</filename> menu to make
your selection.
The pull-down menu should have the supported architectures.
If the architecture you need is not listed in the menu, you
will need to build the image.
See the "<ulink url='&YOCTO_DOCS_QS_URL;#building-image'>Building an Image</ulink>" section
of the Yocto Project Quick Start for more information.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='configuring-the-target-options'>
<title>Configuring the Target Options</title>
<para>
You can choose to emulate hardware using the QEMU emulator, or you
can choose to run your image on actual hardware.
<itemizedlist>
<listitem><para><emphasis><filename>QEMU:</filename></emphasis> Select this option if
you will be using the QEMU emulator.
If you are using the emulator, you also need to locate the kernel
and specify any custom options.</para>
<para>If you selected <filename>Build system derived toolchain</filename>,
the target kernel you built will be located in the
build directory in <filename>tmp/deploy/images</filename> directory.
If you selected <filename>Standalone pre-built toolchain</filename>, the
pre-built image you downloaded is located
in the directory you specified when you downloaded the image.</para>
<para>Most custom options are for advanced QEMU users to further
customize their QEMU instance.
These options are specified between paired angled brackets.
Some options must be specified outside the brackets.
In particular, the options <filename>serial</filename>,
<filename>nographic</filename>, and <filename>kvm</filename> must all
be outside the brackets.
Use the <filename>man qemu</filename> command to get help on all the options
and their use.
The following is an example:
<literallayout class='monospaced'>
serial ‘<-m 256 -full-screen>’
</literallayout></para>
<para>
Regardless of the mode, Sysroot is already defined as part of the
Cross Compiler Options configuration in the
<filename>Sysroot Location:</filename> field.</para></listitem>
<listitem><para><emphasis><filename>External HW:</filename></emphasis> Select this option
if you will be using actual hardware.</para></listitem>
</itemizedlist>
</para>
<para>
Click the <filename>OK</filename> button to save your plug-in configurations.
</para>
</section>
</section>
</section>
<section id='creating-the-project'>
<title>Creating the Project</title>
<para>
You can create two types of projects: Autotools-based, or Makefile-based.
This section describes how to create Autotools-based projects from within
the Eclipse IDE.
For information on creating Makefile-based projects in a terminal window, see the section
"<ulink url='&YOCTO_DOCS_ADT_URL;#using-the-command-line'>Using the Command Line</ulink>"
in the Yocto Project Application Developer's Guide.
</para>
<para>
To create a project based on a Yocto template and then display the source code,
follow these steps:
<orderedlist>
<listitem><para>Select <filename>File -> New -> Project</filename>.</para></listitem>
<listitem><para>Double click <filename>CC++</filename>.</para></listitem>
<listitem><para>Double click <filename>C Project</filename> to create the project.</para></listitem>
<listitem><para>Expand <filename>Yocto Project ADT Project</filename>.</para></listitem>
<listitem><para>Select <filename>Hello World ANSI C Autotools Project</filename>.
This is an Autotools-based project based on a Yocto template.</para></listitem>
<listitem><para>Put a name in the <filename>Project name:</filename> field.
Do not use hyphens as part of the name.</para></listitem>
<listitem><para>Click <filename>Next</filename>.</para></listitem>
<listitem><para>Add information in the <filename>Author</filename> and
<filename>Copyright notice</filename> fields.</para></listitem>
<listitem><para>Be sure the <filename>License</filename> field is correct.</para></listitem>
<listitem><para>Click <filename>Finish</filename>.</para></listitem>
<listitem><para>If the "open perspective" prompt appears, click "Yes" so that you
in the C/C++ perspective.</para></listitem>
<listitem><para>The left-hand navigation pane shows your project.
You can display your source by double clicking the project's source file.
</para></listitem>
</orderedlist>
</para>
</section>
<section id='configuring-the-cross-toolchains'>
<title>Configuring the Cross-Toolchains</title>
<para>
The earlier section, "<link linkend='configuring-the-eclipse-yocto-plug-in'>Configuring
the Eclipse Yocto Plug-in</link>", sets up the default project
configurations.
You can override these settings for a given project by following these steps:
<orderedlist>
<listitem><para>Select <filename>Project -> Change Yocto Project Settings</filename>:
This selection brings up the <filename>Yocot Project Settings</filename> Dialog
and allows you to make changes specific to an individual project.
</para>
<para>By default, the Cross Compiler Options and Target Options for a project
are inherited from settings you provide using the <filename>Preferences</filename>
Dialog as described earlier
in the "<link linkend='configuring-the-eclipse-yocto-plug-in'>Configuring the Eclipse
Yocto Plug-in</link>" section.
