1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<chapter id="user-manual-metadata">
<title>Metadata</title>
<section>
<title>Overview</title>
<para>
The BitBake task executor together with various types of configuration files form the OpenEmbedded
Core.
This section provides an overview of the BitBake task executor and the configuration files by
describing what they are used for and how they interact.
</para>
<para>
BitBake handles the parsing and execution of the data files. The data itself is of various types:
<itemizedlist>
<listitem><para><emphasis>Recipes:</emphasis>
Provides details about particular pieces of software.</para></listitem>
<listitem><para><emphasis>Class Data:</emphasis>
An abstraction of common build information (e.g. how to build a Linux kernel).</para></listitem>
<listitem><para><emphasis>Configuration Data:</emphasis>
Defines machine-specific settings, policy decisions, etc. Configuration data acts
as the glue to bind everything together.</para></listitem>
</itemizedlist>
What follows are a large number of examples of BitBake metadata. Any syntax which isn't supported
in any of the aforementioned areas will be documented as such.
</para>
</section>
<section id='basic-syntax'>
<title>Basic Syntax</title>
<section id='basic-variable-setting'>
<title>Basic Variable Setting</title>
<para>
<literallayout class='monospaced'>
VARIABLE = "value"
</literallayout>
In this example, <filename>VARIABLE</filename> is <filename>value</filename>.
</para>
</section>
<section id='variable-expansion'>
<title>Variable Expansion</title>
<para>
BitBake supports variables referencing one another's
contents using a syntax which is similar to shell
scripting
</para>
<para>
<literallayout class='monospaced'>
A = "aval"
B = "pre${A}post"
</literallayout>
This results in <filename>A</filename> containing
<filename>aval</filename> and <filename>B</filename> containing
<filename>preavalpost</filename>.
</para>
</section>
<section id='setting-a-default-value'>
<title>Setting a default value (?=)</title>
<para>
<literallayout class='monospaced'>
A ?= "aval"
</literallayout>
If <filename>A</filename> is set before the above is called,
it will retain its previous value.
If <filename>A</filename> is unset prior to the above call,
<filename>A</filename> will be set to <filename>aval</filename>.
<note>
This assignment is immediate, so if there are multiple "?=" assignments
to a single variable, the first of those will be used.
</note>
</para>
</section>
<section id='setting-a-weak-default-value'>
<title>Setting a weak default value (??=)</title>
<para>
<literallayout class='monospaced'>
A ??= "somevalue"
A ??= "someothervalue"
</literallayout>
If <filename>A</filename> is set before the above,
it will retain that value.
If <filename>A</filename> is unset prior to the above,
<filename>A</filename> will be set to <filename>someothervalue</filename>.
This is a lazy or weak assignment in that the assignment does not occur until the end
of the parsing process, so that the last, rather than the first,
"??=" assignment to a given variable will be used.
Any other setting of <filename>A</filename> using "=" or "?="
will, however, override the value set with "??=".
</para>
</section>
<section id='immediate-variable-expansion'>
<title>Immediate variable expansion (:=)</title>
<para>
The ":=" operator results in a variable's contents being expanded immediately,
rather than when the variable is actually used:
<literallayout class='monospaced'>
T = "123"
A := "${B} ${A} test ${T}"
T = "456"
B = "${T} bval"
C = "cval"
C := "${C}append"
</literallayout>
In this example, <filename>A</filename> would contain
<filename>test 123</filename>, <filename>B</filename> would contain
<filename>456 bval</filename>, and <filename>C</filename>
would be <filename>cvalappend</filename>.
</para>
</section>
<section id='appending-and-prepending'>
<title>Appending (+=) and prepending (=+)</title>
<para>
<literallayout class='monospaced'>
B = "bval"
B += "additionaldata"
C = "cval"
C =+ "test"
</literallayout>
In this example, <filename>B</filename> is now
<filename>bval additionaldata</filename> and <filename>C</filename>
is <filename>test cval</filename>.
