summaryrefslogtreecommitdiffstats
path: root/bitbake/lib/bb/namedtuple_with_abc.py
blob: c8e1d55c15d6cd6e3327c4fb7e05065f9336b963 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# http://code.activestate.com/recipes/577629-namedtupleabc-abstract-base-class-mix-in-for-named/
#!/usr/bin/env python
# Copyright (c) 2011 Jan Kaliszewski (zuo). Available under the MIT License.
#
# SPDX-License-Identifier: MIT
#

"""
namedtuple_with_abc.py:
* named tuple mix-in + ABC (abstract base class) recipe,
* works under Python 2.6, 2.7 as well as 3.x.

Import this module to patch collections.namedtuple() factory function
-- enriching it with the 'abc' attribute (an abstract base class + mix-in
for named tuples) and decorating it with a wrapper that registers each
newly created named tuple as a subclass of namedtuple.abc.

How to import:
    import collections, namedtuple_with_abc
or:
    import namedtuple_with_abc
    from collections import namedtuple
    # ^ in this variant you must import namedtuple function
    #   *after* importing namedtuple_with_abc module
or simply:
    from namedtuple_with_abc import namedtuple

Simple usage example:
    class Credentials(namedtuple.abc):
        _fields = 'username password'
        def __str__(self):
            return ('{0.__class__.__name__}'
                    '(username={0.username}, password=...)'.format(self))
    print(Credentials("alice", "Alice's password"))

For more advanced examples -- see below the "if __name__ == '__main__':".
"""

import collections
from abc import ABCMeta, abstractproperty
from functools import wraps
from sys import version_info

__all__ = ('namedtuple',)
_namedtuple = collections.namedtuple


class _NamedTupleABCMeta(ABCMeta):
    '''The metaclass for the abstract base class + mix-in for named tuples.'''
    def __new__(mcls, name, bases, namespace):
        fields = namespace.get('_fields')
        for base in bases:
            if fields is not None:
                break
            fields = getattr(base, '_fields', None)
        if not isinstance(fields, abstractproperty):
            basetuple = _namedtuple(name, fields)
            bases = (basetuple,) + bases
            namespace.pop('_fields', None)
            namespace.setdefault('__doc__', basetuple.__doc__)
            namespace.setdefault('__slots__', ())
        return ABCMeta.__new__(mcls, name, bases, namespace)


exec(
    # Python 2.x metaclass declaration syntax
    """class _NamedTupleABC(object):
        '''The abstract base class + mix-in for named tuples.'''
        __metaclass__ = _NamedTupleABCMeta
        _fields = abstractproperty()""" if version_info[0] < 3 else
    # Python 3.x metaclass declaration syntax
    """class _NamedTupleABC(metaclass=_NamedTupleABCMeta):
        '''The abstract base class + mix-in for named tuples.'''
        _fields = abstractproperty()"""
)


_namedtuple.abc = _NamedTupleABC
#_NamedTupleABC.register(type(version_info))  # (and similar, in the future...)

@wraps(_namedtuple)
def namedtuple(*args, **kwargs):
    '''Named tuple factory with namedtuple.abc subclass registration.'''
    cls = _namedtuple(*args, **kwargs)
    _NamedTupleABC.register(cls)
    return cls

collections.namedtuple = namedtuple




if __name__ == '__main__':

    '''Examples and explanations'''

    # Simple usage

    class MyRecord(namedtuple.abc):
        _fields = 'x y z'  # such form will be transformed into ('x', 'y', 'z')
        def _my_custom_method(self):
            return list(self._asdict().items())
    # (the '_fields' attribute belongs to the named tuple public API anyway)

    rec = MyRecord(1, 2, 3)
    print(rec)
    print(rec._my_custom_method())
    print(rec._replace(y=222))
    print(rec._replace(y=222)._my_custom_method())

    # Custom abstract classes...

    class MyAbstractRecord(namedtuple.abc):
        def _my_custom_method(self):
            return list(self._asdict().items())

    try:
        MyAbstractRecord()  # (abstract classes cannot be instantiated)
    except TypeError as exc:
        print(exc)

    class AnotherAbstractRecord(MyAbstractRecord):
        def __str__(self):
            return '<<<{0}>>>'.format(super(AnotherAbstractRecord,
                                            self).__str__())

    # ...and their non-abstract subclasses

    class MyRecord2(MyAbstractRecord):
        _fields = 'a, b'

    class MyRecord3(AnotherAbstractRecord):
        _fields = 'p', 'q', 'r'

    rec2 = MyRecord2('foo', 'bar')
    print(rec2)
    print(rec2._my_custom_method())
    print(rec2._replace(b=222))
    print(rec2._replace(b=222)._my_custom_method())

    rec3 = MyRecord3('foo', 'bar', 'baz')
    print(rec3)
    print(rec3._my_custom_method())
    print(rec3._replace(q=222))
    print(rec3._replace(q=222)._my_custom_method())

