1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
<chapter id='extendpoky'>
<title>Common Tasks</title>
<para>
This chapter describes fundamental procedures such as creating layers,
adding new software packages, extending or customizing images,
porting work to new hardware (adding a new machine), and so forth.
You will find the procedures documented here occur often in the
develop cycle using the Yocto Project.
</para>
<section id="understanding-and-creating-layers">
<title>Understanding and Creating Layers</title>
<para>
The OpenEmbedded build system supports organizing
<link linkend='metadata'>Metadata</link> into multiple layers.
Layers allow you to isolate different types of customizations from
each other.
You might find it tempting to keep everything in one layer when
working on a single project.
However, the more modular you organize your Metadata, the easier
it is to cope with future changes.
</para>
<para>
To illustrate how layers are used to keep things modular, consider
machine customizations.
These types of customizations typically reside in a special layer,
rather than a general layer, called a Board Specific Package (BSP)
Layer.
Furthermore, the machine customizations should be isolated from
recipes and Metadata that support a new GUI environment,
for example.
This situation gives you a couple of layers: one for the machine
configurations, and one for the GUI environment.
It is important to understand, however, that the BSP layer can
still make machine-specific additions to recipes within the GUI
environment layer without polluting the GUI layer itself
with those machine-specific changes.
You can accomplish this through a recipe that is a BitBake append
(<filename>.bbappend</filename>) file, which is described later
in this section.
</para>
<para>
</para>
<section id='yocto-project-layers'>
<title>Layers</title>
<para>
The <link linkend='source-directory'>Source Directory</link>
contains both general layers and BSP
layers right out of the box.
You can easily identify layers that ship with a
Yocto Project release in the Source Directory by their
folder names.
Folders that are layers begin with the string
<filename>meta</filename>.
<note>
It is not a requirement that a layer begins with the
string <filename>meta</filename>.
</note>
For example, when you set up the Source Directory structure,
you will see several layers:
<filename>meta</filename>, <filename>meta-hob</filename>,
<filename>meta-skeleton</filename>,
<filename>meta-yocto</filename>, and
<filename>meta-yocto-bsp</filename>.
Each of these folders is a layer.
</para>
<para>
Furthermore, if you set up a local copy of the
<filename>meta-intel</filename> Git repository
and then explore the folder of that general layer,
you will discover many BSP layers inside.
For more information on BSP layers, see the
"<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-layers'>BSP Layers</ulink>"
section in the Yocto Project Board Support Package (BSP)
Developer's Guide.
</para>
</section>
<section id='creating-your-own-layer'>
<title>Creating Your Own Layer</title>
<para>
It is very easy to create your own layers to use with the
OpenEmbedded build system.
The Yocto Project ships with scripts that speed up creating
general layers and BSP layers.
This section describes the steps you perform by hand to create
a layer so that you can better understand them.
For information about the layer-creation scripts, see the
"<ulink url='&YOCTO_DOCS_BSP_URL;#creating-a-new-bsp-layer-using-the-yocto-bsp-script'>Creating a New BSP Layer Using the yocto-bsp Script</ulink>"
section in the Yocto Project Board Support Package (BSP)
Developer's Guide and the
"<link linkend='creating-a-general-layer-using-the-yocto-layer-script'>Creating a General Layer Using the yocto-layer Script</link>"
section further down in this manual.
</para>
<para>
Follow these general steps to create your layer:
<orderedlist>
<listitem><para><emphasis>Check Existing Layers:</emphasis>
Before creating a new layer, you should be sure someone
has not already created a layer containing the Metadata
you need.
You can see the
<ulink url='http://layers.openembedded.org/layerindex/layers/'><filename>OpenEmbedded Metadata Index</filename></ulink>
for a list of layers from the OpenEmbedded community
that can be used in the Yocto Project.
</para></listitem>
<listitem><para><emphasis>Create a Directory:</emphasis>
Create the directory for your layer.
While not strictly required, prepend the name of the
folder with the string <filename>meta-</filename>.
For example:
<literallayout class='monospaced'>
meta-mylayer
meta-GUI_xyz
meta-mymachine
</literallayout>
</para></listitem>
<listitem><para><emphasis>Create a Layer Configuration
File:</emphasis>
Inside your new layer folder, you need to create a
<filename>conf/layer.conf</filename> file.
It is easiest to take an existing layer configuration
file and copy that to your layer's
<filename>conf</filename> directory and then modify the
file as needed.</para>
<para>The
<filename>meta-yocto-bsp/conf/layer.conf</filename> file
demonstrates the required syntax:
<literallayout class='monospaced'>
# We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"
# We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
${LAYERDIR}/recipes-*/*/*.bbappend"
BBFILE_COLLECTIONS += "yoctobsp"
BBFILE_PATTERN_yoctobsp = "^${LAYERDIR}/"
BBFILE_PRIORITY_yoctobsp = "5"
</literallayout></para>
<para>Here is an explanation of the example:
<itemizedlist>
<listitem><para>The configuration and
classes directory is appended to
<ulink url='&YOCTO_DOCS_REF_URL;#var-BBPATH'><filename>BBPATH</filename></ulink>.
<note>
All non-distro layers, which include all BSP
layers, are expected to append the layer
directory to the
<filename>BBPATH</filename>.
On the other hand, distro layers, such as
<filename>meta-yocto</filename>, can choose
to enforce their own precedence over
<filename>BBPATH</filename>.
For an example of that syntax, see the
<filename>layer.conf</filename> file for
the <filename>meta-yocto</filename> layer.
</note></para></listitem>
<listitem><para>The recipes for the layers are
appended to
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-BBFILES'>BBFILES</ulink></filename>.
</para></listitem>
<listitem><para>The
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-BBFILE_COLLECTIONS'>BBFILE_COLLECTIONS</ulink></filename>
variable is then appended with the layer name.
</para></listitem>
<listitem><para>The
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-BBFILE_PATTERN'>BBFILE_PATTERN</ulink></filename>
variable is set to a regular expression and is
used to match files from
<filename>BBFILES</filename> into a particular
layer.
In this case,
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-LAYERDIR'>LAYERDIR</ulink></filename>
is used to make <filename>BBFILE_PATTERN</filename> match within the
layer's path.</para></listitem>
<listitem><para>The
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-BBFILE_PRIORITY'>BBFILE_PRIORITY</ulink></filename>
variable then assigns a priority to the layer.
Applying priorities is useful in situations
where the same package might appear in multiple
layers and allows you to choose what layer
should take precedence.</para></listitem>
</itemizedlist></para>
<para>Note the use of the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-LAYERDIR'>LAYERDIR</ulink></filename>
variable, which expands to the directory of the current
layer.</para>
<para>Through the use of the <filename>BBPATH</filename>
variable, BitBake locates <filename>.bbclass</filename>
files, configuration files, and files that are included
with <filename>include</filename> and
<filename>require</filename> statements.
For these cases, BitBake uses the first file that
matches the name found in <filename>BBPATH</filename>.
This is similar to the way the <filename>PATH</filename>
variable is used for binaries.
We recommend, therefore, that you use unique
<filename>.bbclass</filename> and configuration
filenames in your custom layer.</para></listitem>
<listitem><para><emphasis>Add Content:</emphasis> Depending
on the type of layer, add the content.
If the layer adds support for a machine, add the machine
configuration in a <filename>conf/machine/</filename>
file within the layer.
If the layer adds distro policy, add the distro
configuration in a <filename>conf/distro/</filename>
file with the layer.
If the layer introduces new recipes, put the recipes
you need in <filename>recipes-*</filename>
subdirectories within the layer.
<note>In order to be compliant with the Yocto Project,
a layer must contain a
<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-filelayout-readme'>README file.</ulink>
</note></para></listitem>
</orderedlist>
</para>
<para>
To create layers that are easier to maintain, you should
consider the following:
<itemizedlist>
<listitem><para>Avoid "overlaying" entire recipes from
other layers in your configuration.
In other words, do not copy an entire recipe into your
layer and then modify it.
Use <filename>.bbappend</filename> files to override the
parts of the recipe you need to modify.
</para></listitem>
<listitem><para>Avoid duplicating include files.
Use <filename>.bbappend</filename> files for each recipe
that uses an include file.
Or, if you are introducing a new recipe that requires
the included file, use the path relative to the original
layer directory to refer to the file.
For example, use
<filename>require recipes-core/somepackage/somefile.inc</filename>
instead of <filename>require somefile.inc</filename>.
If you're finding you have to overlay the include file,
it could indicate a deficiency in the include file in
the layer to which it originally belongs.
If this is the case, you need to address that deficiency
instead of overlaying the include file.
For example, consider how Qt 4 database support plug-ins
are configured.
The Source Directory does not have MySQL or PostgreSQL,
however OpenEmbedded's layer
<filename>meta-oe</filename> does.
Consequently, <filename>meta-oe</filename> uses
<filename>.bbappend</filename> files to modify the
<filename>QT_SQL_DRIVER_FLAGS</filename> variable to
enable the appropriate plugins.
This variable was added to the
<filename>qt4.inc</filename> include file in the Source
Directory specifically to allow the
<filename>meta-oe</filename> layer to be able to control
which plugins are built.</para></listitem>
</itemizedlist>
</para>
<para>
We also recommend the following:
<itemizedlist>
<listitem><para>Store custom layers in a Git repository
that uses the
<filename>meta-<layer_name></filename> format.
</para></listitem>
<listitem><para>Clone the repository alongside other
<filename>meta</filename> directories in the
<link linkend='source-directory'>Source Directory</link>.
</para></listitem>
</itemizedlist>
Following these recommendations keeps your Source Directory and
its configuration entirely inside the Yocto Project's core
base.
</para>
</section>
<section id='enabling-your-layer'>
<title>Enabling Your Layer</title>
<para>
Before the OpenEmbedded build system can use your new layer,
you need to enable it.
To enable your layer, simply add your layer's path to the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-BBLAYERS'>BBLAYERS</ulink></filename>
variable in your <filename>conf/bblayers.conf</filename> file,
which is found in the
<link linkend='build-directory'>Build Directory</link>.
The following example shows how to enable a layer named
<filename>meta-mylayer</filename>:
<literallayout class='monospaced'>
LCONF_VERSION = "6"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
$HOME/poky/meta \
$HOME/poky/meta-yocto \
$HOME/poky/meta-yocto-bsp \
$HOME/poky/meta-mylayer \
"
BBLAYERS_NON_REMOVABLE ?= " \
$HOME/poky/meta \
$HOME/poky/meta-yocto \
"
</literallayout>
</para>
<para>
BitBake parses each <filename>conf/layer.conf</filename> file
as specified in the <filename>BBLAYERS</filename> variable
within the <filename>conf/bblayers.conf</filename> file.
During the processing of each
<filename>conf/layer.conf</filename> file, BitBake adds the
recipes, classes and configurations contained within the
particular layer to the source directory.
</para>
</section>
<section id='using-bbappend-files'>
<title>Using .bbappend Files</title>
<para>
Recipes used to append Metadata to other recipes are called
BitBake append files.
BitBake append files use the <filename>.bbappend</filename> file
type suffix, while the corresponding recipes to which Metadata
is being appended use the <filename>.bb</filename> file type
suffix.
</para>
<para>
A <filename>.bbappend</filename> file allows your layer to make
additions or changes to the content of another layer's recipe
without having to copy the other recipe into your layer.
Your <filename>.bbappend</filename> file resides in your layer,
while the main <filename>.bb</filename> recipe file to
which you are appending Metadata resides in a different layer.
</para>
<para>
Append files must have the same root names as their corresponding
recipes.
For example, the append file
<filename>someapp_&DISTRO;.bbappend</filename> must apply to
<filename>someapp_&DISTRO;.bb</filename>.
This means the original recipe and append file names are version
number-specific.
If the corresponding recipe is renamed to update to a newer
version, the corresponding <filename>.bbappend</filename> file must
be renamed as well.
During the build process, BitBake displays an error on starting
if it detects a <filename>.bbappend</filename> file that does
not have a corresponding recipe with a matching name.
See the
<ulink url='&YOCTO_DOCS_REF_URL;#var-BB_DANGLINGAPPENDS_WARNONLY'><filename>BB_DANGLINGAPPENDS_WARNONLY</filename></ulink>
variable for information on how to handle this error.
</para>
<para>
Being able to append information to an existing recipe not only
avoids duplication, but also automatically applies recipe
changes in a different layer to your layer.
If you were copying recipes, you would have to manually merge
changes as they occur.
</para>
<para>
As an example, consider the main formfactor recipe and a
corresponding formfactor append file both from the
<link linkend='source-directory'>Source Directory</link>.
Here is the main formfactor recipe, which is named
<filename>formfactor_0.0.bb</filename> and located in the
"meta" layer at
<filename>meta/recipes-bsp/formfactor</filename>:
<literallayout class='monospaced'>
DESCRIPTION = "Device formfactor information"
SECTION = "base"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/LICENSE;md5=3f40d7994397109285ec7b81fdeb3b58 \
file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"
PR = "r20"
SRC_URI = "file://config file://machconfig"
S = "${WORKDIR}"
PACKAGE_ARCH = "${MACHINE_ARCH}"
INHIBIT_DEFAULT_DEPS = "1"
do_install() {
# Only install file if it has a contents
install -d ${D}${sysconfdir}/formfactor/
install -m 0644 ${S}/config ${D}${sysconfdir}/formfactor/
if [ -s "${S}/machconfig" ]; then
install -m 0644 ${S}/machconfig ${D}${sysconfdir}/formfactor/
fi
}
</literallayout>
Here is the append file, which is named
<filename>formfactor_0.0.bbappend</filename> and is from the
Crown Bay BSP Layer named
<filename>meta-intel/meta-crownbay</filename>.
The file is in <filename>recipes-bsp/formfactor</filename>:
<literallayout class='monospaced'>
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
PRINC := "${@int(PRINC) + 2}"
</literallayout>
This example adds or overrides files in
<ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
within a <filename>.bbappend</filename> by extending the path
BitBake uses to search for files.
The most reliable way to do this is by prepending the
<ulink url='&YOCTO_DOCS_REF_URL;#var-FILESEXTRAPATHS'><filename>FILESEXTRAPATHS</filename></ulink>
variable.
For example, if you have your files in a directory that is named
the same as your package
(<ulink url='&YOCTO_DOCS_REF_URL;#var-PN'><filename>PN</filename></ulink>),
you can add this directory by adding the following to your
<filename>.bbappend</filename> file:
<literallayout class='monospaced'>
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
</literallayout>
Using the immediate expansion assignment operator
<filename>:=</filename> is important because of the reference to
<filename>THISDIR</filename>.
The trailing colon character is important as it ensures that
items in the list remain colon-separated.
<note><para>BitBake automatically defines the
<filename>THISDIR</filename> variable.
You should never set this variable yourself.
Using <filename>_prepend</filename> ensures your path will
be searched prior to other paths in the final list.</para>
<para>Also, not all append files add extra files.
Many append files simply exist to add build options
(e.g. <filename>systemd</filename>).
For these cases, it is not necessary to use the
"_prepend" part of the statement.</para>
</note>
</para>
</section>
<section id='prioritizing-your-layer'>
<title>Prioritizing Your Layer</title>
<para>
Each layer is assigned a priority value.
Priority values control which layer takes precedence if there
are recipe files with the same name in multiple layers.
For these cases, the recipe file from the layer with a higher
priority number takes precedence.
Priority values also affect the order in which multiple
<filename>.bbappend</filename> files for the same recipe are
applied.
You can either specify the priority manually, or allow the
build system to calculate it based on the layer's dependencies.
</para>
<para>
To specify the layer's priority manually, use the
<ulink url='&YOCTO_DOCS_REF_URL;#var-BBFILE_PRIORITY'><filename>BBFILE_PRIORITY</filename></ulink>
variable.
For example:
<literallayout class='monospaced'>
BBFILE_PRIORITY_mylayer = "1"
</literallayout>
</para>
<note>
<para>It is possible for a recipe with a lower version number
<ulink url='&YOCTO_DOCS_REF_URL;#var-PV'><filename>PV</filename></ulink>
in a layer that has a higher priority to take precedence.</para>
<para>Also, the layer priority does not currently affect the
precedence order of <filename>.conf</filename>
or <filename>.bbclass</filename> files.
Future versions of BitBake might address this.</para>
</note>
</section>
<section id='managing-layers'>
<title>Managing Layers</title>
<para>
You can use the BitBake layer management tool to provide a view
into the structure of recipes across a multi-layer project.
Being able to generate output that reports on configured layers
with their paths and priorities and on
<filename>.bbappend</filename> files and their applicable
recipes can help to reveal potential problems.
</para>
<para>
Use the following form when running the layer management tool.
<literallayout class='monospaced'>
$ bitbake-layers <command> [arguments]
</literallayout>
The following list describes the available commands:
<itemizedlist>
<listitem><para><filename><emphasis>help:</emphasis></filename>
Displays general help or help on a specified command.
</para></listitem>
<listitem><para><filename><emphasis>show-layers:</emphasis></filename>
Shows the current configured layers.
</para></listitem>
<listitem><para><filename><emphasis>show-recipes:</emphasis></filename>
Lists available recipes and the layers that provide them.
</para></listitem>
<listitem><para><filename><emphasis>show-overlayed:</emphasis></filename>
Lists overlayed recipes.
A recipe is overlayed when a recipe with the same name
exists in another layer that has a higher layer
priority.
</para></listitem>
<listitem><para><filename><emphasis>show-appends:</emphasis></filename>
Lists <filename>.bbappend</filename> files and the
recipe files to which they apply.
</para></listitem>
<listitem><para><filename><emphasis>show-cross-depends:</emphasis></filename>
Lists dependency relationships between recipes that
cross layer boundaries.
</para></listitem>
<listitem><para><filename><emphasis>flatten:</emphasis></filename>
Flattens the layer configuration into a separate output
directory.
Flattening your layer configuration builds a "flattened"
directory that contains the contents of all layers,
with any overlayed recipes removed and any
<filename>.bbappend</filename> files appended to the
corresponding recipes.
You might have to perform some manual cleanup of the
flattened layer as follows:
<itemizedlist>
<listitem><para>Non-recipe files (such as patches)
are overwritten.
The flatten command shows a warning for these
files.
</para></listitem>
<listitem><para>Anything beyond the normal layer
setup has been added to the
<filename>layer.conf</filename> file.
Only the lowest priority layer's
<filename>layer.conf</filename> is used.
</para></listitem>
<listitem><para>Overridden and appended items from
<filename>.bbappend</filename> files need to be
cleaned up.
The contents of each
<filename>.bbappend</filename> end up in the
flattened recipe.
However, if there are appended or changed
variable values, you need to tidy these up
yourself.
Consider the following example.
Here, the <filename>bitbake-layers</filename>
command adds the line
<filename>#### bbappended ...</filename> so that
you know where the following lines originate:
<literallayout class='monospaced'>
...
DESCRIPTION = "A useful utility"
...
EXTRA_OECONF = "--enable-something"
...
#### bbappended from meta-anotherlayer ####
DESCRIPTION = "Customized utility"
EXTRA_OECONF += "--enable-somethingelse"
</literallayout>
Ideally, you would tidy up these utilities as
follows:
<literallayout class='monospaced'>
...
DESCRIPTION = "Customized utility"
...