</para>
</section>
<section id='appending-and-prepending-without-spaces'>
<title>Appending (.=) and Prepending (=.) Without Spaces</title>
<para>
<literallayout class='monospaced'>
B = "bval"
B .= "additionaldata"
C = "cval"
C =. "test"
</literallayout>
In this example, <filename>B</filename> is now
<filename>bvaladditionaldata</filename> and
<filename>C</filename> is <filename>testcval</filename>.
In contrast to the above appending and prepending operators,
no additional space will be introduced.
</para>
</section>
<section id='appending-and-prepending-override-style-syntax'>
<title>Appending and Prepending (Override Style Syntax)</title>
<para>
<literallayout class='monospaced'>
B = "bval"
B_append = " additional data"
C = "cval"
C_prepend = "additional data "
</literallayout>
This example results in <filename>B</filename>
becoming <filename>bval additional data</filename> and
<filename>C</filename> becoming
<filename>additional data cval</filename>.
<note>
The spaces in <filename>_append</filename>.
Unlike the "+=" operator, additional space is not automatically added.
You must take steps to add space yourself.
</note>
</para>
</section>
<section id='removing-override-style-syntax'>
<title>Removing (Override Style Syntax)</title>
<para>
<literallayout class='monospaced'>
FOO = "123 456 789 123456 123 456 123 456"
FOO_remove = "123"
FOO_remove = "456"
</literallayout>
In this example, <filename>FOO</filename> is now <filename>789 123456</filename>.
</para>
</section>
<section id='variable-flags'>
<title>Variable Flags</title>
<para>
Variables can have associated flags which provide a way of tagging extra information onto a variable.
Several flags are used internally by BitBake but they can be used externally too if needed.
The standard operations mentioned above also work on flags.
<literallayout class='monospaced'>
VARIABLE[SOMEFLAG] = "value"
</literallayout>
In this example, <filename>VARIABLE</filename> has a flag,
<filename>SOMEFLAG</filename> that is set to <filename>value</filename>.
</para>
</section>
<section id='inline-python-variable-expansion'>
<title>Inline Python Variable Expansion</title>
<para>
<literallayout class='monospaced'>
DATE = "${@time.strftime('%Y%m%d',time.gmtime())}"
</literallayout>
This would result in the <filename>DATE</filename>
variable containing today's date.
</para>
</section>
</section>
<section id='conditional-syntax-overrides'>
<title>Conditional Syntax (Overrides)</title>
<section id='conditional-metadata'>
<title>Conditional Metadata</title>
<para>
<filename>OVERRIDES</filename> is a “:” separated variable containing
each item for which you want to satisfy conditions.
So, if you have a variable that is conditional on “arm”, and “arm”
is in <filename>OVERRIDES</filename>, then the “arm” specific
version of the variable is used rather than the non-conditional
version.
Here is an example:
<literallayout class='monospaced'>
OVERRIDES = "architecture:os:machine"
TEST = "defaultvalue"
TEST_os = "osspecificvalue"
TEST_condnotinoverrides = "othercondvalue"
</literallayout>
In this example, <filename>TEST</filename> would be
<filename>osspecificvalue</filename>, due to the condition
“os” being in <filename>OVERRIDES</filename>.
</para>
</section>
<section id='conditional-appending'>
<title>Conditional Appending</title>
<para>
BitBake also supports appending and prepending to variables based
on whether something is in <filename>OVERRIDES</filename>.
Here is an example:
<literallayout class='monospaced'>
DEPENDS = "glibc ncurses"
OVERRIDES = "machine:local"
DEPENDS_append_machine = "libmad"
</literallayout>
In this example, <filename>DEPENDS</filename> is set to
"glibc ncurses libmad".
</para>
</section>
<section id='variable-interaction-worked-examples'>
<title>Variable Interaction: Worked Examples</title>
<para>
Despite the documentation of the different forms of
variable definition above, it can be hard to work
out what happens when variable operators are combined.
</para>
<para>
Following are some common scenarios where variables interact
that can confuse users.