The <filename>Yocto Project Settings</filename>
Dialog allows you to override those default settings
for a given project.</para></listitem>
<listitem><para>Make your configurations for the project and click "OK".
If you are runing the Juno version of Eclipse, you can skip down to the next
section where you build the project.
If you are not working with Juno, you need to reconfigure the project as
described in the next step.</para></listitem>
<listitem><para>Select <filename>Project -> Reconfigure Project</filename>:
This selection reconfigures the project by running
<filename>autogen.sh</filename> in the workspace for your project.
The script also runs <filename>libtoolize</filename>, <filename>aclocal</filename>,
<filename>autoconf</filename>, <filename>autoheader</filename>,
<filename>automake --a</filename>, and
<filename>./configure</filename>.
Click on the <filename>Console</filename> tab beneath your source code to
see the results of reconfiguring your project.</para></listitem>
</orderedlist>
</para>
</section>
<section id='building-the-project'>
<title>Building the Project</title>
<para>
To build the project in Juno, right click on the project in the navigator pane and select
<filename>Build Project</filename>.
If you are not running Juno, select <filename>Project -> Build Project</filename>.
The console should update and you can note the cross-compiler you are using.
</para>
</section>
<section id='starting-qemu-in-user-space-nfs-mode'>
<title>Starting QEMU in User Space NFS Mode</title>
<para>
To start the QEMU emulator from within Eclipse, follow these steps:
<orderedlist>
<listitem><para>Expose the <filename>Run -> External Tools</filename> menu.
Your image should appear as a selectable menu item.
</para></listitem>
<listitem><para>Select your image from the menu to launch the
emulator in a new window.</para></listitem>
<listitem><para>If needed, enter your host root password in the shell window at the prompt.
This sets up a <filename>Tap 0</filename> connection needed for running in user-space
NFS mode.</para></listitem>
<listitem><para>Wait for QEMU to launch.</para></listitem>
<listitem><para>Once QEMU launches, you can begin operating within that
environment.
For example, you could determine the IP Address
for the user-space NFS by using the <filename>ifconfig</filename> command.
</para></listitem>
</orderedlist>
</para>
</section>
<section id='deploying-and-debugging-the-application'>
<title>Deploying and Debugging the Application</title>
<para>
Once the QEMU emulator is running the image, using the Eclipse IDE
you can deploy your application and use the emulator to perform debugging.
Follow these steps to deploy the application.
<orderedlist>
<listitem><para>Select <filename>Run -> Debug Configurations...</filename></para></listitem>
<listitem><para>In the left area, expand <filename>C/C++Remote Application</filename>.</para></listitem>
<listitem><para>Locate your project and select it to bring up a new
tabbed view in the <filename>Debug Configurations</filename> Dialog.</para></listitem>
<listitem><para>Enter the absolute path into which you want to deploy
the application.
Use the <filename>Remote Absolute File Path for C/C++Application:</filename> field.
For example, enter <filename>/usr/bin/<programname></filename>.</para></listitem>
<listitem><para>Click on the <filename>Debugger</filename> tab to see the cross-tool debugger
you are using.</para></listitem>
<listitem><para>Click on the <filename>Main</filename> tab.</para></listitem>
<listitem><para>Create a new connection to the QEMU instance
by clicking on <filename>new</filename>.</para></listitem>
<listitem><para>Select <filename>TCF</filename>, which means Target Communication
Framework.</para></listitem>
<listitem><para>Click <filename>Next</filename>.</para></listitem>
<listitem><para>Clear out the <filename>host name</filename> field and enter the IP Address
determined earlier.</para></listitem>
<listitem><para>Click <filename>Finish</filename> to close the
<filename>New Connections</filename> Dialog.</para></listitem>
<listitem><para>Use the drop-down menu now in the <filename>Connection</filename> field and pick
the IP Address you entered.</para></listitem>
<listitem><para>Click <filename>Run</filename> to bring up a login screen
and login.</para></listitem>
<listitem><para>Accept the debug perspective.</para></listitem>
</orderedlist>
</para>
</section>
<section id='running-user-space-tools'>
<title>Running User-Space Tools</title>
<para>
As mentioned earlier in the manual, several tools exist that enhance
your development experience.
These tools are aids in developing and debugging applications and images.
You can run these user-space tools from within the Eclipse IDE through the
<filename>YoctoTools</filename> menu.
</para>
<para>
Once you pick a tool, you need to configure it for the remote target.