EXTRA_OECONF = "--enable-something --enable-somethingelse"
...
</literallayout></para></listitem>
</itemizedlist></para></listitem>
</itemizedlist>
</para>
</section>
<section id='creating-a-general-layer-using-the-yocto-layer-script'>
<title>Creating a General Layer Using the yocto-layer Script</title>
<para>
The <filename>yocto-layer</filename> script simplifies
creating a new general layer.
<note>
For information on BSP layers, see the
"<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-layers'>BSP Layers</ulink>"
section in the Yocto Project Board Specific (BSP)
Developer's Guide.
</note>
The default mode of the script's operation is to prompt you for
information needed to generate the layer:
<itemizedlist>
<listitem><para>The layer priority
</para></listitem>
<listitem><para>Whether or not to create a sample recipe.
</para></listitem>
<listitem><para>Whether or not to create a sample
append file.
</para></listitem>
</itemizedlist>
</para>
<para>
Use the <filename>yocto-layer create</filename> sub-command
to create a new general layer.
In its simplest form, you can create a layer as follows:
<literallayout class='monospaced'>
$ yocto-layer create mylayer
</literallayout>
The previous example creates a layer named
<filename>meta-mylayer</filename> in the current directory.
</para>
<para>
As the <filename>yocto-layer create</filename> command runs,
default values for the prompts appear in brackets.
Pressing enter without supplying anything for the prompts
or pressing enter and providing an invalid response causes the
script to accept the default value.
Once the script completes, the new layer
is created in the current working directory.
The script names the layer by prepending
<filename>meta-</filename> to the name you provide.
</para>
<para>
Minimally, the script creates the following within the layer:
<itemizedlist>
<listitem><para><emphasis>The <filename>conf</filename>
directory:</emphasis>
This directory contains the layers
<filename>.conf</filename>.
The root name for the file is the same as the root name
your provided for the layer.
</para></listitem>
<listitem><para><emphasis>The
<filename>COPYING.MIT</filename>:</emphasis>
The copyright and use notice for the software.
</para></listitem>
<listitem><para><emphasis>The <filename>README</filename>
file:</emphasis>
A file describing the contents of your new layer.
</para></listitem>
</itemizedlist>
</para>
<para>
If you choose to generate a sample recipe file, the script
prompts you for the name for the recipe and then creates it
in <filename><layer>/recipes-example/example/</filename>.
in a directory named <filename>recipes-example</filename>.
The script creates a <filename>.bb</filename> file and a
directory, which contains a sample
<filename>helloworld.c</filename> source file and along with
a sample patch file.
If you do not provide a recipe name, the script uses
"example".
</para>
<para>
If you choose to generate a sample append file, the script
prompts you for the name for the file and then creates it
in <filename><layer>/recipes-example-bbappend/example-bbappend/</filename>.
The script creates a <filename>.bbappend</filename> file and a
directory, which contains a sample patch file.
If you do not provide a recipe name, the script uses
"example".
The script also prompts you for the version of the append file.
The version should match the recipe to which the append file
is associated.
</para>
<para>
The easiest way to see how the <filename>yocto-layer</filename>
script works is to experiment with the script.
You can also read the usage information by entering the
following:
<literallayout class='monospaced'>
$ yocto-layer help
</literallayout>
</para>
<para>
Once you create your general layer, you must add it to your
<filename>bblayers.conf</filename> file.
Here is an example:
<literallayout class='monospaced'>
BBLAYERS = ?" \
/usr/local/src/yocto/meta \
/usr/local/src/yocto/meta-yocto \
/usr/local/src/yocto/meta-yocto-bsp \
/usr/local/src/yocto/meta-mylayer \
"
BBLAYERS_NON_REMOVABLE ?= " \
/usr/local/src/yocto/meta \
/usr/local/src/yocto/meta-yocto \
"
</literallayout>
Adding the layer to this file enables the build system to
locate the layer during the build.
</para>
</section>
</section>
<section id='usingpoky-extend-customimage'>
<title>Customizing Images</title>
<para>
You can customize images to satisfy particular requirements.
This section describes several methods and provides guidelines for each.
</para>
<section id='usingpoky-extend-customimage-custombb'>
<title>Customizing Images Using Custom .bb Files</title>
<para>
One way to get additional software into an image is to create a custom image.
The following example shows the form for the two lines you need:
<literallayout class='monospaced'>
IMAGE_INSTALL = "packagegroup-core-x11-base package1 package2"
inherit core-image
</literallayout>
</para>
<para>
By creating a custom image, a developer has total control
over the contents of the image.
It is important to use the correct names of packages in the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_INSTALL'>IMAGE_INSTALL</ulink></filename>
variable.
You must use the OpenEmbedded notation and not the Debian notation for the names
(e.g. <filename>eglibc-dev</filename> instead of <filename>libc6-dev</filename>).
</para>
<para>
The other method for creating a custom image is to base it on an existing image.
For example, if you want to create an image based on <filename>core-image-sato</filename>
but add the additional package <filename>strace</filename> to the image,
copy the <filename>meta/recipes-sato/images/core-image-sato.bb</filename> to a
new <filename>.bb</filename> and add the following line to the end of the copy:
<literallayout class='monospaced'>
IMAGE_INSTALL += "strace"
</literallayout>
</para>
</section>
<section id='usingpoky-extend-customimage-customtasks'>
<title>Customizing Images Using Custom Package Groups</title>
<para>
For complex custom images, the best approach is to create a custom package group recipe
that is used to build the image or images.
A good example of a package group recipe is
<filename>meta/recipes-core/packagegroups/packagegroup-core-boot.bb</filename>.
The
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGES'>PACKAGES</ulink></filename>
variable lists the package group packages you wish to produce. <filename>inherit packagegroup</filename>
sets appropriate default values and automatically adds <filename>-dev</filename>
and <filename>-dbg</filename> complementary
packages for every package specified in <filename>PACKAGES</filename>.
Note that the inherit line should be towards
the top of the recipe, certainly before you set <filename>PACKAGES</filename>.
For each package you specify in <filename>PACKAGES</filename>, you can use
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-RDEPENDS'>RDEPENDS</ulink></filename>
and
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-RRECOMMENDS'>RRECOMMENDS</ulink></filename>
entries to provide a list of packages the parent task package should contain.
Following is an example:
<literallayout class='monospaced'>
DESCRIPTION = "My Custom Package Groups"
inherit packagegroup
PACKAGES = "\
packagegroup-custom-apps \
packagegroup-custom-tools \
"
RDEPENDS_packagegroup-custom-apps = "\
dropbear \
portmap \
psplash"
RDEPENDS_packagegroup-custom-tools = "\
oprofile \
oprofileui-server \
lttng-control \
lttng-viewer"
RRECOMMENDS_packagegroup-custom-tools = "\
kernel-module-oprofile"
</literallayout>
</para>
<para>
In the previous example, two package group packages are created with their dependencies and their
recommended package dependencies listed: <filename>packagegroup-custom-apps</filename>, and
<filename>packagegroup-custom-tools</filename>.
To build an image using these package group packages, you need to add
<filename>packagegroup-custom-apps</filename> and/or
<filename>packagegroup-custom-tools</filename> to
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_INSTALL'>IMAGE_INSTALL</ulink></filename>.
For other forms of image dependencies see the other areas of this section.
</para>
</section>
<section id='usingpoky-extend-customimage-imagefeatures'>
<title>Customizing Images Using Custom <filename>IMAGE_FEATURES</filename> and
<filename>EXTRA_IMAGE_FEATURES</filename></title>
<para>
You might want to customize your image by enabling or
disabling high-level image features by using the
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FEATURES'><filename>IMAGE_FEATURES</filename></ulink>
and <ulink url='&YOCTO_DOCS_REF_URL;#var-EXTRA_IMAGE_FEATURES'><filename>EXTRA_IMAGE_FEATURES</filename></ulink>
variables.
Although the functions for both variables are nearly equivalent,
best practices dictate using <filename>IMAGE_FEATURES</filename>
from within a recipe and using
<filename>EXTRA_IMAGE_FEATURES</filename> from within
your <filename>local.conf</filename> file, which is found in the
<link linkend='build-directory'>Build Directory</link>.
</para>
<para>
To understand how these features work, the best reference is
<filename>meta/classes/core-image.bbclass</filename>.
In summary, the file looks at the contents of the
<filename>IMAGE_FEATURES</filename> variable and then maps
those contents into a set of package groups.
Based on this information, the build system automatically
adds the appropriate packages to the
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_INSTALL'><filename>IMAGE_INSTALL</filename></ulink>
variable.
Effectively, you are enabling extra features by extending the
class or creating a custom class for use with specialized image
<filename>.bb</filename> files.
</para>
<para>
Use the <filename>EXTRA_IMAGE_FEATURES</filename> variable
from within your local configuration file.
Using a separate area from which to enable features with
this variable helps you avoid overwriting the features in the
image recipe that are enabled with
<filename>IMAGE_FEATURES</filename>.
The value of <filename>EXTRA_IMAGE_FEATURES</filename> is added
to <filename>IMAGE_FEATURES</filename> within
<filename>meta/conf/bitbake.conf</filename>.
</para>
<para>
To illustrate how you can use these variables to modify your
image, consider an example that selects the SSH server.
The Yocto Project ships with two SSH servers you can use
with your images: Dropbear and OpenSSH.
Dropbear is a minimal SSH server appropriate for
resource-constrained environments, while OpenSSH is a
well-known standard SSH server implementation.
By default, the <filename>core-image-sato</filename> image
is configured to use Dropbear.
The <filename>core-image-basic</filename> and
<filename>core-image-lsb</filename> images both
include OpenSSH.
The <filename>core-image-minimal</filename> image does not
contain an SSH server.
</para>
<para>
You can customize your image and change these defaults.
Edit the <filename>IMAGE_FEATURES</filename> variable
in your recipe or use the
<filename>EXTRA_IMAGE_FEATURES</filename> in your
<filename>local.conf</filename> file so that it configures the
image you are working with to include
<filename>ssh-server-dropbear</filename> or
<filename>ssh-server-openssh</filename>.
</para>
<note>
See the
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>"
section in the Yocto Project Reference Manual for a complete
list of image features that ship with the Yocto Project.
</note>
</section>
<section id='usingpoky-extend-customimage-localconf'>
<title>Customizing Images Using <filename>local.conf</filename></title>
<para>
It is possible to customize image contents by using variables from your
local configuration in your <filename>conf/local.conf</filename> file.
Because it is limited to local use, this method generally only allows you to
add packages and is not as flexible as creating your own customized image.
When you add packages using local variables this way, you need to realize that
these variable changes affect all images at the same time and might not be
what you require.
</para>
<para>
The simplest way to add extra packages to all images is by using the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_INSTALL'>IMAGE_INSTALL</ulink></filename>
variable with the <filename>_append</filename> operator:
<literallayout class='monospaced'>
IMAGE_INSTALL_append = " strace"
</literallayout>
Use of the syntax is important.
Specifically, the space between the quote and the package name, which is
<filename>strace</filename> in this example.
This space is required since the <filename>_append</filename>
operator does not add the space.
</para>
<para>
Furthermore, you must use <filename>_append</filename> instead of the <filename>+=</filename>
operator if you want to avoid ordering issues.
The reason for this is because doing so unconditionally appends to the variable and
avoids ordering problems due to the variable being set in image recipes and
<filename>.bbclass</filename> files with operators like <filename>?=</filename>.
Using <filename>_append</filename> ensures the operation takes affect.
</para>
<para>
As shown in its simplest use, <filename>IMAGE_INSTALL_append</filename> affects
all images.
It is possible to extend the syntax so that the variable applies to a specific image only.
Here is an example:
<literallayout class='monospaced'>
IMAGE_INSTALL_append_pn-core-image-minimal = " strace"
</literallayout>
This example adds <filename>strace</filename> to <filename>core-image-minimal</filename>
only.
</para>
<para>
You can add packages using a similar approach through the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-CORE_IMAGE_EXTRA_INSTALL'>CORE_IMAGE_EXTRA_INSTALL</ulink></filename>
variable.
If you use this variable, only <filename>core-image-*</filename> images are affected.
</para>
</section>
</section>
<section id='usingpoky-extend-addpkg'>
<title>Writing a Recipe to Add a Package to Your Image</title>
<para>
Recipes add packages to your image.
Writing a recipe means creating a <filename>.bb</filename> file that sets some
variables.
For information on variables that are useful for recipes and for information about recipe naming
issues, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#ref-varlocality-recipe-required'>Required</ulink>"
section of the Yocto Project Reference Manual.
</para>
<para>
Before writing a recipe from scratch, it is often useful to check
whether someone else has written one already.
OpenEmbedded is a good place to look as it has a wider scope and range of packages.
Because the Yocto Project aims to be compatible with OpenEmbedded, most recipes
you find there should work for you.
</para>
<para>
For new packages, the simplest way to add a recipe is to base it on a similar
pre-existing recipe.
The sections that follow provide some examples that show how to add standard
types of packages.
</para>
<note>
<para>When writing shell functions, you need to be aware of BitBake's
curly brace parsing.
If a recipe uses a closing curly brace within the function and
the character has no leading spaces, BitBake produces a parsing
error.
If you use a pair of curly brace in a shell function, the
closing curly brace must not be located at the start of the line
without leading spaces.</para>
<para>Here is an example that causes BitBake to produce a parsing
error:
<literallayout class='monospaced'>
fakeroot create_shar() {
cat << "EOF" > ${SDK_DEPLOY}/${TOOLCHAIN_OUTPUTNAME}.sh
usage()
{
echo "test"
###### The following "}" at the start of the line causes a parsing error ######
}
EOF
}
</literallayout>
Writing the recipe this way avoids the error:
<literallayout class='monospaced'>
fakeroot create_shar() {
cat << "EOF" > ${SDK_DEPLOY}/${TOOLCHAIN_OUTPUTNAME}.sh
usage()
{
echo "test"
######The following "}" with a leading space at the start of the line avoids the error ######
}
EOF
}
</literallayout></para>
</note>
<section id='usingpoky-extend-addpkg-singlec'>
<title>Single .c File Package (Hello World!)</title>
<para>
Building an application from a single file that is stored locally (e.g. under
<filename>files/</filename>) requires a recipe that has the file listed in
the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'>SRC_URI</ulink></filename>
variable.
Additionally, you need to manually write the <filename>do_compile</filename> and
<filename>do_install</filename> tasks.
The <filename><ulink url='&YOCTO_DOCS_REF_URL;#var-S'>S</ulink></filename>
variable defines the
directory containing the source code, which is set to
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'>
WORKDIR</ulink></filename> in this case - the directory BitBake uses for the build.
<literallayout class='monospaced'>
DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"
PR = "r0"
SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"
do_compile() {
${CC} helloworld.c -o helloworld
}
do_install() {
install -d ${D}${bindir}
install -m 0755 helloworld ${D}${bindir}
}
</literallayout>
</para>
<para>
By default, the <filename>helloworld</filename>, <filename>helloworld-dbg</filename>,
and <filename>helloworld-dev</filename> packages are built.
For information on how to customize the packaging process, see the
"<link linkend='splitting-an-application-into-multiple-packages'>Splitting an Application
into Multiple Packages</link>" section.
</para>
</section>
<section id='usingpoky-extend-addpkg-autotools'>
<title>Autotooled Package</title>
<para>
Applications that use Autotools such as <filename>autoconf</filename> and
<filename>automake</filename> require a recipe that has a source archive listed in
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'>SRC_URI</ulink></filename> and
also inherits Autotools, which instructs BitBake to use the
<filename>autotools.bbclass</filename> file, which contains the definitions of all the steps
needed to build an Autotool-based application.
The result of the build is automatically packaged.
And, if the application uses NLS for localization, packages with local information are
generated (one package per language).
Following is one example: (<filename>hello_2.3.bb</filename>)
<literallayout class='monospaced'>
DESCRIPTION = "GNU Helloworld application"
SECTION = "examples"
LICENSE = "GPLv2+"
LIC_FILES_CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"
PR = "r0"
SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"
inherit autotools gettext
</literallayout>
</para>
<para>
The variable
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-LIC_FILES_CHKSUM'>LIC_FILES_CHKSUM</ulink></filename>
is used to track source license changes as described in the
"<ulink url='&YOCTO_DOCS_REF_URL;#usingpoky-configuring-LIC_FILES_CHKSUM'>Tracking License Changes</ulink>" section.
You can quickly create Autotool-based recipes in a manner similar to the previous example.
</para>
</section>
<section id='usingpoky-extend-addpkg-makefile'>
<title>Makefile-Based Package</title>
<para>
Applications that use GNU <filename>make</filename> also require a recipe that has
the source archive listed in
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'>SRC_URI</ulink></filename>.
You do not need to add a <filename>do_compile</filename> step since by default BitBake
starts the <filename>make</filename> command to compile the application.
If you need additional <filename>make</filename> options, you should store them in the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-EXTRA_OEMAKE'>EXTRA_OEMAKE</ulink></filename>
variable.
BitBake passes these options into the <filename>make</filename> GNU invocation.
Note that a <filename>do_install</filename> task is still required.
Otherwise, BitBake runs an empty <filename>do_install</filename> task by default.
</para>
<para>
Some applications might require extra parameters to be passed to the compiler.
For example, the application might need an additional header path.
You can accomplish this by adding to the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-CFLAGS'>CFLAGS</ulink></filename> variable.
The following example shows this:
<literallayout class='monospaced'>
CFLAGS_prepend = "-I ${S}/include "
</literallayout>
</para>
<para>
In the following example, <filename>mtd-utils</filename> is a makefile-based package:
<literallayout class='monospaced'>
DESCRIPTION = "Tools for managing memory technology devices."
SECTION = "base"
DEPENDS = "zlib lzo e2fsprogs util-linux"
HOMEPAGE = "http://www.linux-mtd.infradead.org/"
LICENSE = "GPLv2+"
LIC_FILES_CHKSUM = "file://COPYING;md5=0636e73ff0215e8d672dc4c32c317bb3 \
file://include/common.h;beginline=1;endline=17;md5=ba05b07912a44ea2bf81ce409380049c"
SRC_URI = "git://git.infradead.org/mtd-utils.git;protocol=git;tag=995cfe51b0a3cf32f381c140bf72b21bf91cef1b \
file://add-exclusion-to-mkfs-jffs2-git-2.patch"
S = "${WORKDIR}/git/"
PR = "r1"
EXTRA_OEMAKE = "'CC=${CC}' 'RANLIB=${RANLIB}' 'AR=${AR}' \
'CFLAGS=${CFLAGS} -I${S}/include -DWITHOUT_XATTR' 'BUILDDIR=${S}'"
do_install () {
oe_runmake install DESTDIR=${D} SBINDIR=${sbindir} MANDIR=${mandir} \
INCLUDEDIR=${includedir}
install -d ${D}${includedir}/mtd/
for f in ${S}/include/mtd/*.h; do
install -m 0644 $f ${D}${includedir}/mtd/
done
}
PARALLEL_MAKE = ""
BBCLASSEXTEND = "native"
</literallayout>
</para>
<para>
If your sources are available as a tarball instead of a Git repository, you
will need to provide the URL to the tarball as well as an
<filename>md5</filename> or <filename>sha256</filename> sum of
the download.