</para>
<para>
There is often confusion about which order overrides and the
various "append" operators take effect:
<literallayout class='monospaced'>
OVERRIDES = "foo"
A_foo_append = "X"
</literallayout>
In this case, <filename>X</filename> is unconditionally appended
to the variable <filename>A_foo</filename>.
Since foo is an override, <filename>A_foo</filename> would then replace
<filename>A</filename>.
<literallayout class='monospaced'>
OVERRIDES = "foo"
A = "X"
A_append_foo = "Y"
</literallayout>
In this case, only when <filename>foo</filename> is in
<filename>OVERRIDES</filename>, <filename>Y</filename>
is appended to the variable <filename>A</filename>
so the value of <filename>A</filename> would
become <filename>XY</filename> (NB: no spaces are appended).
<literallayout class='monospaced'>
OVERRIDES = "foo"
A_foo_append = "X"
A_foo_append += "Y"
</literallayout>
This behaves as per the first case above, but the value of
<filename>A</filename> would be "X Y" instead of just "X".
<literallayout class='monospaced'>
A = "1"
A_append = "2"
A_append = "3"
A += "4"
A .= "5"
</literallayout>
Would ultimately result in <filename>A</filename> taking the value
"1 4523" since the "_append" operator executes at the
same time as the expansion of other overrides.
</para>
</section>
<section id='key-expansion'>
<title>Key Expansion</title>
<para>
Key expansion happens at the data store finalization
time just before overrides are expanded.
<literallayout class='monospaced'>
A${B} = "X"
B = "2"
A2 = "Y"
</literallayout>
So in this case <filename>A2</filename> would take the value of "X".
</para>
</section>
</section>
<section id='inheritance'>
<title>Inheritance</title>
<section id='inheritance-directive'>
<title>Inheritance Directive</title>
<note>
This is only supported in <filename>.bb</filename> and
<filename>.bbclass</filename> files.
</note>
<para>
The inherit directive is a means of specifying what classes
of functionality your <filename>.bb</filename> requires.
It is a rudimentary form of inheritance.
For example, you can easily abstract out the tasks involved in
building a package that uses autoconf and automake, and put
that into a bbclass for your packages to make use of.
A given bbclass is located by searching for classes/filename.bbclass
in <filename>BBPATH</filename>, where filename is what you inherited.
</para>
</section>
<section id='inclusion-directive'>
<title>Inclusion Directive</title>
<para>
This directive causes BitBake to parse whatever file you specify,
and insert it at that location, which is not unlike Make.
However, if the path specified on the include line is a
relative path, BitBake will locate the first one it can find
within <filename>BBPATH</filename>.
</para>
</section>
<section id='requiring-inclusion'>
<title>Requiring Inclusion</title>
<para>
In contrast to the include directive, require will raise a
ParseError if the file to be included cannot
be found.
Otherwise it will behave just like the include directive.
</para>
</section>
</section>
<section id='defining-python-functions-into-the-global-python-namespace'>
<title>Defining Python Functions into the Global Python Namespace</title>
<note>
<para>
This is only supported in <filename>.bb</filename>
and <filename>.bbclass</filename> files.
</para>
<para>
Python functions are in the global namespace so should use
unique names.
<literallayout class='monospaced'>
def get_depends(d):
if d.getVar('SOMECONDITION', True):
return "dependencywithcond"
else:
return "dependency"
SOMECONDITION = "1"
DEPENDS = "${@get_depends(d)}"
</literallayout>
This would result in <filename>DEPENDS</filename>
containing <filename>dependencywithcond</filename>.
</para>
</note>
</section>
<section>
<title>Defining executable metadata</title>
<para><emphasis>NOTE:</emphasis> This is only supported in .bb and .bbclass files.
<literallayout class='monospaced'>
do_mytask () {
echo "Hello, world!"
}
</literallayout>
This is essentially identical to setting a variable, except that this variable happens to be executable shell code.
<literallayout class='monospaced'>
python do_printdate () {
import time
print time.strftime('%Y%m%d', time.gmtime())
}
</literallayout>
This is the similar to the previous, but flags it as Python so that BitBake knows it is Python code.