   # You can also subclass non-abstract ones...

    class MyRecord33(MyRecord3):
        def __str__(self):
            return '< {0!r}, ..., {0!r} >'.format(self.p, self.r)

    rec33 = MyRecord33('foo', 'bar', 'baz')
    print(rec33)
    print(rec33._my_custom_method())
    print(rec33._replace(q=222))
    print(rec33._replace(q=222)._my_custom_method())

    # ...and even override the magic '_fields' attribute again

    class MyRecord345(MyRecord3):
        _fields = 'e f g h i j k'

    rec345 = MyRecord345(1, 2, 3, 4, 3, 2, 1)
    print(rec345)
    print(rec345._my_custom_method())
    print(rec345._replace(f=222))
    print(rec345._replace(f=222)._my_custom_method())

    # Mixing-in some other classes is also possible:

    class MyMixIn(object):
        def method(self):
            return "MyMixIn.method() called"
        def _my_custom_method(self):
            return "MyMixIn._my_custom_method() called"
        def count(self, item):
            return "MyMixIn.count({0}) called".format(item)
        def _asdict(self):  # (cannot override a namedtuple method, see below)
            return "MyMixIn._asdict() called"

    class MyRecord4(MyRecord33, MyMixIn):  # mix-in on the right
        _fields = 'j k l x'

    class MyRecord5(MyMixIn, MyRecord33):  # mix-in on the left
        _fields = 'j k l x y'

    rec4 = MyRecord4(1, 2, 3, 2)
    print(rec4)
    print(rec4.method())
    print(rec4._my_custom_method())  # MyRecord33's
    print(rec4.count(2))  # tuple's
    print(rec4._replace(k=222))
    print(rec4._replace(k=222).method())
    print(rec4._replace(k=222)._my_custom_method())  # MyRecord33's
    print(rec4._replace(k=222).count(8))  # tuple's

    rec5 = MyRecord5(1, 2, 3, 2, 1)
    print(rec5)
    print(rec5.method())
    print(rec5._my_custom_method())  # MyMixIn's
    print(rec5.count(2))  # MyMixIn's
    print(rec5._replace(k=222))
    print(rec5._replace(k=222).method())
    print(rec5._replace(k=222)._my_custom_method())  # MyMixIn's
    print(rec5._replace(k=222).count(2))  # MyMixIn's

    # Note that behavior: the standard namedtuple methods cannot be
    # overridden by a foreign mix-in -- even if the mix-in is declared
    # as the leftmost base class (but, obviously, you can override them
    # in the defined class or its subclasses):

    print(rec4._asdict())  # (returns a dict, not "MyMixIn._asdict() called")
    print(rec5._asdict())  # (returns a dict, not "MyMixIn._asdict() called")

    class MyRecord6(MyRecord33):
        _fields = 'j k l x y z'
        def _asdict(self):
            return "MyRecord6._asdict() called"
    rec6 = MyRecord6(1, 2, 3, 1, 2, 3)
    print(rec6._asdict())  # (this returns "MyRecord6._asdict() called")

    # All that record classes are real subclasses of namedtuple.abc:

    assert issubclass(MyRecord, namedtuple.abc)
    assert issubclass(MyAbstractRecord, namedtuple.abc)
    assert issubclass(AnotherAbstractRecord, namedtuple.abc)
    assert issubclass(MyRecord2, namedtuple.abc)
    assert issubclass(MyRecord3, namedtuple.abc)
    assert issubclass(MyRecord33, namedtuple.abc)
    assert issubclass(MyRecord345, namedtuple.abc)
    assert issubclass(MyRecord4, namedtuple.abc)
    assert issubclass(MyRecord5, namedtuple.abc)
    assert issubclass(MyRecord6, namedtuple.abc)

    # ...but abstract ones are not subclasses of tuple
    # (and this is what you probably want):

    assert not issubclass(MyAbstractRecord, tuple)
    assert not issubclass(AnotherAbstractRecord, tuple)

    assert issubclass(MyRecord, tuple)
    assert issubclass(MyRecord2, tuple)
    assert issubclass(MyRecord3, tuple)
    assert issubclass(MyRecord33, tuple)
    assert issubclass(MyRecord345, tuple)
    assert issubclass(MyRecord4, tuple)
    assert issubclass(MyRecord5, tuple)
    assert issubclass(MyRecord6, tuple)

    # Named tuple classes created with namedtuple() factory function
    # (in the "traditional" way) are registered as "virtual" subclasses
    # of namedtuple.abc:

    MyTuple = namedtuple('MyTuple', 'a b c')
    mt = MyTuple(1, 2, 3)
    assert issubclass(MyTuple, namedtuple.abc)
    assert isinstance(mt, namedtuple.abc)