Here is an example:
<literallayout class='monospaced'>
SRC_URI="ftp://ftp.infradead.org/pub/mtd-utils/mtd-utils-1.4.9.tar.bz2"
SRC_URI[md5sum]="82b8e714b90674896570968f70ca778b"
</literallayout>
You can generate the <filename>md5</filename> or <filename>sha256</filename> sums
by using the <filename>md5sum</filename> or <filename>sha256sum</filename> commands
with the target file as the only argument.
Here is an example:
<literallayout class='monospaced'>
$ md5sum mtd-utils-1.4.9.tar.bz2
82b8e714b90674896570968f70ca778b mtd-utils-1.4.9.tar.bz2
</literallayout>
</para>
</section>
<section id='splitting-an-application-into-multiple-packages'>
<title>Splitting an Application into Multiple Packages</title>
<para>
You can use the variables
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGES'>PACKAGES</ulink></filename> and
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-FILES'>FILES</ulink></filename>
to split an application into multiple packages.
</para>
<para>
Following is an example that uses the <filename>libXpm</filename> recipe.
By default, this recipe generates a single package that contains the library along
with a few binaries.
You can modify the recipe to split the binaries into separate packages:
<literallayout class='monospaced'>
require xorg-lib-common.inc
DESCRIPTION = "X11 Pixmap library"
LICENSE = "X-BSD"
LIC_FILES_CHKSUM = "file://COPYING;md5=3e07763d16963c3af12db271a31abaa5"
DEPENDS += "libxext libsm libxt"
PR = "r3"
PE = "1"
XORG_PN = "libXpm"
PACKAGES =+ "sxpm cxpm"
FILES_cxpm = "${bindir}/cxpm"
FILES_sxpm = "${bindir}/sxpm"
</literallayout>
</para>
<para>
In the previous example, we want to ship the <filename>sxpm</filename>
and <filename>cxpm</filename> binaries in separate packages.
Since <filename>bindir</filename> would be packaged into the main
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PN'>PN</ulink></filename>
package by default, we prepend the <filename>PACKAGES</filename>
variable so additional package names are added to the start of list.
This results in the extra <filename>FILES_*</filename>
variables then containing information that define which files and
directories go into which packages.
Files included by earlier packages are skipped by latter packages.
Thus, the main <filename>PN</filename> package
does not include the above listed files.
</para>
</section>
<section id='usingpoky-extend-addpkg-postinstalls'>
<title>Post-Installation Scripts</title>
<para>
To add a post-installation script to a package, add a
<filename>pkg_postinst_PACKAGENAME()</filename> function to the
<filename>.bb</filename> file and use
<filename>PACKAGENAME</filename> as the name of the package you want to attach to the
<filename>postinst</filename> script.
Normally,
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PN'>PN</ulink></filename>
can be used, which automatically expands to <filename>PACKAGENAME</filename>.
A post-installation function has the following structure:
<literallayout class='monospaced'>
pkg_postinst_PACKAGENAME () {
#!/bin/sh -e
# Commands to carry out
}
</literallayout>
</para>
<para>
The script defined in the post-installation function is called when the
root filesystem is created.
If the script succeeds, the package is marked as installed.
If the script fails, the package is marked as unpacked and the script is
executed when the image boots again.
</para>
<para>
Sometimes it is necessary for the execution of a post-installation
script to be delayed until the first boot.
For example, the script might need to be executed on the device itself.
To delay script execution until boot time, use the following structure in the
post-installation script:
<literallayout class='monospaced'>
pkg_postinst_PACKAGENAME () {
#!/bin/sh -e
if [ x"$D" = "x" ]; then
# Actions to carry out on the device go here
else
exit 1
fi
}
</literallayout>
</para>
<para>
The previous example delays execution until the image boots again because the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-D'>D</ulink></filename>
variable points
to the directory containing the image when the root filesystem is created at build time but
is unset when executed on the first boot.
</para>
</section>
</section>
<section id="platdev-newmachine">
<title>Adding a New Machine</title>
<para>
Adding a new machine to the Yocto Project is a straightforward process.
This section provides information that gives you an idea of the changes you must make.
The information covers adding machines similar to those the Yocto Project already supports.
Although well within the capabilities of the Yocto Project, adding a totally new architecture
might require
changes to <filename>gcc/eglibc</filename> and to the site information, which is
beyond the scope of this manual.
</para>
<para>
For a complete example that shows how to add a new machine,
see the
"<ulink url='&YOCTO_DOCS_BSP_URL;#creating-a-new-bsp-layer-using-the-yocto-bsp-script'>Creating a New BSP Layer Using the yocto-bsp Script</ulink>"
in the Yocto Project Board Support Package (BSP) Developer's Guide.
</para>
<section id="platdev-newmachine-conffile">
<title>Adding the Machine Configuration File</title>
<para>
To add a machine configuration, you need to add a <filename>.conf</filename> file
with details of the device being added to the <filename>conf/machine/</filename> file.
The name of the file determines the name the OpenEmbedded build system
uses to reference the new machine.
</para>
<para>
The most important variables to set in this file are as follows:
<itemizedlist>
<listitem><para><filename><ulink url='&YOCTO_DOCS_REF_URL;#var-TARGET_ARCH'>
TARGET_ARCH</ulink></filename> (e.g. "arm")</para></listitem>
<listitem><para><filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PREFERRED_PROVIDER'>
PREFERRED_PROVIDER</ulink></filename>_virtual/kernel (see below)</para></listitem>
<listitem><para><filename><ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE_FEATURES'>
MACHINE_FEATURES</ulink></filename> (e.g. "apm screen wifi")</para></listitem>
</itemizedlist>
</para>
<para>
You might also need these variables:
<itemizedlist>
<listitem><para><filename><ulink url='&YOCTO_DOCS_REF_URL;#var-SERIAL_CONSOLE'>
SERIAL_CONSOLE</ulink></filename> (e.g. "115200 ttyS0")</para></listitem>
<listitem><para><filename><ulink url='&YOCTO_DOCS_REF_URL;#var-KERNEL_IMAGETYPE'>
KERNEL_IMAGETYPE</ulink></filename> (e.g. "zImage")</para></listitem>
<listitem><para><filename><ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FSTYPES'>
IMAGE_FSTYPES</ulink></filename> (e.g. "tar.gz jffs2")</para></listitem>
</itemizedlist>
</para>
<para>
You can find full details on these variables in the reference section.
You can leverage many existing machine <filename>.conf</filename> files from
<filename>meta/conf/machine/</filename>.
</para>
</section>
<section id="platdev-newmachine-kernel">
<title>Adding a Kernel for the Machine</title>
<para>
The OpenEmbedded build system needs to be able to build a kernel for the machine.
You need to either create a new kernel recipe for this machine, or extend an
existing recipe.
You can find several kernel examples in the
Source Directory at <filename>meta/recipes-kernel/linux</filename>
that you can use as references.
</para>
<para>
If you are creating a new recipe, normal recipe-writing rules apply for setting
up a
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'>SRC_URI</ulink></filename>.
Thus, you need to specify any necessary patches and set
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-S'>S</ulink></filename> to point at the source code.
You need to create a <filename>configure</filename> task that configures the
unpacked kernel with a defconfig.
You can do this by using a <filename>make defconfig</filename> command or,
more commonly, by copying in a suitable <filename>defconfig</filename> file and and then running
<filename>make oldconfig</filename>.
By making use of <filename>inherit kernel</filename> and potentially some of the
<filename>linux-*.inc</filename> files, most other functionality is
centralized and the the defaults of the class normally work well.
</para>
<para>
If you are extending an existing kernel, it is usually a matter of adding a
suitable defconfig file.
The file needs to be added into a location similar to defconfig files
used for other machines in a given kernel.
A possible way to do this is by listing the file in the
<filename>SRC_URI</filename> and adding the machine to the expression in
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-COMPATIBLE_MACHINE'>COMPATIBLE_MACHINE</ulink></filename>:
<literallayout class='monospaced'>
COMPATIBLE_MACHINE = '(qemux86|qemumips)'
</literallayout>
</para>
</section>
<section id="platdev-newmachine-formfactor">
<title>Adding a Formfactor Configuration File</title>
<para>
A formfactor configuration file provides information about the
target hardware for which the image is being built and information that
the build system cannot obtain from other sources such as the kernel.
Some examples of information contained in a formfactor configuration file include
framebuffer orientation, whether or not the system has a keyboard,
the positioning of the keyboard in relation to the screen, and
the screen resolution.
</para>
<para>
The build system uses reasonable defaults in most cases.
However, if customization is
necessary, you need to create a <filename>machconfig</filename> file
in the <filename>meta/recipes-bsp/formfactor/files</filename>
directory.
This directory contains directories for specific machines such as
<filename>qemuarm</filename> and <filename>qemux86</filename>.
For information about the settings available and the defaults, see the
<filename>meta/recipes-bsp/formfactor/files/config</filename> file found in the
same area.
</para>
<para>
Following is an example for qemuarm:
<literallayout class='monospaced'>
HAVE_TOUCHSCREEN=1
HAVE_KEYBOARD=1
DISPLAY_CAN_ROTATE=0
DISPLAY_ORIENTATION=0
#DISPLAY_WIDTH_PIXELS=640
#DISPLAY_HEIGHT_PIXELS=480
#DISPLAY_BPP=16
DISPLAY_DPI=150
DISPLAY_SUBPIXEL_ORDER=vrgb
</literallayout>
</para>
</section>
</section>
<section id="platdev-working-with-libraries">
<title>Working With Libraries</title>
<para>
Libraries are an integral part of your system.
This section describes some common practices you might find
helpful when working with libraries to build your system:
<itemizedlist>
<listitem><para><link linkend='including-static-library-files'>How to include static library files</link>
</para></listitem>
<listitem><para><link linkend='combining-multiple-versions-library-files-into-one-image'>How to use the Multilib feature to combine multiple versions of library files into a single image</link>
</para></listitem>
<listitem><para><link linkend='installing-multiple-versions-of-the-same-library'>How to install multiple versions of the same library in parallel on the same system</link>
</para></listitem>
</itemizedlist>
</para>
<section id='including-static-library-files'>
<title>Including Static Library Files</title>
<para>
If you are building a library and the library offers static linking, you can control
which static library files (<filename>*.a</filename> files) get included in the
built library.
</para>
<para>
The <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGES'><filename>PACKAGES</filename></ulink>
and <ulink url='&YOCTO_DOCS_REF_URL;#var-FILES'><filename>FILES_*</filename></ulink>
variables in the
<filename>meta/conf/bitbake.conf</filename> configuration file define how files installed
by the <filename>do_install</filename> task are packaged.
By default, the <filename>PACKAGES</filename> variable contains
<filename>${PN}-staticdev</filename>, which includes all static library files.
<note>
Some previously released versions of the Yocto Project
defined the static library files through
<filename>${PN}-dev</filename>.
</note>
Following, is part of the BitBake configuration file.
You can see where the static library files are defined:
<literallayout class='monospaced'>
PACKAGES = "${PN}-dbg ${PN} ${PN}-doc ${PN}-dev ${PN}-staticdev ${PN}-locale"
PACKAGES_DYNAMIC = "${PN}-locale-*"
FILES = ""
FILES_${PN} = "${bindir}/* ${sbindir}/* ${libexecdir}/* ${libdir}/lib*${SOLIBS} \
${sysconfdir} ${sharedstatedir} ${localstatedir} \
${base_bindir}/* ${base_sbindir}/* \
${base_libdir}/*${SOLIBS} \
${datadir}/${BPN} ${libdir}/${BPN}/* \
${datadir}/pixmaps ${datadir}/applications \
${datadir}/idl ${datadir}/omf ${datadir}/sounds \
${libdir}/bonobo/servers"
FILES_${PN}-doc = "${docdir} ${mandir} ${infodir} ${datadir}/gtk-doc \
${datadir}/gnome/help"
SECTION_${PN}-doc = "doc"
FILES_${PN}-dev = "${includedir} ${libdir}/lib*${SOLIBSDEV} ${libdir}/*.la \
${libdir}/*.o ${libdir}/pkgconfig ${datadir}/pkgconfig \
${datadir}/aclocal ${base_libdir}/*.o"
SECTION_${PN}-dev = "devel"
ALLOW_EMPTY_${PN}-dev = "1"
RDEPENDS_${PN}-dev = "${PN} (= ${EXTENDPKGV})"
FILES_${PN}-staticdev = "${libdir}/*.a ${base_libdir}/*.a"
SECTION_${PN}-staticdev = "devel"
RDEPENDS_${PN}-staticdev = "${PN}-dev (= ${EXTENDPKGV})"
</literallayout>
</para>
</section>
<section id="combining-multiple-versions-library-files-into-one-image">
<title>Combining Multiple Versions of Library Files into One Image</title>
<para>
The build system offers the ability to build libraries with different
target optimizations or architecture formats and combine these together
into one system image.
You can link different binaries in the image
against the different libraries as needed for specific use cases.
This feature is called "Multilib."
</para>
<para>
An example would be where you have most of a system compiled in 32-bit
mode using 32-bit libraries, but you have something large, like a database
engine, that needs to be a 64-bit application and uses 64-bit libraries.
Multilib allows you to get the best of both 32-bit and 64-bit libraries.
</para>
<para>
While the Multilib feature is most commonly used for 32 and 64-bit differences,
the approach the build system uses facilitates different target optimizations.
You could compile some binaries to use one set of libraries and other binaries
to use other different sets of libraries.
The libraries could differ in architecture, compiler options, or other
optimizations.
</para>
<para>
This section overviews the Multilib process only.
For more details on how to implement Multilib, see the
<ulink url='&YOCTO_WIKI_URL;/wiki/Multilib'>Multilib</ulink> wiki
page.
</para>
<para>
Aside from this wiki page, several examples exist in the
<ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/tree/meta-skeleton'><filename>meta-skeleton</filename></ulink>
layer found in the
<link linkend='source-directory'>Source Directory</link>:
<itemizedlist>
<listitem><para><filename>conf/multilib-example.conf</filename>
configuration file</para></listitem>
<listitem><para><filename>conf/multilib-example2.conf</filename>
configuration file</para></listitem>
<listitem><para><filename>recipes-multilib/images/core-image-multilib-example.bb</filename>
recipe</para></listitem>
</itemizedlist>
</para>
<section id='preparing-to-use-multilib'>
<title>Preparing to Use Multilib</title>
<para>
User-specific requirements drive the Multilib feature.
Consequently, there is no one "out-of-the-box" configuration that likely
exists to meet your needs.
</para>
<para>
In order to enable Multilib, you first need to ensure your recipe is
extended to support multiple libraries.
Many standard recipes are already extended and support multiple libraries.
You can check in the <filename>meta/conf/multilib.conf</filename>
configuration file in the
<link linkend='source-directory'>Source Directory</link> to see how this is
done using the
<ulink url='&YOCTO_DOCS_REF_URL;#var-BBCLASSEXTEND'><filename>BBCLASSEXTEND</filename></ulink>
variable.
Eventually, all recipes will be covered and this list will be unneeded.
</para>
<para>
For the most part, the Multilib class extension works automatically to
extend the package name from <filename>${PN}</filename> to
<filename>${MLPREFIX}${PN}</filename>, where <filename>MLPREFIX</filename>
is the particular multilib (e.g. "lib32-" or "lib64-").
Standard variables such as
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPENDS'><filename>DEPENDS</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-RDEPENDS'><filename>RDEPENDS</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-RPROVIDES'><filename>RPROVIDES</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-RRECOMMENDS'><filename>RRECOMMENDS</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGES'><filename>PACKAGES</filename></ulink>,
and <filename>PACKAGES_DYNAMIC</filename> are automatically extended by the system.
If you are extending any manual code in the recipe, you can use the
<filename>${MLPREFIX}</filename> variable to ensure those names are extended
correctly.
This automatic extension code resides in <filename>multilib.bbclass</filename>.
</para>
</section>
<section id='using-multilib'>
<title>Using Multilib</title>
<para>
After you have set up the recipes, you need to define the actual
combination of multiple libraries you want to build.
You accomplish this through your <filename>local.conf</filename>
configuration file in the
<link linkend='build-directory'>Build Directory</link>.
An example configuration would be as follows:
<literallayout class='monospaced'>
MACHINE = "qemux86-64"
require conf/multilib.conf
MULTILIBS = "multilib:lib32"
DEFAULTTUNE_virtclass-multilib-lib32 = "x86"
IMAGE_INSTALL = "lib32-connman"
</literallayout>
This example enables an
additional library named <filename>lib32</filename> alongside the
normal target packages.
When combining these "lib32" alternatives, the example uses "x86" for tuning.
For information on this particular tuning, see
<filename>meta/conf/machine/include/ia32/arch-ia32.inc</filename>.
</para>
<para>
The example then includes <filename>lib32-connman</filename>
in all the images, which illustrates one method of including a
multiple library dependency.
You can use a normal image build to include this dependency,
for example:
<literallayout class='monospaced'>
$ bitbake core-image-sato
</literallayout>
You can also build Multilib packages specifically with a command like this:
<literallayout class='monospaced'>
$ bitbake lib32-connman
</literallayout>
</para>
</section>
<section id='additional-implementation-details'>
<title>Additional Implementation Details</title>
<para>
Different packaging systems have different levels of native Multilib
support.
For the RPM Package Management System, the following implementation details
exist:
<itemizedlist>
<listitem><para>A unique architecture is defined for the Multilib packages,
along with creating a unique deploy folder under
<filename>tmp/deploy/rpm</filename> in the
<link linkend='build-directory'>Build Directory</link>.
For example, consider <filename>lib32</filename> in a
<filename>qemux86-64</filename> image.
The possible architectures in the system are "all", "qemux86_64",
"lib32_qemux86_64", and "lib32_x86".</para></listitem>
<listitem><para>The <filename>${MLPREFIX}</filename> variable is stripped from
<filename>${PN}</filename> during RPM packaging.
The naming for a normal RPM package and a Multilib RPM package in a
<filename>qemux86-64</filename> system resolves to something similar to
<filename>bash-4.1-r2.x86_64.rpm</filename> and
<filename>bash-4.1.r2.lib32_x86.rpm</filename>, respectively.
</para></listitem>
<listitem><para>When installing a Multilib image, the RPM backend first
installs the base image and then installs the Multilib libraries.
</para></listitem>
<listitem><para>The build system relies on RPM to resolve the identical files in the
two (or more) Multilib packages.</para></listitem>
</itemizedlist>
</para>
<para>
For the IPK Package Management System, the following implementation details exist:
<itemizedlist>
<listitem><para>The <filename>${MLPREFIX}</filename> is not stripped from
<filename>${PN}</filename> during IPK packaging.
The naming for a normal RPM package and a Multilib IPK package in a
<filename>qemux86-64</filename> system resolves to something like
<filename>bash_4.1-r2.x86_64.ipk</filename> and
<filename>lib32-bash_4.1-rw_x86.ipk</filename>, respectively.
</para></listitem>
<listitem><para>The IPK deploy folder is not modified with
<filename>${MLPREFIX}</filename> because packages with and without
the Multilib feature can exist in the same folder due to the
<filename>${PN}</filename> differences.</para></listitem>
<listitem><para>IPK defines a sanity check for Multilib installation
using certain rules for file comparison, overridden, etc.
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
<section id='installing-multiple-versions-of-the-same-library'>
<title>Installing Multiple Versions of the Same Library</title>
<para>
Situations can exist where you need to install and use
multiple versions of the same library on the same system
at the same time.