</para>
</section>
<section>
<title>Tasks</title>
<para><emphasis>NOTE:</emphasis> This is only supported in .bb and .bbclass files.</para>
<para>In BitBake, each step that needs to be run for a given .bb is known as a task. There is a command <filename>addtask</filename> to add new tasks (must be a defined Python executable metadata and must start with <quote>do_</quote>) and describe intertask dependencies.
<literallayout class='monospaced'>
python do_printdate () {
import time print
time.strftime('%Y%m%d', time.gmtime())
}
addtask printdate after do_fetch before do_build
</literallayout>
This defines the necessary Python function and adds it as a task which is now a dependency of do_build, the default task. If anyone executes the do_build task, that will result in do_printdate being run first.
</para>
</section>
<section id='task-flags'>
<title>Task Flags</title>
<para>
Tasks support a number of flags which control various
functionality of the task. These are as follows:
</para>
<para>'dirs' - directories which should be created before the task runs</para>
<para>'cleandirs' - directories which should be created before the task runs but should be empty</para>
<para>'noexec' - marks the tasks as being empty and no execution required. These are used as dependency placeholders or used when added tasks need to be subsequently disabled.</para>
<para>'nostamp' - don't generate a stamp file for a task. This means the task is always rexecuted.</para>
<para>'fakeroot' - this task needs to be run in a fakeroot environment, obtained by adding the variables in FAKEROOTENV to the environment.</para>
<para>'umask' - the umask to run the task under.</para>
<para> For the 'deptask', 'rdeptask', 'depends', 'rdepends' and 'recrdeptask' flags please see the dependencies section.</para>
</section>
<section id='parsing-overview'>
<title>Parsing</title>
<section id='configiguration-files'>
<title>Configuration files</title>
<para>
The first kind of metadata in BitBake is configuration metadata.
This metadata is global, and therefore affects all packages and
tasks that are executed.
</para>
<para>
BitBake will first search the current working directory for an
optional <filename>conf/bblayers.conf</filename> configuration file.
This file is expected to contain a <filename>BBLAYERS</filename>
variable that is a space delimited list of 'layer' directories.
For each directory in this list, a <filename>conf/layer.conf</filename>
file will be searched for and parsed with the
<filename>LAYERDIR</filename> variable being set to the directory where
the layer was found.
The idea is these files will setup <filename>BBPATH</filename>
and other variables correctly for a given build directory automatically
for the user.
</para>
<para>
BitBake will then expect to find <filename>conf/bitbake.conf</filename>
file somewhere in the user specified <filename>BBPATH</filename>.
That configuration file generally has include directives to pull
in any other metadata (generally files specific to architecture,
machine, local and so on).
</para>
<para>
Only variable definitions and include directives are allowed
in <filename>.conf</filename> files.
</para>
</section>
<section id='classes'>
<title>Classes</title>
<para>
BitBake classes are our rudimentary inheritance mechanism.
As briefly mentioned in the metadata introduction, they're
parsed when an inherit directive is encountered, and they
are located in the <filename>classes/</filename> directory
relative to the directories in <filename>BBPATH</filename>.
</para>
</section>
<section id='bb-files'>
<title><filename>.bb</filename> Files</title>
<para>
A BitBake (<filename>.bb</filename>) file is a logical unit
of tasks to be executed.
Normally this is a package to be built.
Inter-<filename>.bb</filename> dependencies are obeyed.
The files themselves are located via the
<filename>BBFILES</filename> variable, which
is set to a space separated list of <filename>.bb</filename>
files, and does handle wildcards.
</para>
</section>
</section>
<section id='events'>
<title>Events</title>
<note>
This is only supported in <filename>.bb</filename>
and <filename>.bbclass</filename> files.
</note>
<para>
BitBake allows installation of event handlers.
Events are triggered at certain points during operation,
such as the beginning of operation against a given
<filename>.bb</filename>, the start of a given task,
task failure, task success, and so forth.
The intent is to make it easy to do things like email
notification on build failure.