Every tool needs to have the connection configured.
You must select an existing TCF-based RSE connection to the remote target.
If one does not exist, click <filename>New</filename> to create one.
</para>
<para>
Here are some specifics about the remote tools:
<itemizedlist>
<listitem><para><emphasis><filename>OProfile</filename>:</emphasis> Selecting this tool causes
the <filename>oprofile-server</filename> on the remote target to launch on
the local host machine.
The <filename>oprofile-viewer</filename> must be installed on the local host machine and the
<filename>oprofile-server</filename> must be installed on the remote target,
respectively, in order to use.
You must compile and install the <filename>oprofile-viewer</filename> from the source code
on your local host machine.
Furthermore, in order to convert the target's sample format data into a form that the
host can use, you must have <filename>oprofile</filename> version 0.9.4 or
greater installed on the host.</para>
<para>You can locate both the viewer and server from
<ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi/oprofileui/'></ulink>.
<note>The <filename>oprofile-server</filename> is installed by default on
the <filename>core-image-sato-sdk</filename> image.</note></para></listitem>
<listitem><para><emphasis><filename>Lttng-ust</filename>:</emphasis> Selecting this tool runs
<filename>usttrace</filename> on the remote target, transfers the output data back
to the local host machine, and uses the <filename>lttng</filename> Eclipse plug-in to
graphically display the output.
For information on how to use <filename>lttng</filename> to trace an application, see
<ulink url='http://lttng.org/files/ust/manual/ust.html'></ulink>.</para>
<para>For <filename>Application</filename>, you must supply the absolute path name of the
application to be traced by user mode <filename>lttng</filename>.
For example, typing <filename>/path/to/foo</filename> triggers
<filename>usttrace /path/to/foo</filename> on the remote target to trace the
program <filename>/path/to/foo</filename>.</para>
<para><filename>Argument</filename> is passed to <filename>usttrace</filename>
running on the remote target.</para>
<para>Before you use the <filename>lttng-ust</filename> tool, you need to setup
the <filename>lttng</filename> Eclipse plug-in and create a <filename>lttng</filename>
project.
Do the following:
<orderedlist>
<listitem><para>Follow these
<ulink url='http://wiki.eclipse.org/Linux_Tools_Project/LTTng#Downloading_and_installing_the_LTTng_parser_library'>instructions</ulink>
to download and install the <filename>lttng</filename> parser library.
</para></listitem>
<listitem><para>Select <filename>Window -> Open Perspective -> Other</filename>
and then select <filename>LTTng</filename>.</para></listitem>
<listitem><para>Click <filename>OK</filename> to change the Eclipse perspective
into the <filename>LTTng</filename> perspective.</para></listitem>
<listitem><para>Create a new <filename>LTTng</filename> project by selecting
<filename>File -> New -> Project</filename>.</para></listitem>
<listitem><para>Choose <filename>LTTng -> LTTng Project</filename>.</para></listitem>
<listitem><para>Click <filename>YoctoTools -> lttng-ust</filename> to start user mode
<filename>lttng</filename> on the remote target.</para></listitem>
</orderedlist></para>
<para>After the output data has been transferred from the remote target back to the local
host machine, new traces will be imported into the selected <filename>LTTng</filename> project.
Then you can go to the <filename>LTTng</filename> project, right click the imported
trace, and set the trace type as the <filename>LTTng</filename> kernel trace.
Finally, right click the imported trace and select <filename>Open</filename>
to display the data graphically.</para></listitem>
<listitem><para><emphasis><filename>PowerTOP</filename>:</emphasis> Selecting this tool runs
<filename>powertop</filename> on the remote target machine and displays the results in a
new view called <filename>powertop</filename>.</para>
<para><filename>Time to gather data(sec):</filename> is the time passed in seconds before data
is gathered from the remote target for analysis.</para>
<para><filename>show pids in wakeups list:</filename> corresponds to the
<filename>-p</filename> argument
passed to <filename>powertop</filename>.</para></listitem>
<listitem><para><emphasis><filename>LatencyTOP and Perf</filename>:</emphasis>
<filename>latencytop</filename> identifies system latency, while
<filename>perf</filename> monitors the system's
performance counter registers.
Selecting either of these tools causes an RSE terminal view to appear
from which you can run the tools.
Both tools refresh the entire screen to display results while they run.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='customizing-an-image-using-a-bitbake-commander-project-and-hob'>
<title>Customizing an Image Using a BitBake Commander Project and Hob</title>
<para>
Within Eclipse, you can create a Yocto BitBake Commander project,
edit the metadata, and then use the
<ulink url='&YOCTO_HOME_URL;/projects/hob'>Hob</ulink> to build a customized
image all within one IDE.