These situations almost always exist when a library API
changes and you have multiple pieces of software that
depend on the separate versions of the library.
To accommodate these situations, you can install multiple
versions of the same library in parallel on the same system.
</para>
<para>
The process is straight forward as long as the libraries use
proper versioning.
With properly versioned libraries, all you need to do to
individually specify the libraries is create separate,
appropriately named recipes where the
<ulink url='&YOCTO_DOCS_REF_URL;#var-PN'><filename>PN</filename></ulink> part of the
name includes a portion that differentiates each library version
(e.g.the major part of the version number).
Thus, instead of having a single recipe that loads one version
of a library (e.g. <filename>clutter</filename>), you provide
multiple recipes that result in different versions
of the libraries you want.
As an example, the following two recipes would allow the
two separate versions of the <filename>clutter</filename>
library to co-exist on the same system:
<literallayout class='monospaced'>
clutter-1.6_1.6.20.bb
clutter-1.8_1.8.4.bb
</literallayout>
Additionally, if you have other recipes that depend on a given
library, you need to use the
<ulink url='&YOCTO_DOCS_REF_URL;#var-DEPENDS'><filename>DEPENDS</filename></ulink>
variable to create the dependency.
Continuing with the same example, if you want to have a recipe
depend on the 1.8 version of the <filename>clutter</filename>
library, use the following in your recipe:
<literallayout class='monospaced'>
DEPENDS = "clutter-1.8"
</literallayout>
</para>
</section>
</section>
<section id='configuring-the-kernel'>
<title>Configuring the Kernel</title>
<para>
Configuring the Yocto Project kernel consists of making sure the <filename>.config</filename>
file has all the right information in it for the image you are building.
You can use the <filename>menuconfig</filename> tool and configuration fragments to
make sure your <filename>.config</filename> file is just how you need it.
This section describes how to use <filename>menuconfig</filename>, create and use
configuration fragments, and how to interactively tweak your <filename>.config</filename>
file to create the leanest kernel configuration file possible.
</para>
<para>
For more information on kernel configuration, see the
"<ulink url='&YOCTO_DOCS_KERNEL_DEV_URL;#changing-the-configuration'>Changing the Configuration</ulink>"
section in the Yocto Project Linux Kernel Development Manual.
</para>
<section id='using-menuconfig'>
<title>Using <filename>menuconfig</filename></title>
<para>
The easiest way to define kernel configurations is to set them through the
<filename>menuconfig</filename> tool.
This tool provides an interactive method with which
to set kernel configurations.
For general information on <filename>menuconfig</filename>, see
<ulink url='http://en.wikipedia.org/wiki/Menuconfig'></ulink>.
</para>
<para>
To use the <filename>menuconfig</filename> tool in the Yocto Project development
environment, you must build the tool using BitBake.
Thus, the environment must be set up using the
<ulink url='&YOCTO_DOCS_REF_URL;#structure-core-script'><filename>&OE_INIT_FILE;</filename></ulink>
script found in the
<link linkend='build-directory'>Build Directory</link>.
The following commands build and invoke <filename>menuconfig</filename> assuming the
<link linkend='source-directory'>Source Directory</link>
top-level folder is <filename>~/poky</filename>:
<literallayout class='monospaced'>
$ cd ~/poky
$ source oe-init-build-env
$ bitbake linux-yocto -c menuconfig
</literallayout>
Once <filename>menuconfig</filename> comes up, its standard interface allows you to
interactively examine and configure all the kernel configuration parameters.
After making your changes, simply exit the tool and save your changes to
create an updated version of the <filename>.config</filename> configuration file.
</para>
<para>
Consider an example that configures the <filename>linux-yocto-3.4</filename>
kernel.
The OpenEmbedded build system recognizes this kernel as
<filename>linux-yocto</filename>.
Thus, the following commands from the shell in which you previously sourced the
environment initialization script cleans the shared state cache and the
<ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>
directory and then builds and launches <filename>menuconfig</filename>:
<literallayout class='monospaced'>
$ bitbake linux-yocto -c menuconfig
</literallayout>
</para>
<para>
Once <filename>menuconfig</filename> launches, use the interface
to navigate through the selections to find the configuration settings in
which you are interested.
For example, consider the <filename>CONFIG_SMP</filename> configuration setting.
You can find it at <filename>Processor Type and Features</filename> under
the configuration selection <filename>Symmetric Multi-processing Support</filename>.
After highlighting the selection, use the arrow keys to select or deselect
the setting.
When you are finished with all your selections, exit out and save them.
</para>
<para>
Saving the selections updates the <filename>.config</filename> configuration file.
This is the file that the OpenEmbedded build system uses to configure the
kernel during the build.
You can find and examine this file in the Build Directory in
<filename>tmp/work/</filename>.
The actual <filename>.config</filename> is located in the area where the
specific kernel is built.
For example, if you were building a Linux Yocto kernel based on the
Linux 3.4 kernel and you were building a QEMU image targeted for
<filename>x86</filename> architecture, the
<filename>.config</filename> file would be located here:
<literallayout class='monospaced'>
~/poky/build/tmp/work/qemux86-poky-linux/linux-yocto-3.4.11+git1+84f...
...656ed30-r1/linux-qemux86-standard-build
</literallayout>
<note>
The previous example directory is artificially split and many of the characters
in the actual filename are omitted in order to make it more readable.
Also, depending on the kernel you are using, the exact pathname
for <filename>linux-yocto-3.4...</filename> might differ.
</note>
</para>
<para>
Within the <filename>.config</filename> file, you can see the kernel settings.
For example, the following entry shows that symmetric multi-processor support
is not set:
<literallayout class='monospaced'>
# CONFIG_SMP is not set
</literallayout>
</para>
<para>
A good method to isolate changed configurations is to use a combination of the
<filename>menuconfig</filename> tool and simple shell commands.
Before changing configurations with <filename>menuconfig</filename>, copy the
existing <filename>.config</filename> and rename it to something else,
use <filename>menuconfig</filename> to make
as many changes an you want and save them, then compare the renamed configuration
file against the newly created file.
You can use the resulting differences as your base to create configuration fragments
to permanently save in your kernel layer.
<note>
Be sure to make a copy of the <filename>.config</filename> and don't just
rename it.
The build system needs an existing <filename>.config</filename>
from which to work.
</note>
</para>
</section>
<section id='creating-config-fragments'>
<title>Creating Configuration Fragments</title>
<para>
Configuration fragments are simply kernel options that appear in a file
placed where the OpenEmbedded build system can find and apply them.
Syntactically, the configuration statement is identical to what would appear
in the <filename>.config</filename> file, which is in the
<link linkend='build-directory'>Build Directory</link> in
<filename>tmp/work/<arch>-poky-linux/linux-yocto-<release-specific-string>/linux-<arch>-<build-type></filename>.
</para>
<para>
It is simple to create a configuration fragment.
For example, issuing the following from the shell creates a configuration fragment
file named <filename>my_smp.cfg</filename> that enables multi-processor support
within the kernel:
<literallayout class='monospaced'>
$ echo "CONFIG_SMP=y" >> my_smp.cfg
</literallayout>
<note>
All configuration files must use the <filename>.cfg</filename> extension in order
for the OpenEmbedded build system to recognize them as a configuration fragment.
</note>
</para>
<para>
Where do you put your configuration files?
You can place these configuration files in the same area pointed to by
<ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>.
The OpenEmbedded build system will pick up the configuration and add it to the
kernel's configuration.
For example, suppose you had a set of configuration options in a file called
<filename>myconfig.cfg</filename>.
If you put that file inside a directory named <filename>/linux-yocto</filename>
that resides in the same directory as the kernel's append file and then add
a <filename>SRC_URI</filename> statement such as the following to the kernel's append file,
those configuration options will be picked up and applied when the kernel is built.
<literallayout class='monospaced'>
SRC_URI += "file://myconfig.cfg"
</literallayout>
</para>
<para>
As mentioned earlier, you can group related configurations into multiple files and
name them all in the <filename>SRC_URI</filename> statement as well.
For example, you could group separate configurations specifically for Ethernet and graphics
into their own files and add those by using a <filename>SRC_URI</filename> statement like the
following in your append file:
<literallayout class='monospaced'>
SRC_URI += "file://myconfig.cfg \
file://eth.cfg \
file://gfx.cfg"
</literallayout>
</para>
</section>
<section id='fine-tuning-the-kernel-configuration-file'>
<title>Fine-Tuning the Kernel Configuration File</title>
<para>
You can make sure the <filename>.config</filename> file is as lean or efficient as
possible by reading the output of the kernel configuration fragment audit,
noting any issues, making changes to correct the issues, and then repeating.
</para>
<para>
As part of the kernel build process, the
<filename>kernel_configcheck</filename> task runs.
This task validates the kernel configuration by checking the final
<filename>.config</filename> file against the input files.
During the check, the task produces warning messages for the following
issues:
<itemizedlist>
<listitem><para>Requested options that did not make the final
<filename>.config</filename> file.</para></listitem>
<listitem><para>Configuration items that appear twice in the same
configuration fragment.</para></listitem>
<listitem><para>Configuration items tagged as "required" were overridden.
</para></listitem>
<listitem><para>A board overrides a non-board specific option.</para></listitem>
<listitem><para>Listed options not valid for the kernel being processed.
In other words, the option does not appear anywhere.</para></listitem>
</itemizedlist>
<note>
The <filename>kernel_configcheck</filename> task can also optionally report
if an option is overridden during processing.
</note>
</para>
<para>
For each output warning, a message points to the file
that contains a list of the options and a pointer to the config
fragment that defines them.
Collectively, the files are the key to streamlining the configuration.
</para>
<para>
To streamline the configuration, do the following:
<orderedlist>
<listitem><para>Start with a full configuration that you know
works - it builds and boots successfully.
This configuration file will be your baseline.</para></listitem>
<listitem><para>Separately run the <filename>configme</filename> and
<filename>kernel_configcheck</filename> tasks.</para></listitem>
<listitem><para>Take the resulting list of files from the
<filename>kernel_configcheck</filename> task warnings and do the following:
<itemizedlist>
<listitem><para>Drop values that are redefined in the fragment but do not
change the final <filename>.config</filename> file.</para></listitem>
<listitem><para>Analyze and potentially drop values from the
<filename>.config</filename> file that override required
configurations.</para></listitem>
<listitem><para>Analyze and potentially remove non-board specific options.
</para></listitem>
<listitem><para>Remove repeated and invalid options.</para></listitem>
</itemizedlist></para></listitem>
<listitem><para>After you have worked through the output of the kernel configuration
audit, you can re-run the <filename>configme</filename>
and <filename>kernel_configcheck</filename> tasks to see the results of your
changes.
If you have more issues, you can deal with them as described in the
previous step.</para></listitem>
</orderedlist>
</para>
<para>
Iteratively working through steps two through four eventually yields
a minimal, streamlined configuration file.
Once you have the best <filename>.config</filename>, you can build the Linux
Yocto kernel.
</para>
</section>
</section>
<section id="patching-the-kernel">
<title>Patching the Kernel</title>
<para>
Patching the kernel involves changing or adding configurations to an existing kernel,
changing or adding recipes to the kernel that are needed to support specific hardware features,
or even altering the source code itself.
<note>
You can use the <filename>yocto-kernel</filename> script
found in the <link linkend='source-directory'>Source Directory</link>
under <filename>scripts</filename> to manage kernel patches and configuration.
See the "<ulink url='&YOCTO_DOCS_BSP_URL;#managing-kernel-patches-and-config-items-with-yocto-kernel'>Managing kernel Patches and Config Items with yocto-kernel</ulink>"
section in the Yocto Project Board Support Packages (BSP) Developer's Guide for
more information.</note>
</para>
<para>
This example creates a simple patch by adding some QEMU emulator console
output at boot time through <filename>printk</filename> statements in the kernel's
<filename>calibrate.c</filename> source code file.
Applying the patch and booting the modified image causes the added
messages to appear on the emulator's console.
</para>
<para>
The example assumes a clean build exists for the <filename>qemux86</filename>
machine in a Source Directory named <filename>poky</filename>.
Furthermore, the <link linkend='build-directory'>Build Directory</link> is
<filename>build</filename> and is located in <filename>poky</filename> and
the kernel is based on the Linux 3.4 kernel.
For general information on how to configure the most efficient build, see the
"<ulink url='&YOCTO_DOCS_QS_URL;#building-image'>Building an Image</ulink>" section
in the Yocto Project Quick Start.
</para>
<para>
Also, for more information on patching the kernel, see the
"<ulink url='&YOCTO_DOCS_KERNEL_DEV_URL;#applying-patches'>Applying Patches</ulink>"
section in the Yocto Project Linux Kernel Development Manual.
</para>
<section id='create-a-layer-for-your-changes'>
<title>Create a Layer for your Changes</title>
<para>
The first step is to create a layer so you can isolate your changes:
<literallayout class='monospaced'>
$cd ~/poky
$mkdir meta-mylayer
</literallayout>
Creating a directory that follows the Yocto Project layer naming
conventions sets up the layer for your changes.
The layer is where you place your configuration files, append
files, and patch files.
To learn more about creating a layer and filling it with the
files you need, see the "<link linkend='understanding-and-creating-layers'>Understanding
and Creating Layers</link>" section.
</para>
</section>
<section id='finding-the-kernel-source-code'>
<title>Finding the Kernel Source Code</title>
<para>
Each time you build a kernel image, the kernel source code is fetched
and unpacked into the following directory:
<literallayout class='monospaced'>
${S}/linux
</literallayout>
See the "<link linkend='finding-the-temporary-source-code'>Finding the Temporary Source Code</link>"
section and the
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink> variable
for more information about where source is kept during a build.
</para>
<para>
For this example, we are going to patch the
<filename>init/calibrate.c</filename> file
by adding some simple console <filename>printk</filename> statements that we can
see when we boot the image using QEMU.
</para>
</section>
<section id='creating-the-patch'>
<title>Creating the Patch</title>
<para>
Two methods exist by which you can create the patch:
<link linkend='using-a-git-workflow'>Git workflow</link> and
<link linkend='using-a-quilt-workflow'>Quilt workflow</link>.
For kernel patches, the Git workflow is more appropriate.
This section assumes the Git workflow and shows the steps specific to
this example.
<orderedlist>
<listitem><para><emphasis>Change the working directory</emphasis>:
Change to where the kernel source code is before making
your edits to the <filename>calibrate.c</filename> file:
<literallayout class='monospaced'>
$ cd ~/poky/build/tmp/work/qemux86-poky-linux/linux-yocto-${PV}-${PR}/linux
</literallayout>
Because you are working in an established Git repository,
you must be in this directory in order to commit your changes
and create the patch file.
<note>The <ulink url='&YOCTO_DOCS_REF_URL;#var-PV'><filename>PV</filename></ulink> and
<ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink> variables
represent the version and revision for the
<filename>linux-yocto</filename> recipe.
The <filename>PV</filename> variable includes the Git meta and machine
hashes, which make the directory name longer than you might
expect.
</note></para></listitem>
<listitem><para><emphasis>Edit the source file</emphasis>:
Edit the <filename>init/calibrate.c</filename> file to have the
following changes:
<literallayout class='monospaced'>
void __cpuinit calibrate_delay(void)
{
unsigned long lpj;
static bool printed;
int this_cpu = smp_processor_id();
printk("*************************************\n");
printk("* *\n");
printk("* HELLO YOCTO KERNEL *\n");
printk("* *\n");
printk("*************************************\n");
if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
.
.
.
</literallayout></para></listitem>
<listitem><para><emphasis>Stage and commit your changes</emphasis>:
These Git commands list out the changed file, stage it, and then
commit the file:
<literallayout class='monospaced'>
$ git status
$ git add init/calibrate.c
$ git commit -m "calibrate: Add printk example"
</literallayout></para></listitem>
<listitem><para><emphasis>Generate the patch file</emphasis>:
This Git command creates the a patch file named
<filename>0001-calibrate-Add-printk-example.patch</filename>
in the current directory.
<literallayout class='monospaced'>
$ git format-patch -1
</literallayout>
</para></listitem>
</orderedlist>
</para>
</section>
<section id='get-your-layer-setup-for-the-build'>
<title>Get Your Layer Setup for the Build</title>
<para>These steps get your layer set up for the build:
<orderedlist>
<listitem><para><emphasis>Create additional structure</emphasis>:
Create the additional layer structure:
<literallayout class='monospaced'>
$ cd ~/poky/meta-mylayer
$ mkdir conf
$ mkdir recipes-kernel
$ mkdir recipes-kernel/linux
$ mkdir recipes-kernel/linux/linux-yocto
</literallayout>
The <filename>conf</filename> directory holds your configuration files, while the
<filename>recipes-kernel</filename> directory holds your append file and
your patch file.</para></listitem>
<listitem><para><emphasis>Create the layer configuration file</emphasis>:
Move to the <filename>meta-mylayer/conf</filename> directory and create
the <filename>layer.conf</filename> file as follows:
<literallayout class='monospaced'>
# We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"
# We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
${LAYERDIR}/recipes-*/*/*.bbappend"
BBFILE_COLLECTIONS += "mylayer"
BBFILE_PATTERN_mylayer = "^${LAYERDIR}/"
BBFILE_PRIORITY_mylayer = "5"
</literallayout>
Notice <filename>mylayer</filename> as part of the last three
statements.</para></listitem>
<listitem><para><emphasis>Create the kernel recipe append file</emphasis>:
Move to the <filename>meta-mylayer/recipes-kernel/linux</filename> directory and create
the <filename>linux-yocto_3.4.bbappend</filename> file as follows:
<literallayout class='monospaced'>
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI += "file://0001-calibrate-Add-printk-example.patch"
PRINC := "${@int(PRINC) + 1}"
</literallayout>
The <ulink url='&YOCTO_DOCS_REF_URL;#var-FILESEXTRAPATHS'><filename>FILESEXTRAPATHS</filename></ulink>
and <ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
statements enable the OpenEmbedded build system to find the patch file.
</para></listitem>
<listitem><para><emphasis>Put the patch file in your layer</emphasis>:
Move the <filename>0001-calibrate-Add-printk-example.patch</filename> file to
the <filename>meta-mylayer/recipes-kernel/linux/linux-yocto</filename>
directory.</para></listitem>
</orderedlist>
</para>
</section>
<section id='set-up-for-the-build'>
<title>Set Up for the Build</title>
<para>
Do the following to make sure the build parameters are set up for the example.
Once you set up these build parameters, they do not have to change unless you
change the target architecture of the machine you are building:
<itemizedlist>
<listitem><para><emphasis>Build for the Correct Target Architecture:</emphasis> Your
selected <ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'><filename>MACHINE</filename></ulink>
definition within the <filename>local.conf</filename> file in the Build Directory
specifies the target architecture used when building the Linux kernel.
By default, <filename>MACHINE</filename> is set to
<filename>qemux86</filename>, which specifies a 32-bit
<trademark class='registered'>Intel</trademark> Architecture
target machine suitable for the QEMU emulator.</para></listitem>
<listitem><para><emphasis>Identify Your <filename>meta-mylayer</filename>
Layer:</emphasis> The <filename>BBLAYERS</filename> variable in the
<filename>bblayers.conf</filename> file found in the
<filename>poky/build/conf</filename> directory needs to have the path to your local
<filename>meta-mylayer</filename> layer.