<literallayout class='monospaced'>
addhandler myclass_eventhandler
python myclass_eventhandler() {
from bb.event import getName
from bb import data
print("The name of the Event is %s" % getName(e))
print("The file we run for is %s" % data.getVar('FILE', e.data, True))
}
</literallayout>
This event handler gets called every time an event is
triggered.
A global variable "<filename>e</filename>" is defined.
"<filename>e.data</filename>" contains an instance of
"<filename>bb.data</filename>".
With the <filename>getName(e)</filename> method one can get
the name of the triggered event.
</para>
<para>
The above event handler prints the name of the event
and the content of the <filename>FILE</filename> variable.
During a Build, the following common events occur:
<itemizedlist>
<listitem><para><filename>bb.event.ConfigParsed()</filename></para></listitem>
<listitem><para><filename>bb.event.ParseStarted()</filename></para></listitem>
<listitem><para><filename>bb.event.ParseProgress()</filename></para></listitem>
<listitem><para><filename>bb.event.ParseCompleted()</filename></para></listitem>
<listitem><para><filename>bb.event.BuildStarted()</filename></para></listitem>
<listitem><para><filename>bb.build.TaskStarted()</filename></para></listitem>
<listitem><para><filename>bb.build.TaskInvalid()</filename></para></listitem>
<listitem><para><filename>bb.build.TaskFailedSilent()</filename></para></listitem>
<listitem><para><filename>bb.build.TaskFailed()</filename></para></listitem>
<listitem><para><filename>bb.build.TaskSucceeded()</filename></para></listitem>
<listitem><para><filename>bb.event.BuildCompleted()</filename></para></listitem>
<listitem><para><filename>bb.cooker.CookerExit()</filename></para></listitem>
</itemizedlist>
Other events that occur based on specific requests to the server:
<itemizedlist>
<listitem><para><filename>bb.event.TreeDataPreparationStarted()</filename></para></listitem>
<listitem><para><filename>bb.event.TreeDataPreparationProgress</filename></para></listitem>
<listitem><para><filename>bb.event.TreeDataPreparationCompleted</filename></para></listitem>
<listitem><para><filename>bb.event.DepTreeGenerated</filename></para></listitem>
<listitem><para><filename>bb.event.CoreBaseFilesFound</filename></para></listitem>
<listitem><para><filename>bb.event.ConfigFilePathFound</filename></para></listitem>
<listitem><para><filename>bb.event.FilesMatchingFound</filename></para></listitem>
<listitem><para><filename>bb.event.ConfigFilesFound</filename></para></listitem>
<listitem><para><filename>bb.event.TargetsTreeGenerated</filename></para></listitem>
</itemizedlist>
</para>
</section>
<section id='variants-class-extension-mechanism'>
<title>Variants - Class Extension Mechanism</title>
<para>
Two BitBake features exist to facilitate the creation of
multiple buildable incarnations from a single recipe file.
</para>
<para>
The first is <filename>BBCLASSEXTEND</filename>.
This variable is a space separated list of classes used to "extend" the
recipe for each variant.
Here is an example that results in a second incarnation of the current
recipe being available.
This second incarnation will have the "native" class inherited.
<literallayout class='monospaced'>
BBCLASSEXTEND = "native"
</literallayout>
The second feature is <filename>BBVERSIONS</filename>.
This variable allows a single recipe to build multiple versions of a
project from a single recipe file, and allows you to specify
conditional metadata (using the <filename>OVERRIDES</filename>
mechanism) for a single version, or an optionally named range of versions:
<literallayout class='monospaced'>
BBVERSIONS = "1.0 2.0 git"
SRC_URI_git = "git://someurl/somepath.git"
</literallayout>
<literallayout class='monospaced'>
BBVERSIONS = "1.0.[0-6]:1.0.0+ \ 1.0.[7-9]:1.0.7+"
SRC_URI_append_1.0.7+ = "file://some_patch_which_the_new_versions_need.patch;patch=1"
</literallayout>
The name of the range will default to the original version of the
recipe, so given OE, a recipe file of <filename>foo_1.0.0+.bb</filename>
will default the name of its versions to <filename>1.0.0+</filename>.