</para>
<section id='creating-the-yocto-bitbake-commander-project'>
<title>Creating the Yocto BitBake Commander Project</title>
<para>
To create a Yocto BitBake Commander project, follow these steps:
<orderedlist>
<listitem><para>Select <filename>Window -> Open Perspective -> Other</filename>
and then choose <filename>Bitbake Commander</filename>.</para></listitem>
<listitem><para>Click <filename>OK</filename> to change the Eclipse perspective into the
Bitbake Commander perspective.</para></listitem>
<listitem><para>Select <filename>File -> New -> Project</filename> to create a new Yocto
Bitbake Commander project.</para></listitem>
<listitem><para>Choose <filename>Yocto Project Bitbake Commander -> New Yocto Project</filename>
and click <filename>Next</filename>.</para></listitem>
<listitem><para>Enter the Project Name and choose the Project Location.
The Yocto project's metadata files will be put under the directory
<filename><project_location>/<project_name></filename>.
If that directory does not exist, you need to check
the "Clone from Yocto Git Repository" box, which would execute a
<filename>git clone</filename> command to get the project's metadata files.
</para></listitem>
<listitem><para>Select <filename>Finish</filename> to create the project.</para></listitem>
</orderedlist>
</para>
</section>
<section id='editing-the-metadata-files'>
<title>Editing the Metadata Files</title>
<para>
After you create the Yocto Bitbake Commander project, you can modify the metadata files
by opening them in the project.
When editing recipe files (<filename>.bb</filename> files), you can view BitBake
variable values and information by hovering the mouse pointer over the variable name and
waiting a few seconds.
</para>
<para>
To edit the metadata, follow these steps:
<orderedlist>
<listitem><para>Select your Yocto Bitbake Commander project.</para></listitem>
<listitem><para>Select <filename>File -> New -> Yocto BitBake Commander -> BitBake Recipe</filename>
to open a new recipe wizard.</para></listitem>
<listitem><para>Point to your source by filling in the "SRC_URL" field.
For example, you can add a recipe to your
<ulink url='&YOCTO_DOCS_DEV_URL;#source-directory'>source directory</ulink>
by defining "SRC_URL" as follows:
<literallayout class='monospaced'>
ftp://ftp.gnu.org/gnu/m4/m4-1.4.9.tar.gz
</literallayout></para></listitem>
<listitem><para>Click "Populate" to calculate the archive md5, sha256,
license checksum values and to auto-generate the recipe filename.</para></listitem>
<listitem><para>Fill in the "Description" field.</para></listitem>
<listitem><para>Be sure values for all required fields exist.</para></listitem>
<listitem><para>Click <filename>Finish</filename>.</para></listitem>
</orderedlist>
</para>
</section>
<section id='buiding-and-customizing-the-image'>
<title>Building and Customizing the Image</title>
<para>
To build and customize the image in Eclipse, follow these steps:
<orderedlist>
<listitem><para>Select your Yocto Bitbake Commander project.</para></listitem>
<listitem><para>Select <filename>Project -> Launch HOB</filename>.</para></listitem>
<listitem><para>Enter the build directory where you want to put your final images.</para></listitem>
<listitem><para>Click <filename>OK</filename> to launch Hob.</para></listitem>
<listitem><para>Use Hob to customize and build your own images.
For information on Hob, see the
<ulink url='&YOCTO_HOME_URL;/projects/hob'>Hob Project Page</ulink> on the
Yocto Project website.</para></listitem>
</orderedlist>
</para>
</section>
</section>
</section>
<section id='workflow-using-stand-alone-cross-development-toolchains'>
<title>Workflow Using Stand-alone Cross-development Toolchains</title>
<para>
If you want to develop an application without prior installation of the ADT, you
still can employ the cross-development toolchain, the QEMU emulator, and a number of supported
target image files.
You just need to follow these general steps:
<orderedlist>
<listitem><para><emphasis>Install the cross-development toolchain for your target hardware:</emphasis>
For information on how to install the toolchain, see the
"<ulink url='&YOCTO_DOCS_ADT_URL;#using-an-existing-toolchain-tarball'>Using a Cross-Toolchain Tarball</ulink>"
section
in the Yocto Project Application Developer's Guide.</para></listitem>
<listitem><para><emphasis>Download the Target Image:</emphasis> The Yocto Project supports
several target architectures and has many pre-built kernel images and root filesystem
images.</para>
<para>If you are going to develop your application on hardware, go to the
<ulink url='&YOCTO_MACHINES_DL_URL;'><filename>machines</filename></ulink>
download area and choose a target machine area
from which to download the kernel image and root filesystem.