By default, the <filename>BBLAYERS</filename> variable contains paths to
<filename>meta</filename>, <filename>meta-yocto</filename>, and
<filename>meta-yocto-bsp</filename> in the
<filename>poky</filename> Git repository.
Add the path to your <filename>meta-mylayer</filename> location:
<literallayout class='monospaced'>
BBLAYERS ?= " \
$HOME/poky/meta \
$HOME/poky/meta-yocto \
$HOME/poky/meta-yocto-bsp \
$HOME/poky/meta-mylayer \
"
BBLAYERS_NON_REMOVABLE ?= " \
$HOME/poky/meta \
$HOME/poky/meta-yocto \
"
</literallayout></para></listitem>
</itemizedlist>
</para>
</section>
<section id='build-and-booting-the-modified-qemu-kernel-image'>
<title>Build and Booting the Modified QEMU Kernel Image</title>
<para>
The following steps build and boot your modified kernel image:
<orderedlist>
<listitem><para><emphasis>Be sure your build environment is initialized</emphasis>:
Your environment should be set up since you previously sourced
the <filename>&OE_INIT_FILE;</filename> script.
If it is not, source the script again from <filename>poky</filename>.
<literallayout class='monospaced'>
$ cd ~/poky
$ source &OE_INIT_FILE;
</literallayout>
</para></listitem>
<listitem><para><emphasis>Clean up</emphasis>:
Be sure to clean the shared state out by running the
<filename>cleansstate</filename> BitBake task as follows from your Build Directory:
<literallayout class='monospaced'>
$ bitbake -c cleansstate linux-yocto
</literallayout></para>
<para><note>Never remove any files by hand from the <filename>tmp/deploy</filename>
directory inside the Build Directory.
Always use the various BitBake clean tasks to clear out previous
build artifacts.
</note></para></listitem>
<listitem><para><emphasis>Build the image</emphasis>:
Next, build the kernel image using this command:
<literallayout class='monospaced'>
$ bitbake -k linux-yocto
</literallayout></para></listitem>
</orderedlist>
</para>
</section>
<section id='verify-your-changes'>
<title>Verify Your Changes</title>
<para>
These steps boot the image and allow you to see the changes
<orderedlist>
<listitem><para><emphasis>Boot the image</emphasis>:
Boot the modified image in the QEMU emulator
using this command:
<literallayout class='monospaced'>
$ runqemu qemux86
</literallayout></para></listitem>
<listitem><para><emphasis>Verify the changes</emphasis>:
Log into the machine using <filename>root</filename> with no password and then
use the following shell command to scroll through the console's boot output.
<literallayout class='monospaced'>
# dmesg | less
</literallayout>
You should see the results of your <filename>printk</filename> statements
as part of the output.</para></listitem>
</orderedlist>
</para>
</section>
</section>
<section id='creating-your-own-distribution'>
<title>Creating Your Own Distribution</title>
<para>
When you build an image using the Yocto Project and
do not alter any distribution
<link linkend='metadata'>Metadata</link>, you are creating a
Poky distribution.
If you wish to gain more control over package alternative
selections, compile-time options, and other low-level
configuration, you can create your own distribution.
</para>
<para>
To create your own distribution, the basic steps consist of
creating your own distribution layer, creating your own
distribution configuration file, and then adding any needed
code and Metadata to the layer.
The following steps provide some more detail:
<itemizedlist>
<listitem><para><emphasis>Create a layer for your new distro:</emphasis>
Create your distribution layer so that you can keep your
Metadata and code for the distribution separate.
It is strongly recommended that you create and use your own
layer for configuration and code.
Using your own layer as compared to just placing
configurations in a <filename>local.conf</filename>
configuration file makes it easier to reproduce the same
build configuration when using multiple build machines.
</para></listitem>
<listitem><para><emphasis>Create the Distribution Configuration File:</emphasis>
The distribution configuration file needs to be created in
the <filename>conf/distro</filename> directory of your
layer.
You need to name it using your distribution name
(e.g. <filename>mydistro.conf</filename>).</para>
<para>You can split out parts of your configuration file
into include files and then "require" them from within
your distribution configuration file.
Be sure to place the include files in the
<filename>conf/distro/include</filename> directory of
your layer.
A common example usage of include files would be to
separate out the selection of desired version and revisions
for individual recipes.
<tip>
If you want to base your distribution configuration file
on the very basic configuration from OE-Core, you
can "require"
<filename>conf/distro/defaultsetup.conf</filename>.
Alternatively, you can create a distribution
configuration file from scratch using the
<filename>defaultsetup.conf</filename> file
or configuration files from other distributions
such as Poky or Angstrom as references.
</tip></para>
<para>Your configuration file needs to set the following
variables:
<literallayout class='monospaced'>
<ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO_NAME'><filename>DISTRO_NAME</filename></ulink> [required]
<ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO_VERSION'><filename>DISTRO_VERSION</filename></ulink> [required]
<ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO_FEATURES'><filename>DISTRO_FEATURES</filename></ulink> [required if creating from scratch]
<ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO_EXTRA_RDEPENDS'><filename>DISTRO_EXTRA_RDEPENDS</filename></ulink> [optional]
<ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO_EXTRA_RRECOMMENDS'><filename>DISTRO_EXTRA_RRECOMMENDS</filename></ulink> [optional]
<ulink url='&YOCTO_DOCS_REF_URL;#var-TCLIBC'><filename>TCLIBC</filename></ulink> [required if creating from scratch]
</literallayout></para></listitem>
<listitem><para><emphasis>Provide Miscellaneous Variables:</emphasis>
Be sure to define any other variable for which you want to
create a default or enforce as part of the distribution
configuration.
You can include nearly any variable from the
<filename>local.conf</filename> file.
The variables you use are not limited to the list in the
previous bulleted item.</para></listitem>
<listitem><para><emphasis>Point to Your Distribution Configuration File:</emphasis>
In your <filename>local.conf</filename> file in the
<link linkend='build-directory'>Build Directory</link>,
set your
<ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO'><filename>DISTRO</filename></ulink>
variable to point to your distribution's configuration file.
For example, if your distribution's configuration file is
named <filename>mydistro.conf</filename>, then you point
to it as follows:
<literallayout class='monospaced'>
DISTRO = "mydistro"
</literallayout></para></listitem>
<listitem><para><emphasis>Add More to the Layer if Necessary:</emphasis>
Use your layer to hold other information needed for the
distribution:
<itemizedlist>
<listitem><para>Add recipes for installing
distro-specific configuration files that are not
already installed by another recipe.
If you have distro-specific configuration files
that are included by an existing recipe, you should
add a <filename>.bbappend</filename> for those.
For general information on how to add recipes to
your layer, see the "<link linkend='creating-your-own-layer'>Creating Your Own Layer</link>"
section.</para></listitem>
<listitem><para>Add any image recipes that are specific
to your distribution.</para></listitem>
<listitem><para>Add a <filename>psplash</filename>
append file for a branded splash screen.
For information on append files, see the
"<link linkend='using-bbappend-files'>Using .bbappend Files</link>"
section.</para></listitem>
<listitem><para>Add any other append files to make
custom changes that are specific to individual
recipes.</para></listitem>
</itemizedlist></para></listitem>
</itemizedlist>
</para>
</section>
<section id='building-a-tiny-system'>
<title>Building a Tiny System</title>
<para>
Very small distributions have some significant advantages such
as requiring less on-die or in-package memory (cheaper), better
performance through efficient cache usage, lower power requirements
due to less memory, faster boot times, and reduced development
overhead.
Some real-world examples where a very small distribution gives
you distinct advantages are digital cameras, medical devices,
and small headless systems.
</para>
<para>
This section presents information that shows you how you can
trim your distribution to even smaller sizes than the
<filename>poky-tiny</filename> distribution, which is around
5 Mbytes, that can be built out-of-the-box using the Yocto Project.
</para>
<section id='tiny-system-overview'>
<title>Overview</title>
<para>
The following list presents the overall steps you need to
consider and perform to create distributions with smaller
root filesystems, faster boot times, maintain your critical
functionality, and avoid initial RAM disks:
<itemizedlist>
<listitem><para>Determine your goals and guiding
principles.</para></listitem>
<listitem><para>Understand what gives your image size.
</para></listitem>
<listitem><para>Reduce the size of the root filesystem.
</para></listitem>
<listitem><para>Reduce the size of the kernel.
</para></listitem>
<listitem><para>Look for other ways to minimize size.
</para></listitem>
<listitem><para>Iterate on the process.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='goals-and-guiding-principles'>
<title>Goals and Guiding Principles</title>
<para>
Before you can reach your destination, you need to know
where you are going.
Here is an example list that you can use as a guide when
creating very small distributions:
<itemizedlist>
<listitem><para>Determine how much space you need
(e.g. a kernel that is 1 Mbyte or less and
a root filesystem that is 3 Mbytes or less).
</para></listitem>
<listitem><para>Find the areas that are currently
taking 90% of the space and concentrate on reducing
those areas.
</para></listitem>
<listitem><para>Do not create any difficult "hacks"
to achieve your goals.</para></listitem>
<listitem><para>Leverage the device-specific
options.</para></listitem>
<listitem><para>Work in a separate layer so that you
keep changes isolated.
For information on how to create layers, see
the "<link linkend='understanding-and-creating-layers'>Understanding and Creating Layers</link>" section.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='understand-what-gives-your-image-size'>
<title>Understand What Gives Your Image Size</title>
<para>
It is easiest to have something to start with when creating
your own distribution.
You can use the Yocto Project out-of-the-box to create the
<filename>poky-tiny</filename> distribution.
Ultimately, you will want to make changes in your own
distribution that are likely modeled after
<filename>poky-tiny</filename>.
<note>
To use <filename>poky-tiny</filename> in your build,
set the <filename>DISTRO</filename> variable in your
<filename>local.conf</filename> file to "poky-tiny"
as described in the
"<link linkend='creating-your-own-distribution'>Creating Your Own Distribution</link>"
section.
</note>
</para>
<para>
Understanding some memory concepts will help you reduce the
system size.
Memory consists of static, dynamic, and temporary memory.
Static memory is the TEXT (the code), DATA (initialized data
in the code), and BSS (uninitialized data) sections.
Dynamic memory contains memory that is allocated at runtime,
stacks, hash tables, and so forth.
Temporary memory is recovered after the boot process.
This memory consists of memory used for decompressing
the kernel and for the <filename>__init__</filename>
functions.
</para>
<para>
To help you see where you currently are with kernel and root
filesystem sizes, you can use two tools found in the
<link linkend='source-directory'>Source Directory</link> in
the <filename>scripts</filename> directory:
<itemizedlist>
<listitem><para><filename>ksize.py</filename>: Reports
component sizes for the kernel build objects.
</para></listitem>
<listitem><para><filename>dirsize.py</filename>: Reports
component sizes for the root filesystem.</para></listitem>
</itemizedlist>
This next tool and command helps you organize configuration
fragments and view file dependencies in a human-readable form:
<itemizedlist>
<listitem><para><filename>merge_config.sh</filename>:
Helps you manage configuration files and fragments
within the kernel.
With this tool, you can merge individual configuration
fragments together.
The tool allows you to make overrides and warns you
of any missing configuration options.
The tool is ideal for allowing you to iterate on
configurations, create minimal configurations, and
create a configuration files for different machines
without having to duplicate your process.</para>
<para>The <filename>merge_config.sh</filename> script is
part of the Linux Yocto kernel Git repository in the
<filename>scripts/kconfig</filename> directory.</para>
<para>For more information on configuration fragments,
see the
"<ulink url='&YOCTO_DOCS_KERNEL_DEV_URL;#generating-configuration-files'>Generating Configuration Files</ulink>"
section of the Yocto Project Linux Kernel Development
Manual and the "<link linkend='creating-config-fragments'>Creating Configuration Fragments</link>"
section, which is in this manual.</para></listitem>
<listitem><para><filename>bitbake -u depexp -g <bitbake_target></filename>:
Using the BitBake command with these options brings up
a Dependency Explorer from which you can view file
dependencies.
Understanding these dependencies allows you to make
informed decisions when cutting out various pieces of the
kernel and root filesystem.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='trim-the-root-filesystem'>
<title>Trim the Root Filesystem</title>
<para>
The root filesystem is made up of packages for booting,
libraries, and applications.
To change things you can configure how the packaging happens,
which changes the way you build them.
You can also tweak the filesystem itself or select a different
filesystem.
</para>
<para>
First, check out what is hogging your root filesystem running the
<filename>dirsize.py</filename> script from your root directory:
<literallayout class='monospaced'>
$ cd <root-directory-of-image>
$ dirsize.py 100000 > dirsize-100k.log
$ cat dirsize-100k.log
</literallayout>
You can apply a filter to the script to ignore files under
a certain size.
This example filters out anything below 100 Kbytes.
The sizes reported by the tool are uncompressed and thus,
will be smaller by a relatively constant factor in a
compressed root filesystem.
When you examine your log file, you can focus on areas of the
root filesystem that take up large amounts of memory.
</para>
<para>
You need to be sure that what you eliminate does not cripple
the functionality you need.
One way to see how packages relate to each other is by using
the Dependency Explorer UI with the BitBake command:
<literallayout class='monospaced'>
$ cd <image-directory>
$ bitbake -u depexp -g <image>
</literallayout>
Use the interface to select potential packages you wish to
eliminate and see their dependency relationships.
</para>
<para>
When deciding how to reduce the size, get rid of packages that
result in minimal impact on the feature set.
For example, you might not need a VGA display.
Or, you might be able to get by with <filename>devtmpfs</filename>
and <filename>mdev</filename> instead of
<filename>udev</filename>.
</para>
<para>
Use the <filename>local.conf</filename> file to make changes.
For example, to eliminate <filename>udev</filename> and
<filename>glib</filename>, set the following in the
local configuration file:
<literallayout class='monospaced'>
VIRTUAL-RUNTIME_dev_manager = ""
</literallayout>
</para>
<para>
Finally, you should consider exactly the type of root
filesystem you need to meet your needs while also reducing
its size.
For example, consider <filename>cramfs</filename>,
<filename>squashfs</filename>, <filename>ubifs</filename>,
<filename>ext2</filename>, or an <filename>initramfs</filename>
using <filename>initramfs</filename>.
Be aware that <filename>ext3</filename> requires a 1 Mbyte
journal.
If you are okay with running read-only you don't need this
journal.
</para>
<note>
After each round of elimination, you need to rebuild your
system and then use the tools to see the effects of your
reductions.
</note>
</section>
<section id='trim-the-kernel'>
<title>Trim the Kernel</title>
<para>
Kernel is built by including policies for hardware-independent
aspects.
What subsystems do you enable?
What architecture are you building for?
Which drivers do you build by default.
<note>You can modify the kernel source if you want to help
with boot time.
</note>
</para>
<para>
Run the <filename>ksize.py</filename> script from the top-level
Linux build directory to get an idea of what is making up
the kernel:
<literallayout class='monospaced'>
$ cd <top-level-linux-build-directory>
$ ksize.py > ksize.log
$ cat ksize.log
</literallayout>
When you examine the log, you will see how much space is
taken up with the built-in <filename>.o</filename> files for
drivers, networking, core kernel files, filesystem, sound,
and so forth.
The sizes reported by the tool are uncompressed and thus,
will be smaller by a relatively constant factor in a compressed
kernel image.
Look to reduce the areas that are large and taking up around
the "90% rule".
</para>
<para>
To examine, or drill down, into any particular area, use the
<filename>-d</filename> option with the script:
<literallayout class='monospaced'>
$ ksize.py -d > ksize.log
</literallayout>
Using this option breaks out the individual file information
for each area of the kernel (e.g. drivers, networking, and
so forth).
</para>
<para>
Use your log file to see what you can eliminate from the kernel
based on features you can let go.
For example, if you are not going to need sound, you do not
need any drivers that support sound.
</para>
<para>
After figuring out what to eliminate, you need to reconfigure
kernel to reflect those changes during the next build.
You could run <filename>menuconfig</filename> and make all your
changes at once.
However, that makes it difficult to see the effects of your
individual eliminations and also makes it difficult to replicate
the changes for perhaps another target device.
A better method is to start with no configurations using
<filename>allnoconfig</filename>, create configuration
fragments for individual changes, and then manage the
fragments into a single configuration file using
<filename>merge_config.sh</filename>.
The tool makes it easy for you to iterate using the
configuration change/build cycle.
</para>
<para>
Each time you make configuration changes, you need to rebuild
the kernel and check to see what impact your changes had on
the overall size.
</para>
</section>
<section id='look-for-other-ways-to-minimize-size'>
<title>Look for Other Ways to Minimize Size</title>
<para>
Depending on your particular circumstances, other areas that you
can trim likely exist.
The key to finding these areas is through tools and methods
described here combined with experimentation and iteration.
Here are a couple of areas to experiment with:
<itemizedlist>
<listitem><para><filename>eglibc</filename>:
In general, follow this process:
<orderedlist>
<listitem><para>Remove <filename>eglibc</filename>
features from
<ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO_FEATURES'><filename>DISTRO_FEATURES</filename></ulink>
that you think you don't need.</para></listitem>
<listitem><para>Build your distribution.
</para></listitem>
<listitem><para>If the build fails due to missing
symbols in a package, determine if you can
reconfigure the package to not need those
features.
For example, change the configuration to not
support wide character support as is done for
<filename>ncurses</filename>.
Or, if support for those characters is needed,
determine what <filename>eglibc</filename>
features provide the support and restore the
configuration.
</para></listitem>
<listitem><para>Rebuild and repeat the process.
</para></listitem>
</orderedlist></para></listitem>
<listitem><para><filename>busybox</filename>:
For BusyBox, use a process similar as described for
<filename>eglibc</filename>.
A difference is you will need to boot the resulting
system to see if you are able to do everything you
expect from the running system.
You need to be sure to integrate configuration fragments
into Busybox because BusyBox handles its own core
features and then allows you to add configuration
fragments on top.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='iterate-on-the-process'>
<title>Iterate on the Process</title>
<para>
If you have not reached your goals on system size, you need
to iterate on the process.
The process is the same.
Use the tools and see just what is taking up 90% of the root
filesystem and the kernel.
Decide what you can eliminate without limiting your device
beyond what you need.
</para>
<para>
Depending on your system, a good place to look might be
Busybox, which provides a stripped down
version of Unix tools in a single, executable file.
You might be able to drop virtual terminal services or perhaps
ipv6.
</para>
</section>
</section>
<section id='working-with-packages'>
<title>Working with Packages</title>
<para>
This section describes a few tasks that involve packages:
<itemizedlist>
<listitem><para>Incrementing a package revision number
</para></listitem>
<listitem><para>Handling a package name alias
</para></listitem>
<listitem><para>Handling optional module packaging
</para></listitem>
<listitem><para>Setting up Runtime Package Management
</para></listitem>
<listitem><para>Setting up and running package test
(ptest)
</para></listitem>
</itemizedlist>
</para>
<section id='incrementing-a-package-revision-number'>
<title>Incrementing a Package Revision Number</title>
<para>
If a committed change results in changing the package output,
then the value of the
<ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>
variable needs to be increased (or "bumped").