This download area could have several files in it that support development using
actual hardware.
For example, the area might contain <filename>.hddimg</filename> files that combine the
kernel image with the filesystem, boot loaders, etc.
Be sure to get the files you need for your particular development process.</para>
<para>If you are going to develop your application and then run and test it using the QEMU
emulator, go to the
<ulink url='&YOCTO_QEMU_DL_URL;'><filename>machines/qemu</filename></ulink>
download area.
From this area, go down into the directory for your target architecture
(e.g. <filename>qemux86_64</filename> for an
<trademark class='registered'>Intel</trademark>-based 64-bit architecture).
Download kernel, root filesystem, and any other files you need for your process.
<note>In order to use the root filesystem in QEMU, you need to extract it.
See the
"<ulink url='&YOCTO_DOCS_ADT_URL;#extracting-the-root-filesystem'>Extracting the Root Filesystem</ulink>"
section for information on how to extract the root filesystem.</note></para></listitem>
<listitem><para><emphasis>Develop and Test your Application:</emphasis> At this point,
you have the tools to develop your application.
If you need to separately install and use the QEMU emulator, you can go to
<ulink url='http://www.qemu.org'>QEMU Home Page</ulink> to download and learn about the
emulator.</para></listitem>
</orderedlist>
</para>
</section>
</section>
<section id="modifying-temporary-source-code">
<title>Modifying Temporary Source Code</title>
<para>
You might
find it helpful during development to modify the temporary source code used by recipes
to build packages.
For example, suppose you are developing a patch and you need to experiment a bit
to figure out your solution.
After you have initially built the package, you can iteratively tweak the
source code, which is located in the
<link linkend='build-directory'>build directory</link>, and then
you can force a re-compile and quickly test your altered code.
Once you settle on a solution, you can then preserve your changes in the form of
patches.
You can accomplish these steps all within either a
<ulink url='http://savannah.nongnu.org/projects/quilt'>Quilt</ulink> or
<link linkend='git'>Git</link> workflow.
</para>
<section id='finding-the-temporary-source-code'>
<title>Finding the Temporary Source Code</title>
<para>
During a build, the unpacked temporary source code used by recipes
to build packages is available in the build directory as
defined by the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-S'>S</ulink></filename> variable.
Below is the default value for the <filename>S</filename> variable as defined in the
<filename>meta/conf/bitbake.conf</filename> configuration file in the
<link linkend='source-directory'>source directory</link>:
<literallayout class='monospaced'>
S = ${WORKDIR}/${BP}
</literallayout>
You should be aware that many recipes override the <filename>S</filename> variable.
For example, recipes that fetch their source from Git usually set
<filename>S</filename> to <filename>${WORKDIR}/git</filename>.
<note>
<filename>BP</filename> represents the "Base Package", which is the base package
name and the package version:
<literallayout class='monospaced'>
BP = ${BPN}-${PV}
</literallayout>
</note>
</para>
<para>
The path to the work directory for the recipe
(<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>) depends
on the package name and the architecture of the target device.
For example, here is the work directory for packages whose targets are not device-dependent:
<literallayout class='monospaced'>
${TMPDIR}/work/${PACKAGE_ARCH}-poky-${TARGET_OS}/${PN}-${PV}-${PR}
</literallayout>
Let's look at an example without variables.
Assuming a top-level source directory named <filename>poky</filename>
and a default build directory of <filename>poky/build</filename>,
the following is the work directory for the <filename>acl</filename> package:
<literallayout class='monospaced'>
~/poky/build/tmp/work/i586-poky-linux/acl-2.2.51-r3
</literallayout>
</para>
<para>
If your package is dependent on the target device, the work directory varies slightly:
<literallayout class='monospaced'>
${TMPDIR}/work/${MACHINE}-poky-${TARGET_OS}/${PN}-${PV}-${PR}
</literallayout>
Again, assuming top-level source directory named <filename>poky</filename>
and a default build directory of <filename>poky/build</filename>, the
following is the work directory for the <filename>acl</filename> package that is being
built for a MIPS-based device:
<literallayout class='monospaced'>
~/poky/build/tmp/work/mips-poky-linux/acl-2.2.51-r2
</literallayout>
</para>
<note>
To better understand how the OpenEmbedded build system resolves directories during the
build process, see the glossary entries for the
<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-TOPDIR'><filename>TOPDIR</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_ARCH'><filename>PACKAGE_ARCH</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-TARGET_OS'><filename>TARGET_OS</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-PN'><filename>PN</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-PV'><filename>PV</filename></ulink>,
and
<ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>
variables in the Yocto Project Reference Manual.