Increasing <filename>PR</filename> occurs one of two ways:
<itemizedlist>
<listitem><para>Automatically using a Package Revision
Service (PR Service).</para></listitem>
<listitem><para>Manually incrementing the
<filename>PR</filename> variable.</para></listitem>
</itemizedlist>
</para>
<para>
Given that one of the challenges any build system and its
users face is how to maintain a package feed that is compatible
with existing package manager applications such as
RPM, APT, and OPKG, using an automated system is much
preferred over a manual system.
In either system, the main requirement is that version
numbering increases in a linear fashion and that a number of
version components exist that support that linear progression.
</para>
<para>
The following two sections provide information on the PR Service
and on manual <filename>PR</filename> bumping.
</para>
<section id='working-with-a-pr-service'>
<title>Working With a PR Service</title>
<para>
As mentioned, attempting to maintain revision numbers in the
<ulink url='&YOCTO_DOCS_DEV_URL;#metadata'>Metadata</ulink>
is error prone, inaccurate and causes problems for people
submitting recipes.
Conversely, the PR Service automatically generates
increasing numbers, particularly the revision field,
which removes the human element.
<note>
For additional information on using a PR Service, you
can see the
<ulink url='&YOCTO_WIKI_URL;/wiki/PR_Service'>PR Service</ulink>
wiki page.
</note>
</para>
<para>
The Yocto Project uses variables in order of
decreasing priority to facilitate revision numbering (i.e.
<ulink url='&YOCTO_DOCS_REF_URL;#var-PE'><filename>PE</filename></ulink>,
<ulink url='&YOCTO_DOCS_REF_URL;#var-PV'><filename>PV</filename></ulink>, and
<ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>
for epoch, version and revision, respectively).
The values are highly dependent on the policies and
procedures of a given distribution and package feed.
</para>
<para>
Because the OpenEmbedded build system uses
"<ulink url='&YOCTO_DOCS_REF_URL;#checksums'>signatures</ulink>",
which are unique to a given build, the build system
knows when to rebuild packages.
All the inputs into a given task are represented by a
signature, which can trigger a rebuild when different.
Thus, the build system itself does not rely on the
<filename>PR</filename> numbers to trigger a rebuild.
The signatures, however, can be used to generate
<filename>PR</filename> values.
</para>
<para>
The PR Service works with both
<filename>OEBasic</filename> and
<filename>OEBasicHash</filename> generators.
The value of <filename>PR</filename> bumps when the
checksum changes and the different generator mechanisms
change signatures under different circumstances.
</para>
<para>
As implemented, the build system includes values from
the PR Service into the <filename>PR</filename> field as
an addition using the form "<filename>.x</filename>" so
<filename>r0</filename> becomes <filename>r0.1</filename>,
<filename>r0.2</filename> and so forth.
This scheme allows existing <filename>PR</filename> values
to be used for whatever reasons, which include manual
<filename>PR</filename> bumps should it be necessary.
</para>
<para>
By default, the PR Service is not enabled or running.
Thus, the packages generated are just "self consistent".
The build system adds and removes packages and
there are no guarantees about upgrade paths but images
will be consistent and correct with the latest changes.
</para>
<para>
The simplest form for a PR Service is for it to exist
for a single host development system that builds the
package feed (building system).
For this scenario, you can enable the PR Service by adding
the following to your <filename>local.conf</filename>
file in the
<ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>:
<literallayout class='monospaced'>
PRSERV_HOST = "localhost:0"
</literallayout>
Once the service is started, packages will automatically
get increasing <filename>PR</filename> values and
BitBake will take care of starting and stopping the server.
</para>
<para>
If you have a more complex setup where multiple host
development systems work against a common, shared package
feed, you have a single PR Service running and it is
connected to each building system.
For this scenario, you need to start the PR Service using
the <filename>bitbake-prserv</filename> command:
<literallayout class='monospaced'>
bitbake-prserv ‐‐host <ip> ‐‐port <port> ‐‐start
</literallayout>
In addition to hand-starting the service, you need to
update the <filename>local.conf</filename> file of each
building system as described earlier so each system
points to the server and port.
</para>
<para>
It is also recommended you use build history, which adds
some sanity checks to package versions, in conjunction with
the server that is running the PR Service.
To enable build history, add the following to each building
system's <filename>local.conf</filename> file:
<literallayout class='monospaced'>
# It is recommended to activate "buildhistory" for testing the PR service
INHERIT += "buildhistory"
BUILDHISTORY_COMMIT = "1"
</literallayout>
For information on build history, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#maintaining-build-output-quality'>Maintaining Build Output Quality</ulink>"
section in the Yocto Project Reference Manual.
</para>
<note>
<para>The OpenEmbedded build system does not maintain
<filename>PR</filename> information as part of the
shared state (sstate) packages.
If you maintain an sstate feed, its expected that either
all your building systems that contribute to the sstate
feed use a shared PR Service, or you do not run a PR
Service on any of your building systems.
Having some systems use a PR Service while others do
not leads to obvious problems.</para>
<para>For more information on shared state, see the
"<ulink url='&YOCTO_DOCS_REF_URL;#shared-state-cache'>Shared State Cache</ulink>"
section in the Yocto Project Reference Manual.</para>
</note>
</section>
<section id='manually-bumping-pr'>
<title>Manually Bumping PR</title>
<para>
If a committed change results in changing the package output,
then the value of the PR variable needs to be increased
(or "bumped") as part of that commit.
For new recipes you should add the <filename>PR</filename>
variable and set its initial value equal to "r0", which is the default.
Even though the default value is "r0", the practice of adding it to a new recipe makes
it harder to forget to bump the variable when you make changes
to the recipe in future.
</para>
<para>
If you are sharing a common <filename>.inc</filename> file with multiple recipes,
you can also use the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-INC_PR'>INC_PR</ulink></filename>
variable to ensure that
the recipes sharing the <filename>.inc</filename> file are rebuilt when the
<filename>.inc</filename> file itself is changed.
The <filename>.inc</filename> file must set <filename>INC_PR</filename>
(initially to "r0"), and all recipes referring to it should set <filename>PR</filename>
to "$(INC_PR).0" initially, incrementing the last number when the recipe is changed.
If the <filename>.inc</filename> file is changed then its
<filename>INC_PR</filename> should be incremented.
</para>
<para>
When upgrading the version of a package, assuming the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PV'>PV</ulink></filename>
changes, the <filename>PR</filename> variable should be reset to "r0"
(or "$(INC_PR).0" if you are using <filename>INC_PR</filename>).
</para>
<para>
Usually, version increases occur only to packages.
However, if for some reason <filename>PV</filename> changes but does not
increase, you can increase the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-PE'>PE</ulink></filename>
variable (Package Epoch).
The <filename>PE</filename> variable defaults to "0".
</para>
<para>
Version numbering strives to follow the
<ulink url='http://www.debian.org/doc/debian-policy/ch-controlfields.html'>
Debian Version Field Policy Guidelines</ulink>.
These guidelines define how versions are compared and what "increasing" a version means.
</para>
</section>
</section>
<section id="usingpoky-configuring-DISTRO_PN_ALIAS">
<title>Handling a Package Name Alias</title>
<para>
Sometimes a package name you are using might exist under an alias or as a similarly named
package in a different distribution.
The OpenEmbedded build system implements a <filename>distro_check</filename>
task that automatically connects to major distributions
and checks for these situations.
If the package exists under a different name in a different distribution, you get a
<filename>distro_check</filename> mismatch.
You can resolve this problem by defining a per-distro recipe name alias using the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO_PN_ALIAS'>DISTRO_PN_ALIAS</ulink></filename>
variable.
</para>
<para>
Following is an example that shows how you specify the <filename>DISTRO_PN_ALIAS</filename>
variable:
<literallayout class='monospaced'>
DISTRO_PN_ALIAS_pn-PACKAGENAME = "distro1=package_name_alias1 \
distro2=package_name_alias2 \
distro3=package_name_alias3 \
..."
</literallayout>
</para>
<para>
If you have more than one distribution alias, separate them with a space.
Note that the build system currently automatically checks the
Fedora, OpenSUSE, Debian, Ubuntu,
and Mandriva distributions for source package recipes without having to specify them
using the <filename>DISTRO_PN_ALIAS</filename> variable.
For example, the following command generates a report that lists the Linux distributions
that include the sources for each of the recipes.
<literallayout class='monospaced'>
$ bitbake world -f -c distro_check
</literallayout>
The results are stored in the <filename>build/tmp/log/distro_check-${DATETIME}.results</filename>
file found in the Source Directory.
</para>
</section>
<section id='handling-optional-module-packaging'>
<title>Handling Optional Module Packaging</title>
<para>
Many pieces of software split functionality into optional
modules (or plugins) and the plugins that are built
might depend on configuration options.
To avoid having to duplicate the logic that determines what
modules are available in your recipe or to avoid having
to package each module by hand, the OpenEmbedded build system
provides functionality to handle module packaging dynamically.
</para>
<para>
To handle optional module packaging, you need to do two things:
<itemizedlist>
<listitem><para>Ensure the module packaging is actually
done</para></listitem>
<listitem><para>Ensure that any dependencies on optional
modules from other recipes are satisfied by your recipe
</para></listitem>
</itemizedlist>
</para>
<section id='making-sure-the-packaging-is-done'>
<title>Making Sure the Packaging is Done</title>
<para>
To ensure the module packaging actually gets done, you use
the <filename>do_split_packages</filename> function within
the <filename>populate_packages</filename> python function
in your recipe.
The <filename>do_split_packages</filename> function
searches for a pattern of files or directories under a
specified path and creates a package for each one it finds
by appending to the <filename>PACKAGES</filename> variable
and setting the appropriate values for
<filename>FILES_packagename</filename>,
<filename>RDEPENDS_packagename</filename>,
<filename>DESCRIPTION_packagename</filename>, and so forth.
Here is an example from the <filename>lighttpd</filename>
recipe:
<literallayout class='monospaced'>
python populate_packages_prepend () {
lighttpd_libdir = d.expand('${libdir}')
do_split_packages(d, lighttpd_libdir, '^mod_(.*)\.so$',
'lighttpd-module-%s', 'Lighttpd module for %s',
extra_depends='')
}
</literallayout>
The previous example specifies a number of things in the
call to <filename>do_split_packages</filename>.
<itemizedlist>
<listitem><para>A directory within the files installed
by your recipe through <filename>do_install</filename>
in which to search.</para></listitem>
<listitem><para>A regular expression to match module
files in that directory.
In the example, note the parentheses () that mark
the part of the expression from which the module
name should be derived.</para></listitem>
<listitem><para>A pattern to use for the package names.
</para></listitem>
<listitem><para>A description for each package.
</para></listitem>
<listitem><para>An empty string for
<filename>extra_depends</filename>, which disables
the default dependency on the main
<filename>lighttpd</filename> package.
Thus, if a file in <filename>${libdir}</filename>
called <filename>mod_alias.so</filename> is found,
a package called <filename>lighttpd-module-alias</filename>
is created for it and the <filename>DESCRIPTION</filename>
is set to "Lighttpd module for alias".</para></listitem>
</itemizedlist>
</para>
<para>
Often, packaging modules is as simple as the previous
example.
However, more advanced options exist that you can employ
to <filename>do_split_packages</filename> to modify its
behavior.
And, if you need to, you can add more logic by specifying
a hook function that is called for each package.
It is also perfectly acceptable to call
<filename>do_split_packages</filename> multiple times if
you have more than one set of modules to package.
</para>
<para>
For more examples that show how to use
<filename>do_split_packages</filename>, see the
<filename>connman.inc</filename> file in the
<filename>meta/recipes-connectivity/connman/</filename>
directory of the <filename>poky</filename> source repository.
You can also find examples in
<filename>meta/classes/kernel.bbclass</filename>.
</para>
<para>
Following is a reference that shows
<filename>do_split_packages</filename> mandatory and
optional arguments:
<literallayout class='monospaced'>
Mandatory arguments
root
The path in which to search
file_regex
Regular expression to match searched files.
Use parentheses () to mark the part of this
expression that should be used to derive the
module name (to be substituted where %s is
used in other function arguments as noted below)
output_pattern
Pattern to use for the package names. Must
include %s.
description
Description to set for each package. Must
include %s.
Optional arguments
postinst
Postinstall script to use for all packages
(as a string)
recursive
True to perform a recursive search - default
False
hook
A hook function to be called for every match.
The function will be called with the following
arguments (in the order listed):
f
Full path to the file/directory match
pkg
The package name
file_regex
As above
output_pattern
As above
modulename
The module name derived using file_regex
extra_depends
Extra runtime dependencies (RDEPENDS) to be
set for all packages. The default value of None
causes a dependency on the main package
(${PN}) - if you do not want this, pass empty
string '' for this parameter.
aux_files_pattern
Extra item(s) to be added to FILES for each
package. Can be a single string item or a list
of strings for multiple items. Must include %s.
postrm
postrm script to use for all packages (as a
string)
allow_dirs
True to allow directories to be matched -
default False
prepend
If True, prepend created packages to PACKAGES
instead of the default False which appends them
match_path
match file_regex on the whole relative path to
the root rather than just the file name
aux_files_pattern_verbatim
Extra item(s) to be added to FILES for each
package, using the actual derived module name
rather than converting it to something legal
for a package name. Can be a single string item
or a list of strings for multiple items. Must
include %s.
allow_links
True to allow symlinks to be matched - default
False
</literallayout>
</para>
</section>
<section id='satisfying-dependencies'>
<title>Satisfying Dependencies</title>
<para>
The second part for handling optional module packaging
is to ensure that any dependencies on optional modules
from other recipes are satisfied by your recipe.
You can be sure these dependencies are satisfied by
using the
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGES_DYNAMIC'><filename>PACKAGES_DYNAMIC</filename></ulink> variable.
Here is an example that continues with the
<filename>lighttpd</filename> recipe shown earlier:
<literallayout class='monospaced'>
PACKAGES_DYNAMIC = "lighttpd-module-.*"
</literallayout>
The name specified in the regular expression can of
course be anything.
In this example, it is <filename>lighttpd-module-</filename>
and is specified as the prefix to ensure that any
<ulink url='&YOCTO_DOCS_REF_URL;#var-RDEPENDS'><filename>RDEPENDS</filename></ulink>
and <ulink url='&YOCTO_DOCS_REF_URL;#var-RRECOMMENDS'><filename>RRECOMMENDS</filename></ulink>
on a package name starting with the prefix are satisfied
during build time.
If you are using <filename>do_split_packages</filename>
as described in the previous section, the value you put in
<filename>PACKAGES_DYNAMIC</filename> should correspond to
the name pattern specified in the call to
<filename>do_split_packages</filename>.
</para>
</section>
</section>
<section id='setting-up-runtime-package-management'>
<title>Setting Up Runtime Package Management</title>
<para>
For RPM, IPK, and DEB package formats, it is possible to set
up a repository that is a host-based
package feed from which you can install packages on the
target system during runtime.
Doing so is optional and depends on the following:
<itemizedlist>
<listitem><para>
You take specific steps to set up the feed.
</para></listitem>
<listitem><para>
When you build your image, you select to use the
appropriate package manager by setting the
<ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>
variable.
</para></listitem>
<listitem><para>
You have a web server, such as Apache 2,
installed and configured on the development host.
</para></listitem>
<listitem><para>
You have <filename>createrepo</filename> installed on
the development host.
</para></listitem>
<listitem><para>
You enable package management on the target by
listing "package-management" in the
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FEATURES'><filename>IMAGE_FEATURES</filename></ulink>
variable.
</para></listitem>
</itemizedlist>
</para>
<para>
Following are the steps to set up the optional repository.
This examples assumes you are using RPM and the Apache 2
server:
<orderedlist>
<listitem><para>
Add the directory to your Apache configuration, which
you can find at
<filename>/etc/httpd/conf/httpd.conf</filename>.
Use commands similar to these on the development system.
These example commands assume a top-level
<link linkend='source-directory'>Source Directory</link>
named <filename>poky</filename> in your home directory:
<literallayout class='monospaced'>
<VirtualHost *:80>
....
Alias /rpm ~/poky/build/tmp/deploy/rpm
<Directory "~/poky/build/tmp/deploy/rpm">
Options +Indexes
</Directory>
</VirtualHost>
</literallayout>
</para></listitem>
<listitem><para>
Reload the Apache configuration as follows.
For all commands, be sure you have root privileges.
</para>
<para>
If your development system is using Fedora or
CentOS, use the following:
<literallayout class='monospaced'>
service httpd reload
</literallayout>
For Ubuntu, use the following:
<literallayout class='monospaced'>
/etc/init.d/apache2 reload
</literallayout>
For OpenSUSE, use the following:
<literallayout class='monospaced'>
/etc/init.d/apache2 reload
</literallayout>
</para></listitem>
<listitem><para>
Change your working directory to
<filename>tmp/deploy/rpm</filename> in the
<link linkend='build-directory'>Build Directory</link>.
</para></listitem>
<listitem><para>
Create the repository data on the host using
this command:
<literallayout class='monospaced'>
createrepo .
</literallayout>
</para>
<para>
<note>
If you're updating, add
<filename>‐‐update</filename> to save some time.
</note>
</para></listitem>
<listitem><para>
If you are using Security-Enhanced Linux (SELinux),
you need to label the files as being accessible
through Apache.
Use the following command from the development host:
<literallayout class='monospaced'>
chcon -R -h -t httpd_sys_content_t .
</literallayout>
</para></listitem>
<listitem><para>
On the target machine, add the repository to Smart.
For <filename>somealias</filename>, provide a local
alias for the repository:
<literallayout class='monospaced'>
smart channel ‐‐add <somealias> type=rpm-md baseurl=http://server.name/rpm
</literallayout>
</para></listitem>
<listitem><para>
Also from the target machine, fetch the repository
information using this command:
<literallayout class='monospaced'>
smart update
</literallayout>
</para></listitem>
</orderedlist>
</para>
<para>
After taking these steps and making sure that the other
requirements mentioned at the beginning of the section are met,
reboot the target device to take advantage of runtime package
installations.
</para>
<para>
If your packages are IPK, you can install packages onto an
existing running system by first sharing the
<filename>tmp/deploy/ipk/</filename> directory
through a web server and then by changing
<filename>/etc/opkg/base-feeds.conf</filename>
to point at the shared server.
Following is an example:
<literallayout class='monospaced'>
$ src/gz all http://www.mysite.com/somedir/deploy/ipk/all
$ src/gz armv7a http://www.mysite.com/somedir/deploy/ipk/armv7a
$ src/gz beagleboard http://www.mysite.com/somedir/deploy/ipk/beagleboard
</literallayout>
</para>
</section>
<section id='testing-packages-with-ptest'>
<title>Testing Packages with ptest</title>
<para>
A Package Test (ptest) runs tests against packages built
by the OpenEmbedded build system on the target machine.
Minimally, a ptest contains two things: a shell script that
starts the test (<filename>run-ptest</filename>),
and the actual test.
The shell script that starts the test must not contain
the actual test, the script only starts it.
On the other hand, the test can be anything from a simple
shell script that runs a binary and checks the output to
an elaborate system of test binaries and data files.
</para>
<para>
The test formats the output into the single, common
format used by Automake:
<literallayout class='monospaced'>
<result>: <testname>
</literallayout>
The <filename><result></filename> can be
<filename>PASS</filename>, <filename>FAIL</filename>, or
<filename>SKIP</filename>.