</note>
<para>
Now that you know where to locate the directory that has the temporary source code, you can use a
Quilt or Git workflow to make your edits, test the changes, and preserve the
changes in the form of patches.
</para>
</section>
<section id="using-a-quilt-workflow">
<title>Using a Quilt Workflow</title>
<para>
<ulink url='http://savannah.nongnu.org/projects/quilt'>Quilt</ulink>
is a powerful tool that allows you to capture source code changes without having
a clean source tree.
This section outlines the typical workflow you can use to modify temporary source code,
test changes, and then preserve the changes in the form of a patch all using Quilt.
</para>
<para>
Follow these general steps:
<orderedlist>
<listitem><para><emphasis>Find the Source Code:</emphasis>
The temporary source code used by the OpenEmbedded build system is kept in the
build directory.
See the
"<link linkend='finding-the-temporary-source-code'>Finding the Temporary Source Code</link>"
section to learn how to locate the directory that has the temporary source code for a
particular package.</para></listitem>
<listitem><para><emphasis>Change Your Working Directory:</emphasis>
You need to be in the directory that has the temporary source code.
That directory is defined by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'>S</ulink>
variable.</para></listitem>
<listitem><para><emphasis>Create a New Patch:</emphasis>
Before modifying source code, you need to create a new patch.
To create a new patch file, use <filename>quilt new</filename> as below:
<literallayout class='monospaced'>
$ quilt new my_changes.patch
</literallayout></para></listitem>
<listitem><para><emphasis>Notify Quilt and Add Files:</emphasis>
After creating the patch, you need to notify Quilt about the files you will
be changing.
Add the files you will be modifying into the patch you just created:
<literallayout class='monospaced'>
$ quilt add file1.c file2.c file3.c
</literallayout></para></listitem>
<listitem><para><emphasis>Edit the Files:</emphasis>
Make the changes to the temporary source code.</para></listitem>
<listitem><para><emphasis>Test Your Changes:</emphasis>
Once you have modified the source code, the easiest way to test your changes
is by calling the <filename>compile</filename> task as shown in the following example:
<literallayout class='monospaced'>
$ bitbake -c compile -f <name_of_package>
</literallayout>
The <filename>-f</filename> or <filename>--force</filename>
option forces re-execution of the specified task.
If you find problems with your code, you can just keep editing and
re-testing iteratively until things work as expected.
<note>All the modifications you make to the temporary source code
disappear once you <filename>-c clean</filename> or
<filename>-c cleanall</filename> with BitBake for the package.
Modifications will also disappear if you use the <filename>rm_work</filename>
feature as described in the
"<ulink url='&YOCTO_DOCS_QS_URL;#building-image'>Building an Image</ulink>"
section of the Yocto Project Quick Start.
</note></para></listitem>
<listitem><para><emphasis>Generate the Patch:</emphasis>
Once your changes work as expected, you need to use Quilt to generate the final patch that
contains all your modifications.
<literallayout class='monospaced'>
$ quilt refresh
</literallayout>
At this point the <filename>my_changes.patch</filename> file has all your edits made
to the <filename>file1.c</filename>, <filename>file2.c</filename>, and
<filename>file3.c</filename> files.</para>
<para>You can find the resulting patch file in the <filename>patches/</filename>
subdirectory of the source (<filename>S</filename>) directory.</para></listitem>
<listitem><para><emphasis>Copy the Patch File:</emphasis>
For simplicity, copy the patch file into a directory named <filename>files</filename>,
which you can create in the same directory as the recipe.
Placing the patch here guarantees that the OpenEmbedded build system will find
the patch.
Next, add the patch into the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'>SRC_URI</ulink></filename>
of the recipe.
Here is an example:
<literallayout class='monospaced'>
SRC_URI += "file://my_changes.patch"
</literallayout></para></listitem>
<listitem><para><emphasis>Increment the Package Revision Number:</emphasis>
Finally, don't forget to 'bump' the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PR'>PR</ulink></filename>
value in the same recipe since the resulting packages have changed.</para></listitem>
</orderedlist>
</para> </section>
<section id='using-a-git-workflow'>
<title>Using a Git Workflow</title>
<para>
Git is an even more powerful tool that allows you to capture source code changes without having
a clean source tree.