The <filename><testname></filename> can be any
identifying string.
</para>
<section id='getting-your-package-ready'>
<title>Getting Your Package Ready</title>
<para>
In order to run installed ptests on target hardware,
you need to prepare the recipes that build the packages
you want to test.
Here is what you have to do for each recipe:
<itemizedlist>
<listitem><para><emphasis>Be sure the recipe
inherits ptest:</emphasis>
Include the following line in your recipes:
<literallayout class='monospaced'>
inherit ptest
</literallayout>
</para></listitem>
<listitem><para><emphasis>Create <filename>run-ptest</filename>:</emphasis>
The <filename>run-ptest</filename> script needs to
start your tests.
Locate this script where you would point to it
using
<ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>.
Here is an example that starts a test for
<filename>dbus</filename>:
<literallayout class='monospaced'>
#!/bin/sh
cd test
make -k runtest-TESTS
</literallayout>
</para></listitem>
<listitem><para><emphasis>Ensure dependencies are
met:</emphasis>
If the test adds build or runtime dependencies
to the package that do not normally exist
(such as requiring "make" to run the test suite),
use the
<ulink url='&YOCTO_DOCS_REF_URL;#var-RDEPENDS'><filename>RDEPENDS</filename></ulink>
variable in your recipe so the package meets the
dependency.
Here is an example where the package has a build
dependency on "make":
<literallayout class='monospaced'>
RDEPENDS_${PN}-ptest += "make"
</literallayout>
</para></listitem>
<listitem><para><emphasis>Add a function to build the
test suite:</emphasis>
Few packages support cross-compiling their test
suites.
Consequently, you usually need to add that function.
</para>
<para>Many packages based on Automake compile and
run the test suite by using a single command
such as <filename>make check</filename>.
However, this method does not work when you are
cross-compiling packages because building occurs on
the host and execution occurs on the target.
Thus, compilation needs to occur separately on
the host.
The built version of Automake that ships with
the Yocto Project separates these actions
automatically through a patch.
Consequently, packages that use the unaltered
patched version of
<filename>make check</filename> automatically
cross-compile.</para>
<para>However, you still must add a
<filename>do_compile_ptest</filename> function to
build the test suite.
Add a function similar to the following to your
recipe:
<literallayout class='monospaced'>
do_compile_ptest() {
oe_runmake buildtest-TESTS
}
</literallayout>
</para></listitem>
<listitem><para><emphasis>Ensure special configurations
are set:</emphasis>
If the package requires special configurations
prior to compiling the test code, you must
insert a <filename>do_configure_ptest</filename>
function into the recipe.
</para></listitem>
<listitem><para><emphasis>Install the test
suite:</emphasis>
The <filename>ptest.bbclass</filename> class
automatically copies the file
<filename>run-ptest</filename> to the target and
then runs <filename>make install-ptest</filename>
to run the tests.
If this is not the case, you need to create a
<filename>do_install_ptest</filename> that gets
called after the "make install-ptest" completes.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='adding-ptest-to-your-build'>
<title>Adding ptest to Your Build</title>
<para>
To add package testing to your build, add the
<ulink url='&YOCTO_DOCS_REF_URL;#DISTRO_FEATURES'><filename>DISTRO_FEATURES</filename></ulink>
and <ulink url='&YOCTO_DOCS_REF_URL;#EXTRA_IMAGE_FEATURES'><filename>EXTRA_IMAGE_FEATURES</filename></ulink>
variables to your <filename>local.conf</filename> file,
which is found in the
<link linkend='build-directory'>Build Directory</link>:
<literallayout class='monospaced'>
EXTRA_IMAGE_FEATURES += "ptest"
DISTRO_FEATURES_append = " ptest-pkgs"
</literallayout>
Once your build is complete, the ptest files are installed
into the <filename>/usr/lib/<package>/ptest</filename>
directory within the image, where
<filename><package></filename> is the name of the
package.
</para>
</section>
<section id='running-ptest'>
<title>Running ptest</title>
<para>
The <filename>ptest-runner</filename> package installs a
shell script that loops through all installed ptest test
suites and runs them in sequence.
Consequently, you might want to add this package to
your image.
</para>
</section>
</section>
</section>
<section id="building-software-from-an-external-source">
<title>Building Software from an External Source</title>
<para>
By default, the OpenEmbedded build system does its work from within the
<link linkend='build-directory'>Build Directory</link>.
The build process involves fetching the source files, unpacking them, and then patching them
if necessary before the build takes place.
</para>
<para>
Situations exist where you might want to build software from source files that are external to
and thus outside of the <link linkend='source-directory'>Source Directory</link>.
For example, suppose you have a project that includes a new BSP with a heavily customized
kernel, a very minimal image, and some new user-space recipes.
And, you want to minimize exposing the build system to the
development team so that they can focus on their project and maintain everyone's workflow
as much as possible.
In this case, you want a kernel source directory on the development machine where the
development occurs.
You want the recipe's
<ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
variable to point to the external directory and use it as is, not copy it.
</para>
<para>
To build from software that comes from an external source, all you need to do is
change your recipe so that it inherits the
<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-externalsrc'><filename>externalsrc.bbclass</filename></ulink>
class and then sets the
<ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>
variable to point to your external source code.
Here are the statements to put in your recipe:
<literallayout class='monospaced'>
inherit externalsrc
S = "/some/path/to/your/package/source"
</literallayout>
</para>
<para>
It is important to know that the <filename>externalsrc.bbclass</filename> assumes that the
source directory <filename>S</filename> and the Build Directory
<ulink url='&YOCTO_DOCS_REF_URL;#var-B'><filename>B</filename></ulink>
are different even though by default these directories are the same.
This assumption is important because it supports building different variants of the recipe
by using the
<ulink url='&YOCTO_DOCS_REF_URL;#var-BBCLASSEXTEND'><filename>BBCLASSEXTEND</filename></ulink>
variable.
You could allow the Build Directory to be the same as the source directory but you would
not be able to build more than one variant of the recipe.
Consequently, if you are building multiple variants of the recipe, you need to establish a
Build Directory that is different than the source directory.
</para>
</section>
<section id="selecting-an-initialization-manager">
<title>Selecting an Initialization Manager</title>
<para>
By default, the Yocto Project uses
<filename>SysVinit</filename> as the initialization manager.
However, support also exists for <filename>systemd</filename>,
which is a full replacement for <filename>init</filename> with
parallel starting of services, reduced shell overhead and other
features, used by many distributions.
</para>
<para>
If you want to use <filename>SysVinit</filename>, you do
not have to do anything.
But, if you want to use <filename>systemd</filename>, you must
take some steps as described in the following sections.
</para>
<note>
<para><emphasis>NOTES TO SELF:</emphasis>
<filename>systemd</filename> is a full replacement of for init with
parallel starting of services, reduced shell overhead and other
features, used by many distributions.</para>
<para>I think you set the <filename>VIRTUAL-RUNTIME</filename>
in a recipe.
I found a recipe called
<filename>packagegroup-core-boot.bb</filename>, which is an
<filename>OE-Core</filename> recipe, that has a bunch of them.
The comment refers to the group as "VIRTUAL-RUNTIME providers".
The list includes <filename>VIRTUAL-RUNTIME_dev_manager</filename>,
<filename>VIRTUAL-RUNTIME_init_manager</filename>,
<filename>VIRTUAL-RUNTIME_login_manager</filename>,
<filename>VIRTUAL-RUNTIME_initscripts</filename>, and
<filename>VIRTUAL-RUNTIME_keymaps</filename>.</para>
</note>
<section id='using-systemd-exclusively'>
<title>Using systemd Exclusively</title>
<para>
Set the following variables in your
<filename>local.conf</filename> file as follows:
<literallayout class='monospaced'>
DISTRO_FEATURES_append = " systemd"
VIRTUAL-RUNTIME_init_manager = "systemd"
</literallayout>
You can save some disk space by adding
<filename>sysvinit</filename> to the distribution features
considered for backfill as follows:
<literallayout class='monospaced'>
DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"
</literallayout>
Doing so removes any redundant <filename>sysvinit</filename>
scripts.
</para>
</section>
<section id='use-systemd-for-the-main-image-and-use-sysvinit-for-the-rescue-image'>
<title>Use systemd for the Main Image and Use SysVinit for the Rescue Image</title>
<para>
Set the following variables in your
<filename>local.conf</filename> file as follows:
<literallayout class='monospaced'>
DISTRO_FEATURES_append = " systemd"
VIRTUAL-RUNTIME_init_manager = "systemd"
</literallayout>
Doing so causes your main image to use the
<filename>packagegroup-core-boot.bb</filename> recipe and
<filename>systemd</filename>.
The rescue/minimal image cannot use this group.
However, it can install <filename>sysvinit</filename>
and the appropriate packages with have both
<filename>systemd</filename> and <filename>sysvinit</filename>.
</para>
</section>
</section>
<section id='excluding-recipes-from-the-build'>
<title>Excluding Recipes From the Build</title>
<para>
You might find that there are groups of recipes or append files
that you want to filter out of the build process.
Usually, this is not necessary.
However, on rare occasions where you might want to use a
layer but exclude parts that are causing problems, such
as introducing a different version of a recipe, you can
use <filename>BBMASK</filename> to exclude the recipe.
</para>
<para>
It is possible to filter or mask out <filename>.bb</filename> and
<filename>.bbappend</filename> files.
You can do this by providing an expression with the
<ulink url='&YOCTO_DOCS_REF_URL;#var-BBMASK'><filename>BBMASK</filename></ulink>
variable.
Here is an example:
<literallayout class='monospaced'>
BBMASK = "/meta-mymachine/recipes-maybe/"
</literallayout>
Here, all <filename>.bb</filename> and
<filename>.bbappend</filename> files in the directory that matches
the expression are ignored during the build process.
See the glossary entry for the
<ulink url='&YOCTO_DOCS_REF_URL;#var-BBMASK'><filename>BBMASK</filename></ulink>
variable for more information.
</para>
<note>
The value you provide is passed to python's regular expression
compiler.
The expression is compared against the full paths to the files.
For complete syntax information, see python's documentation at
<ulink url='http://docs.python.org/release/2.3/lib/re-syntax.html'></ulink>.
</note>
</section>
<section id="platdev-appdev-srcrev">
<title>Using an External SCM</title>
<para>
If you're working on a recipe that pulls from an external Source Code Manager (SCM), it
is possible to have the OpenEmbedded build system notice new recipe changes added to the
SCM and then build the resulting package that depends on the new recipes by using the latest
versions.
This only works for SCMs from which it is possible to get a sensible revision number for changes.
Currently, you can do this with Apache Subversion (SVN), Git, and Bazaar (BZR) repositories.
</para>
<para>
To enable this behavior, simply add the following to the <filename>local.conf</filename>
configuration file found in the
<ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>:
<literallayout class='monospaced'>
SRCREV_pn-<PN> = "${AUTOREV}"
</literallayout>
where <ulink url='&YOCTO_DOCS_REF_URL;#var-PN'><filename>PN</filename></ulink>
is the name of the recipe for which you want to enable automatic source
revision updating.
</para>
</section>
<section id='creating-a-read-only-root-filesystem'>
<title>Creating a Read-Only Root Filesystem</title>
<para>
Suppose, for security reasons, you need to disable
your target device's root filesystem's write permissions
(i.e. you need a read-only root filesystem).
Or, perhaps you are running the device's operating system
from a read-only storage device.
For either case, you can customize your image for
that behavior.
</para>
<note>
Supporting a read-only root filesystem requires that the system and
applications do not try to write to the root filesystem.
You must configure all parts of the target system to write
elsewhere, or gracefully fail in the event of failing to
write to the root filesystem.
</note>
<section id='creating-the-root-filesystem'>
<title>Creating the Root Filesystem</title>
<para>
To create the read-only root filesystem, simply add the
<filename>read-only-rootfs</filename> feature to your image.
Using either of the following statements in your
image recipe or from within the
<filename>local.conf</filename> file found in the
<link linkend='build-directory'>Build Directory</link>
causes the build system to create a read-only root filesystem:
<literallayout class='monospaced'>
IMAGE_FEATURES = "read-only-rootfs"
</literallayout>
or
<literallayout class='monospaced'>
EXTRA_IMAGE_FEATURES = "read-only-rootfs"
</literallayout>
</para>
<para>
For more information on how to use these variables, see the
"<link linkend='usingpoky-extend-customimage-imagefeatures'>Customizing Images Using Custom <filename>IMAGE_FEATURES</filename> and <filename>EXTRA_IMAGE_FEATURES</filename></link>"
section.
For information on the variables, see
<ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FEATURES'><filename>IMAGE_FEATURES</filename></ulink>
and <ulink url='&YOCTO_DOCS_REF_URL;#var-EXTRA_IMAGE_FEATURES'><filename>EXTRA_IMAGE_FEATURES</filename></ulink>.
</para>
</section>
<section id='post-installation-scripts'>
<title>Post-Installation Scripts</title>
<para>
It is very important that you make sure all
post-Installation (<filename>pkg_postinst</filename>) scripts
for packages that are installed into the image can be run
at the time when the root filesystem is created during the
build on the host system.
These scripts cannot attempt to run during first-boot on the
target device.
With the <filename>read-only-rootfs</filename> feature enabled,
the build system checks during root filesystem creation to make
sure all post-installation scripts succeed.
If any of these scripts still need to be run after the root
filesystem is created, the build immediately fails.
These checks during build time ensure that the build fails
rather than the target device fails later during its
initial boot operation.
</para>
<para>
Most of the common post-installation scripts generated by the
build system for the out-of-the-box Yocto Project are engineered
so that they can run during root filesystem creation
(e.g. post-installation scripts for caching fonts).
However, if you create and add custom scripts, you need
to be sure they can be run during file system creation.
</para>
<para>
Here are some common problems that prevent
post-installation scripts from running during root filesystem
creation:
<itemizedlist>
<listitem><para><emphasis>Not using
<filename>$</filename><ulink url='&YOCTO_DOCS_REF_URL;#var-D'><filename>D</filename></ulink>
in front of absolute paths:</emphasis>
The build system defines <filename>$D</filename>
at root filesystem creation time, and
it is blank when run on the target device.
This implies two purposes for <filename>$D</filename>:
ensuring paths are valid in both the host and target
environments, and checking to determine which
environment is being used as a method for taking
appropriate actions.
</para></listitem>
<listitem><para><emphasis>Attempting to run processes that are
specific to or dependent on the target
architecture:</emphasis>
You can work around these attempts by using native
tools to accomplish the same tasks, or
by alternatively running the processes under QEMU,
which has the <filename>qemu_run_binary</filename>
function.
For more information, see the
<filename>meta/classes/qemu.bbclass</filename>
class in the
<link linkend='source-directory'>Source Directory</link>.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='areas-with-write-access'>
<title>Areas With Write Access</title>
<para>
With the <filename>read-only-rootfs</filename> feature enabled,
any attempt by the target to write to the root filesystem at
runtime fails.
Consequently, you must make sure that you configure processes
and applications that attempt these types of writes do so
to directories with write access (e.g.
<filename>/tmp</filename> or <filename>/var/run</filename>).
</para>
</section>
</section>
<section id="platdev-gdb-remotedebug">
<title>Debugging With the GNU Project Debugger (GDB) Remotely</title>
<para>
GDB allows you to examine running programs, which in turn helps you to understand and fix problems.
It also allows you to perform post-mortem style analysis of program crashes.
GDB is available as a package within the Yocto Project and by default is
installed in SDK images.
See the "<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>" chapter
in the Yocto Project Reference Manual for a description of these images.
You can find information on GDB at <ulink url="http://sourceware.org/gdb/"/>.
</para>
<tip>
For best results, install <filename>-dbg</filename> packages for the applications
you are going to debug.
Doing so makes available extra debug symbols that give you more meaningful output.
</tip>
<para>
Sometimes, due to memory or disk space constraints, it is not possible
to use GDB directly on the remote target to debug applications.
These constraints arise because GDB needs to load the debugging information and the
binaries of the process being debugged.
Additionally, GDB needs to perform many computations to locate information such as function
names, variable names and values, stack traces and so forth - even before starting the
debugging process.
These extra computations place more load on the target system and can alter the
characteristics of the program being debugged.
</para>
<para>
To help get past the previously mentioned constraints, you can use Gdbserver.
Gdbserver runs on the remote target and does not load any debugging information
from the debugged process.
Instead, a GDB instance processes the debugging information that is run on a
remote computer - the host GDB.
The host GDB then sends control commands to Gdbserver to make it stop or start the debugged
program, as well as read or write memory regions of that debugged program.
All the debugging information loaded and processed as well
as all the heavy debugging is done by the host GDB.
Offloading these processes gives the Gdbserver running on the target a chance to remain
small and fast.
</para>
<para>
Because the host GDB is responsible for loading the debugging information and
for doing the necessary processing to make actual debugging happen, the
user has to make sure the host can access the unstripped binaries complete
with their debugging information and also be sure the target is compiled with no optimizations.
The host GDB must also have local access to all the libraries used by the
debugged program.
Because Gdbserver does not need any local debugging information, the binaries on
the remote target can remain stripped.
However, the binaries must also be compiled without optimization
so they match the host's binaries.
</para>
<para>
To remain consistent with GDB documentation and terminology, the binary being debugged
on the remote target machine is referred to as the "inferior" binary.
For documentation on GDB see the
<ulink url="http://sourceware.org/gdb/documentation/">GDB site</ulink>.
</para>
<para>
The remainder of this section describes the steps you need to take
to debug using the GNU project debugger.
</para>
<section id='platdev-gdb-remotedebug-setup'>
<title>Set Up the Cross-Development Debugging Environment</title>
<para>
Before you can initiate a remote debugging session, you need
to be sure you have set up the cross-development environment,
toolchain, and sysroot.
The "<ulink url='&YOCTO_DOCS_ADT_URL;#adt-prepare'>Preparing for Application Development</ulink>"
chapter of the Yocto Project Application Developer's Guide
describes this process.
Be sure you have read that chapter and have your environment
set up.
</para>
</section>
<section id="platdev-gdb-remotedebug-launch-gdbserver">
<title>Launching Gdbserver on the Target</title>
<para>
Make sure Gdbserver is installed on the target.
If it is not, install the package
<filename>gdbserver</filename>, which needs the
<filename>libthread-db1</filename> package.
</para>
<para>
As an example, to launch Gdbserver on the target and make it
ready to "debug" a binary named
<filename>helloworld</filename>, from the host
you need to enter a command like the following.
This command connects to the target and launches Gdbserver
on the target:
<literallayout class='monospaced'>
$ gdbserver localhost:2345 /usr/bin/helloworld
</literallayout>
Gdbserver should now be listening on port 2345 for debugging
commands coming from a remote GDB process that is running on
the host computer.
Communication between Gdbserver and the host GDB are done
using TCP.
To use other communication protocols, please refer to the
<ulink url='http://www.gnu.org/software/gdb/'>Gdbserver documentation</ulink>.
</para>
</section>
<section id="platdev-gdb-remotedebug-launch-gdb">
<title>Launch GDB on the Host Computer</title>
<para>
Running GDB on the host computer takes a number of stages.
This section describes those stages.
</para>
<section id="platdev-gdb-remotedebug-launch-gdb-buildcross">
<title>Build the Cross-GDB Package</title>
<para>
A suitable GDB cross-binary is required that runs on your
host computer but also knows about the the ABI of the
remote target.