This section outlines the typical workflow you can use to modify temporary source code,
test changes, and then preserve the changes in the form of a patch all using Git.
For general information on Git as it is used in the Yocto Project, see the
"<link linkend='git'>Git</link>" section.
</para>
<note>
This workflow uses Git only for its ability to manage local changes to the source code
and produce patches independent of any version control system used with the Yocto Project.
</note>
<para>
Follow these general steps:
<orderedlist>
<listitem><para><emphasis>Find the Source Code:</emphasis>
The temporary source code used by the OpenEmbedded build system is kept in the
build directory.
See the
"<link linkend='finding-the-temporary-source-code'>Finding the Temporary Source Code</link>"
section to learn how to locate the directory that has the temporary source code for a
particular package.</para></listitem>
<listitem><para><emphasis>Change Your Working Directory:</emphasis>
You need to be in the directory that has the temporary source code.
That directory is defined by the
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'>S</ulink>
variable.</para></listitem>
<listitem><para><emphasis>Initialize a Git Repository:</emphasis>
Use the <filename>git init</filename> command to initialize a new local repository
that is based on the work directory:
<literallayout class='monospaced'>
$ git init
</literallayout></para></listitem>
<listitem><para><emphasis>Stage all the files:</emphasis>
Use the <filename>git add *</filename> command to stage all the files in the source
code directory so that they can be committed:
<literallayout class='monospaced'>
$ git add *
</literallayout></para></listitem>
<listitem><para><emphasis>Commit the Source Files:</emphasis>
Use the <filename>git commit</filename> command to initially commit all the files in
the work directory:
<literallayout class='monospaced'>
$ git commit
</literallayout>
At this point, your Git repository is aware of all the source code files.
Any edits you now make to files will be tracked by Git.</para></listitem>
<listitem><para><emphasis>Edit the Files:</emphasis>
Make the changes to the temporary source code.</para></listitem>
<listitem><para><emphasis>Test Your Changes:</emphasis>
Once you have modified the source code, the easiest way to test your changes
is by calling the <filename>compile</filename> task as shown in the following example:
<literallayout class='monospaced'>
$ bitbake -c compile -f <name_of_package>
</literallayout>
The <filename>-f</filename> or <filename>--force</filename>
option forces re-execution of the specified task.
If you find problems with your code, you can just keep editing and
re-testing iteratively until things work as expected.
<note>All the modifications you make to the temporary source code
disappear once you <filename>-c clean</filename> or
<filename>-c cleanall</filename> with BitBake for the package.
Modifications will also disappear if you use the <filename>rm_work</filename>
feature as described in the
"<ulink url='&YOCTO_DOCS_QS_URL;#building-image'>Building an Image</ulink>"
section of the Yocto Project Quick Start.
</note></para></listitem>
<listitem><para><emphasis>See the List of Files You Changed:</emphasis>
Use the <filename>git status</filename> command to see what files you have actually edited.
The ability to have Git track the files you have changed is an advantage that this
workflow has over the Quilt workflow.
Here is the Git command to list your changed files:
<literallayout class='monospaced'>
$ git status
</literallayout></para></listitem>
<listitem><para><emphasis>Stage the Modified Files:</emphasis>
Use the <filename>git add</filename> command to stage the changed files so they
can be committed as follows:
<literallayout class='monospaced'>
$ git add file1.c file2.c file3.c
</literallayout></para></listitem>
<listitem><para><emphasis>Commit the Staged Files and View Your Changes:</emphasis>
Use the <filename>git commit</filename> command to commit the changes to the
local repository.
Once you have committed the files, you can use the <filename>git log</filename>
command to see your changes:
<literallayout class='monospaced'>
$ git commit
$ git log
</literallayout></para></listitem>
<listitem><para><emphasis>Generate the Patch:</emphasis>
Once the changes are committed, use the <filename>git format-patch</filename>
command to generate a patch file:
<literallayout class='monospaced'>
$ git format-patch HEAD~1
</literallayout>
The <filename>HEAD~1</filename> part of the command causes Git to generate the
patch file for the most recent commit.</para>
<para>At this point, the patch file has all your edits made
to the <filename>file1.c</filename>, <filename>file2.c</filename>, and
<filename>file3.c</filename> files.
You can find the resulting patch file in the current directory.
The patch file ends with <filename>.patch</filename>.</para></listitem>
<listitem><para><emphasis>Copy the Patch File:</emphasis>
For simplicity, copy the patch file into a directory named <filename>files</filename>,
which you can create in the same directory as the recipe.