You can get this binary from the
<link linkend='cross-development-toolchain'>Cross-Development Toolchain</link>.
Here is an example where the toolchain has been installed
in the default directory
<filename>/opt/poky/&DISTRO;</filename>:
<literallayout class='monospaced'>
/opt/poky/1.4/sysroots/i686-pokysdk-linux/usr/bin/armv7a-vfp-neon-poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb
</literallayout>
where <filename>arm</filename> is the target architecture
and <filename>linux-gnueabi</filename> the target ABI.
</para>
<para>
Alternatively, you can use BitBake to build the
<filename>gdb-cross</filename> binary.
Here is an example:
<literallayout class='monospaced'>
$ bitbake gdb-cross
</literallayout>
Once the binary is built, you can find it here:
<literallayout class='monospaced'>
tmp/sysroots/<host-arch>/usr/bin/<target-platform>/<target-abi>-gdb
</literallayout>
</para>
</section>
<section id='create-the-gdb-initialization-file'>
<title>Create the GDB Initialization File and Point to Your Root Filesystem</title>
<para>
Aside from the GDB cross-binary, you also need a GDB
initialization file in the same top directory in which
your binary resides.
When you start GDB on your host development system, GDB
finds this initialization file and executes all the
commands within.
For information on the <filename>.gdbinit</filename>, see
"<ulink url='http://sourceware.org/gdb/onlinedocs/gdb/'>Debugging with GDB</ulink>"
by maintained by
<ulink url='http://www.sourceware.org'>sourceware.org</ulink>.
</para>
<para>
You need to add a statement in the
<filename>.gdbinit</filename> file that points to your
root filesystem.
Here is an example that points to the root filesystem for
an ARM-based target device:
<literallayout class='monospaced'>
set sysroot /home/jzhang/sysroot_arm
</literallayout>
</para>
</section>
<section id="platdev-gdb-remotedebug-launch-gdb-launchhost">
<title>Launch the Host GDB</title>
<para>
Before launching the host GDB, you need to be sure
you have sourced the cross-debugging environment script,
which if you installed the root filesystem in the default
location is at <filename>/opt/poky/&DISTRO;</filename>
and begins with the string "environment-setup".
For more information, see the
"<ulink url='&YOCTO_DOCS_ADT_URL;#setting-up-the-cross-development-environment'>Setting Up the Cross-Development Environment</ulink>"
section in the Yocto Project Application Developer's
Guide.
</para>
<para>
Finally, switch to the directory where the binary resides
and run the <filename>cross-gdb</filename> binary.
Provide the binary file you are going to debug.
For example, the following command continues with the
example used in the previous section by loading
the <filename>helloworld</filename> binary as well as the
debugging information:
<literallayout class='monospaced'>
$ arm-poky-linux-gnuabi-gdb helloworld
</literallayout>
The commands in your <filename>.gdbinit</filename> execute
and the GDB prompt appears.
</para>
</section>
</section>
<section id='platdev-gdb-connect-to-the-remote-gdb-server'>
<title>Connect to the Remote GDB Server</title>
<para>
From the target, you need to connect to the remote GDB
server that is running on the host.
You need to specify the remote host and port.
Here is the command continuing with the example:
<literallayout class='monospaced'>
target remote 192.168.7.2:2345
</literallayout>
</para>
</section>
<section id="platdev-gdb-remotedebug-launch-gdb-using">
<title>Use the Debugger</title>
<para>
You can now proceed with debugging as normal - as if you were debugging
on the local machine.
For example, to instruct GDB to break in the "main" function and then
continue with execution of the inferior binary use the following commands
from within GDB:
<literallayout class='monospaced'>
(gdb) break main
(gdb) continue
</literallayout>
</para>
<para>
For more information about using GDB, see the project's online documentation at
<ulink url="http://sourceware.org/gdb/download/onlinedocs/"/>.
</para>
</section>
</section>
<section id="platdev-oprofile">
<title>Profiling with OProfile</title>
<para>
<ulink url="http://oprofile.sourceforge.net/">OProfile</ulink> is a
statistical profiler well suited for finding performance
bottlenecks in both userspace software and in the kernel.
This profiler provides answers to questions like "Which functions does my application spend
the most time in when doing X?"
Because the OpenEmbedded build system is well integrated with OProfile, it makes profiling
applications on target hardware straightforward.
<note>
For more information on how to set up and run OProfile, see the
"<ulink url='&YOCTO_DOCS_PROF_URL;#profile-manual-oprofile'>OProfile</ulink>"
section in the Yocto Project Profiling and Tracing Manual.
</note>
</para>
<para>
To use OProfile, you need an image that has OProfile installed.
The easiest way to do this is with <filename>tools-profile</filename> in the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FEATURES'>IMAGE_FEATURES</ulink></filename> variable.
You also need debugging symbols to be available on the system where the analysis
takes place.
You can gain access to the symbols by using <filename>dbg-pkgs</filename> in the
<filename>IMAGE_FEATURES</filename> variable or by
installing the appropriate <filename>-dbg</filename> packages.
</para>
<para>
For successful call graph analysis, the binaries must preserve the frame
pointer register and should also be compiled with the
<filename>-fno-omit-framepointer</filename> flag.
You can achieve this by setting the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-SELECTED_OPTIMIZATION'>SELECTED_OPTIMIZATION</ulink></filename>
variable with the following options:
<literallayout class='monospaced'>
-fexpensive-optimizations
-fno-omit-framepointer
-frename-registers
-O2
</literallayout>
You can also achieve it by setting the
<filename><ulink url='&YOCTO_DOCS_REF_URL;#var-DEBUG_BUILD'>DEBUG_BUILD</ulink></filename>
variable to "1" in the <filename>local.conf</filename> configuration file.
If you use the <filename>DEBUG_BUILD</filename> variable,
you will also add extra debug information that can make the debug packages large.
</para>
<section id="platdev-oprofile-target">
<title>Profiling on the Target</title>
<para>
Using OProfile you can perform all the profiling work on the target device.
A simple OProfile session might look like the following:
</para>
<para>
<literallayout class='monospaced'>
# opcontrol --reset
# opcontrol --start --separate=lib --no-vmlinux -c 5
.
.
[do whatever is being profiled]
.
.
# opcontrol --stop
$ opreport -cl
</literallayout>
</para>
<para>
In this example, the <filename>reset</filename> command clears any previously profiled data.
The next command starts OProfile.
The options used when starting the profiler separate dynamic library data
within applications, disable kernel profiling, and enable callgraphing up to
five levels deep.
<note>
To profile the kernel, you would specify the
<filename>--vmlinux=/path/to/vmlinux</filename> option.
The <filename>vmlinux</filename> file is usually in the source directory in the
<filename>/boot/</filename> directory and must match the running kernel.
</note>
</para>
<para>
After you perform your profiling tasks, the next command stops the profiler.
After that, you can view results with the <filename>opreport</filename> command with options
to see the separate library symbols and callgraph information.
</para>
<para>
Callgraphing logs information about time spent in functions and about a function's
calling function (parent) and called functions (children).
The higher the callgraphing depth, the more accurate the results.
However, higher depths also increase the logging overhead.
Consequently, you should take care when setting the callgraphing depth.
<note>
On ARM, binaries need to have the frame pointer enabled for callgraphing to work.
To accomplish this use the <filename>-fno-omit-framepointer</filename> option
with <filename>gcc</filename>.
</note>
</para>
<para>
For more information on using OProfile, see the OProfile
online documentation at
<ulink url="http://oprofile.sourceforge.net/docs/"/>.
</para>
</section>
<section id="platdev-oprofile-oprofileui">
<title>Using OProfileUI</title>
<para>
A graphical user interface for OProfile is also available.
You can download and build this interface from the Yocto Project at
<ulink url="&YOCTO_GIT_URL;/cgit.cgi/oprofileui/"></ulink>.
If the "tools-profile" image feature is selected, all necessary binaries
are installed onto the target device for OProfileUI interaction.
</para>
<para>
Even though the source directory usually includes all needed patches on the target device, you
might find you need other OProfile patches for recent OProfileUI features.
If so, see the <ulink url='&YOCTO_GIT_URL;/cgit.cgi/oprofileui/tree/README'>
OProfileUI README</ulink> for the most recent information.
</para>
<section id="platdev-oprofile-oprofileui-online">
<title>Online Mode</title>
<para>
Using OProfile in online mode assumes a working network connection with the target
hardware.
With this connection, you just need to run "oprofile-server" on the device.
By default, OProfile listens on port 4224.
<note>
You can change the port using the <filename>--port</filename> command-line
option.
</note>
</para>
<para>
The client program is called <filename>oprofile-viewer</filename> and its UI is relatively
straightforward.
You access key functionality through the buttons on the toolbar, which
are duplicated in the menus.
Here are the buttons:
<itemizedlist>
<listitem><para><emphasis>Connect:</emphasis> Connects to the remote host.
You can also supply the IP address or hostname.</para></listitem>
<listitem><para><emphasis>Disconnect:</emphasis> Disconnects from the target.
</para></listitem>
<listitem><para><emphasis>Start:</emphasis> Starts profiling on the device.
</para></listitem>
<listitem><para><emphasis>Stop:</emphasis> Stops profiling on the device and
downloads the data to the local host.
Stopping the profiler generates the profile and displays it in the viewer.
</para></listitem>
<listitem><para><emphasis>Download:</emphasis> Downloads the data from the
target and generates the profile, which appears in the viewer.</para></listitem>
<listitem><para><emphasis>Reset:</emphasis> Resets the sample data on the device.
Resetting the data removes sample information collected from previous
sampling runs.
Be sure you reset the data if you do not want to include old sample information.
</para></listitem>
<listitem><para><emphasis>Save:</emphasis> Saves the data downloaded from the
target to another directory for later examination.</para></listitem>
<listitem><para><emphasis>Open:</emphasis> Loads previously saved data.
</para></listitem>
</itemizedlist>
</para>
<para>
The client downloads the complete 'profile archive' from
the target to the host for processing.
This archive is a directory that contains the sample data, the object files,
and the debug information for the object files.
The archive is then converted using the <filename>oparchconv</filename> script, which is
included in this distribution.
The script uses <filename>opimport</filename> to convert the archive from
the target to something that can be processed on the host.
</para>
<para>
Downloaded archives reside in the Build Directory in
<filename>/tmp</filename> and are cleared up when they are no longer in use.
</para>
<para>
If you wish to perform kernel profiling, you need to be sure
a <filename>vmlinux</filename> file that matches the running kernel is available.
In the source directory, that file is usually located in
<filename>/boot/vmlinux-KERNELVERSION</filename>, where
<filename>KERNEL-version</filename> is the version of the kernel.
The OpenEmbedded build system generates separate <filename>vmlinux</filename>
packages for each kernel it builds.
Thus, it should just be a question of making sure a matching package is
installed (e.g. <filename>opkg install kernel-vmlinux</filename>.
The files are automatically installed into development and profiling images
alongside OProfile.
A configuration option exists within the OProfileUI settings page that you can use to
enter the location of the <filename>vmlinux</filename> file.
</para>
<para>
Waiting for debug symbols to transfer from the device can be slow, and it
is not always necessary to actually have them on the device for OProfile use.
All that is needed is a copy of the filesystem with the debug symbols present
on the viewer system.
The "<link linkend='platdev-gdb-remotedebug-launch-gdb'>Launching GDB on the Host Computer</link>"
section covers how to create such a directory with
the source directory and how to use the OProfileUI Settings dialog to specify the location.
If you specify the directory, it will be used when the file checksums
match those on the system you are profiling.
</para>
</section>
<section id="platdev-oprofile-oprofileui-offline">
<title>Offline Mode</title>
<para>
If network access to the target is unavailable, you can generate
an archive for processing in <filename>oprofile-viewer</filename> as follows:
<literallayout class='monospaced'>
# opcontrol --reset
# opcontrol --start --separate=lib --no-vmlinux -c 5
.
.
[do whatever is being profiled]
.
.
# opcontrol --stop
# oparchive -o my_archive
</literallayout>
</para>
<para>
In the above example, <filename>my_archive</filename> is the name of the
archive directory where you would like the profile archive to be kept.
After the directory is created, you can copy it to another host and load it
using <filename>oprofile-viewer</filename> open functionality.
If necessary, the archive is converted.
</para>
</section>
</section>
</section>
<section id='maintaining-open-source-license-compliance-during-your-products-lifecycle'>
<title>Maintaining Open Source License Compliance During Your Product's Lifecycle</title>
<para>
One of the concerns for a development organization using open source
software is how to maintain compliance with various open source
licensing during the lifecycle of the product.
While this section does not provide legal advice or
comprehensively cover all scenarios, it does
present methods that you can use to
assist you in meeting the compliance requirements during a software
release.
</para>
<para>
With hundreds of different open source licenses that the Yocto
Project tracks, it is difficult to know the requirements of each
and every license.
However, we can begin to cover the requirements of the major FLOSS licenses, by
assuming that there are three main areas of concern:
<itemizedlist>
<listitem><para>Source code must be provided.</para></listitem>
<listitem><para>License text for the software must be
provided.</para></listitem>
<listitem><para>Compilation scripts and modifications to the
source code must be provided.
</para></listitem>
</itemizedlist>
There are other requirements beyond the scope of these
three and the methods described in this section
(e.g. the mechanism through which source code is distributed).
As different organizations have different methods of complying with
open source licensing, this section is not meant to imply that
there is only one single way to meet your compliance obligations,
but rather to describe one method of achieving compliance.
</para>
<para>
The remainder of this section describes methods supported to meet the
previously mentioned three requirements.
Once you take steps to meet these requirements,
and prior to releasing images, sources, and the build system,
you should audit all artifacts to ensure completeness.
The Yocto Project generates a license manifest during
image creation that is located
in <filename>${DEPLOY_DIR}/licenses/<image_name-datestamp></filename>
to assist with any audits.
</para>
<section id='providing-the-source-code'>
<title>Providing the Source Code</title>
<para>
Compliance activities should begin before you generate the
final image.
The first thing you should look at is the requirement that
tops the list for most compliance groups - providing
the source.
The Yocto Project has a few ways of meeting this
requirement.
</para>
<para>
One of the easiest ways to meet this requirement is
to provide the entire
<ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
used by the build.
This method, however, has a few issues.
The most obvious is the size of the directory since it includes
all sources used in the build and not just the source used in
the released image.
It will include toolchain source, and other artifacts which
you would not generally release.
But, the more serious issue for most companies is accidental
release of proprietary software.
The Yocto Project provides an archiver class to help avoid
some of these concerns.
</para>
<para>
Before you employ <filename>DL_DIR</filename> or the
archiver class, you need to decide how you choose to
provide source.
The source archiver class can generate tarballs and SRPMs
and can create them with various levels of compliance in mind.
One way of doing this (but certainly not the only way) is to
release just the original source as a tarball.
You can do this by adding the following to the
<filename>local.conf</filename> file found in the
<link linkend='build-directory'>Build Directory</link>:
<literallayout class='monospaced'>
ARCHIVER_MODE ?= "original"
ARCHIVER_CLASS = "${@'archive-${ARCHIVER_MODE}-source' if
ARCHIVER_MODE != 'none' else ''}"
INHERIT += "${ARCHIVER_CLASS}"
SOURCE_ARCHIVE_PACKAGE_TYPE = "tar"
</literallayout>
During the creation of your image, the source from all
recipes that deploy packages to the image is placed within
subdirectories of
<filename>DEPLOY_DIR/sources</filename> based on the
<ulink url='&YOCTO_DOCS_REF_URL;#var-LICENSE'><filename>LICENSE</filename></ulink>
for each recipe.
Releasing the entire directory enables you to comply with
requirements concerning providing the unmodified source.
It is important to note that the size of the directory can
get large.
</para>
<para>
A way to help mitigate the size issue is to only release
tarballs for licenses that require the release of
source.
Let's assume you are only concerned with GPL code as
identified with the following:
<literallayout class='monospaced'>
$ cd poky/build/tmp/deploy/sources
$ mkdir ~/gpl_source_release
$ for dir in */*GPL*; do cp -r $dir ~/gpl_source_release; done
</literallayout>
At this point, you could create a tarball from the
<filename>gpl_source_release</filename> directory and
provide that to the end user.
This method would be a step toward achieving compliance
with section 3a of GPLv2 and with section 6 of GPLv3.
</para>
</section>
<section id='providing-license-text'>
<title>Providing License Text</title>
<para>
One requirement that is often overlooked is inclusion
of license text.
This requirement also needs to be dealt with prior to
generating the final image.
Some licenses require the license text to accompany
the binary.
You can achieve this by adding the following to your
<filename>local.conf</filename> file:
<literallayout class='monospaced'>
COPY_LIC_MANIFEST = "1"
COPY_LIC_DIRS = "1"
</literallayout>
Adding these statements to the configuration file ensures
that the licenses collected during package generation
are included on your image.
As the source archiver has already archived the original
unmodified source which would contain the license files,
you would have already met the requirements for inclusion
of the license information with source as defined by the GPL
and other open source licenses.
</para>
</section>
<section id='providing-compilation-scripts-and-source-code-modifications'>
<title>Providing Compilation Scripts and Source Code Modifications</title>
<para>
At this point, we have addressed all we need to address
prior to generating the image.
The next two requirements are addressed during the final
packaging of the release.
</para>
<para>
By releasing the version of the OpenEmbedded build system
and the layers used during the build, you will be providing both
compilation scripts and the source code modifications in one
step.
</para>
<para>
If the deployment team has a
<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-layers'>BSP layer</ulink>
and a distro layer, and those those layers are used to patch,
compile, package, or modify (in any way) any open source
software included in your released images, you
may be required to to release those layers under section 3 of
GPLv2 or section 1 of GPLv3.
One way of doing that is with a clean
checkout of the version of the Yocto Project and layers used
during your build.
Here is an example:
<literallayout class='monospaced'>
# We built using the &DISTRO_NAME; branch of the poky repo
$ git clone -b &DISTRO_NAME; git://git.yoctoproject.org/poky
$ cd poky
# We built using the release_branch for our layers
$ git clone -b release_branch git://git.mycompany.com/meta-my-bsp-layer
$ git clone -b release_branch git://git.mycompany.com/meta-my-software-layer
# clean up the .git repos
$ find . -name ".git" -type d -exec rm -rf {} \;
</literallayout>
One thing a development organization might want to consider
for end-user convenience is to modify
<filename>meta-yocto/conf/bblayers.conf.sample</filename> to
ensure that when the end user utilizes the released build
system to build an image, the development organization's
layers are included in the <filename>bblayers.conf</filename>
file automatically:
<literallayout class='monospaced'>
# LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
# changes incompatibly
LCONF_VERSION = "6"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
##COREBASE##/meta \
##COREBASE##/meta-yocto \
##COREBASE##/meta-yocto-bsp \
##COREBASE##/meta-mylayer \
"
BBLAYERS_NON_REMOVABLE ?= " \
##COREBASE##/meta \
##COREBASE##/meta-yocto \
"
</literallayout>
Creating and providing an archive of the metadata layers
(recipes, configuration files, and so forth)
enables you to meet your
requirements to include the scripts to control compilation
as well as any modifications to the original source.
</para>
</section>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->
|