Placing the patch here guarantees that the OpenEmbedded build system will find
the patch.
Next, add the patch into the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'>SRC_URI</ulink></filename>
of the recipe.
Here is an example:
<literallayout class='monospaced'>
SRC_URI += "file://my_changes.patch"
</literallayout></para></listitem>
<listitem><para><emphasis>Increment the Package Revision Number:</emphasis>
Finally, don't forget to 'bump' the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PR'>PR</ulink></filename>
value in the same recipe since the resulting packages have changed.</para></listitem>
</orderedlist>
</para>
</section>
</section>
<section id='image-development-using-hob'>
<title>Image Development Using Hob</title>
<para>
The <ulink url='&YOCTO_HOME_URL;/projects/hob'>Hob</ulink> is a graphical user interface for the
OpenEmbedded build system, which is based on BitBake.
You can use the Hob to build custom operating system images within the Yocto Project build environment.
Hob simply provides a friendly interface over the build system used during system development.
In other words, building images with the Hob lets you take care of common build tasks more easily.
</para>
<para>
For a better understanding of Hob, see the project page at
<ulink url='&YOCTO_HOME_URL;/projects/hob'></ulink> on the Yocto Project website.
The page has a short introductory training video on Hob.
The following lists some features of Hob:
<itemizedlist>
<listitem><para>You can setup and run Hob using these commands:
<literallayout class='monospaced'>
$ source oe-init-build-env
$ hob
</literallayout></para></listitem>
<listitem><para>You can set the
<ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'><filename>MACHINE</filename></ulink>
for which you are building the image.</para></listitem>
<listitem><para>You can modify various policy settings such as the package format used to build with,
the parrallelism BitBake uses, whether or not to build an external toolchain, and which host
to build against.</para></listitem>
<listitem><para>You can manage
<link linkend='understanding-and-creating-layers'>layers</link>.</para></listitem>
<listitem><para>You can select a base image and then add extra packages for your custom build.
</para></listitem>
<listitem><para>You can launch and monitor the build from within Hob.</para></listitem>
</itemizedlist>
</para>
</section>
<section id="platdev-appdev-devshell">
<title>Using a Development Shell</title>
<para>
When debugging certain commands or even when just editing packages,
<filename>devshell</filename> can be a useful tool.
When you invoke <filename>devshell</filename>, source files are
extracted into your working directory and patches are applied.
Then, a new terminal is opened and you are placed in the working directory.
In the new terminal, all the OpenEmbedded build-related environment variables are
still defined so you can use commands such as <filename>configure</filename> and
<filename>make</filename>.
The commands execute just as if the OpenEmbedded build system were executing them.
Consequently, working this way can be helpful when debugging a build or preparing
software to be used with the OpenEmbedded build system.
</para>
<para>
Following is an example that uses <filename>devshell</filename> on a target named
<filename>matchbox-desktop</filename>:
<literallayout class='monospaced'>
$ bitbake matchbox-desktop -c devshell
</literallayout>
</para>
<para>
This command opens a terminal with a shell prompt within the OpenEmbedded build environment.
The default shell is xterm.
The following occurs:
<itemizedlist>
<listitem><para>The <filename>PATH</filename> variable includes the
cross-toolchain.</para></listitem>
<listitem><para>The <filename>pkgconfig</filename> variables find the correct
<filename>.pc</filename> files.</para></listitem>
<listitem><para>The <filename>configure</filename> command finds the
Yocto Project site files as well as any other necessary files.</para></listitem>
</itemizedlist>
Within this environment, you can run <filename>configure</filename>
or <filename>compile</filename> commands as if they were being run by
the OpenEmbedded build system itself.
As noted earlier, the working directory also automatically changes to the
source directory (<ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>).
</para>
<para>
When you are finished, you just exit the shell or close the terminal window.
</para>
<para>
Because an external shell is launched rather than opening directly into the
original terminal window, it allows easier interaction with BitBake's multiple
threads as well as accomodates a future client/server split.
</para>
<note>
<para>
It is worth remembering that when using <filename>devshell</filename>
you need to use the full compiler name such as <filename>arm-poky-linux-gnueabi-gcc</filename>
instead of just using <filename>gcc</filename>.
The same applies to other applications such as <filename>binutils</filename>,
<filename>libtool</filename> and so forth.
BitBake sets up environment variables such as <filename>CC</filename>
to assist applications, such as <filename>make</filename> to find the correct tools.
</para>
<para>
It is also worth noting that <filename>devshell</filename> still works over
X11 forwarding and similar situations
</para>
</note>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->
|