This is useful, as the range name is not only placed into overrides;
it's also made available for the metadata to use in the form of the
<filename>BPV</filename> variable, for use in
<filename>file://</filename> search paths (<filename>FILESPATH</filename>).
</para>
</section>
<section id='dependencies'>
<title>Dependencies</title>
<section id='dependencies-overview'>
<title>Overview</title>
<para>
BitBake handles dependencies at the task level since to
allow for efficient operation with multiple
processes executing in parallel, a robust method of
specifying task dependencies is needed.
</para>
</section>
<section id='dependencies-internal-to-the-bb-file'>
<title>Dependencies Internal to the <filename>.bb</filename> File</title>
<para>
Where the dependencies are internal to a given
<filename>.bb</filename> file, the dependencies are handled by the
previously detailed <filename>addtask</filename> directive.
</para>
</section>
<section id='build-dependencies'>
<title>Build Dependencies</title>
<para>
<filename>DEPENDS</filename> lists build time dependencies.
The 'deptask' flag for tasks is used to signify the task of each
item listed in <filename>DEPENDS</filename> which must have
completed before that task can be executed.
<literallayout class='monospaced'>
do_configure[deptask] = "do_populate_staging"
</literallayout>
In the previous example, the <filename>do_populate_staging</filename>
task of each item in <filename>DEPENDS</filename> must have completed before
<filename>do_configure</filename> can execute.
</para>
</section>
<section id='runtime-dependencies'>
<title>Runtime Dependencies</title>
<para>
The <filename>PACKAGES</filename> variable lists runtime
packages and each of these can have <filename>RDEPENDS</filename> and
<filename>RRECOMMENDS</filename> runtime dependencies.
The 'rdeptask' flag for tasks is used to signify the task of each
item runtime dependency which must have completed before that
task can be executed.
<literallayout class='monospaced'>
do_package_write[rdeptask] = "do_package"
</literallayout>
In the previous example, the <filename>do_package</filename>
task of each item in <filename>RDEPENDS</filename> must have
completed before <filename>do_package_write</filename> can execute.
</para>
</section>
<section id='recursive-dependencies'>
<title>Recursive Dependencies</title>
<para>
These are specified with the 'recrdeptask' flag
which is used to signify the task(s) of dependencies
which must have completed before that task can be
executed.
It works by looking though the build
and runtime dependencies of the current recipe as well
as any inter-task dependencies the task has,
then adding a dependency on the listed task.
It will then recurse through the dependencies of those
tasks and so on.
</para>
<para>
It may be desireable to recurse not just through the
dependencies of those tasks but through the
build and runtime dependencies of dependent tasks too.
If that is the case, the taskname itself should
be referenced in the task list (e.g.
<filename>do_a[recrdeptask] = "do_a do_b"</filename>).
</para>
</section>
<section id='inter-task-dependencies'>
<title>Inter-Task Dependencies</title>
<para>
The 'depends' flag for tasks is a more generic form which
allows an inter-dependency on specific tasks rather than specifying
the data in <filename>DEPENDS</filename>.
<literallayout class='monospaced'>
do_patch[depends] = "quilt-native:do_populate_staging"
</literallayout>
In the previous example, the <filename>do_populate_staging</filename>
task of the target quilt-native must have completed before the
<filename>do_patch</filename> task can execute.
</para>
<para>
The 'rdepends' flag works in a similar way but takes targets
in the runtime namespace instead of the build-time dependency
namespace.
</para>
</section>
</section>
<section id='accessing-variables-and-the-data-store-from-python'>
<title>Accessing Variables and the Data Store from Python</title>
<para>
It is often necessary to manipulate variables within python functions
and the Bitbake data store has an API which allows this.
The operations available are:
<literallayout class='monospaced'>
d.getVar("X", expand=False)
</literallayout>
returns the value of variable "X", expanding the value
if specified.
<literallayout class='monospaced'>
d.setVar("X", value)
</literallayout>
sets the value of "X" to "value".
<literallayout class='monospaced'>
d.appendVar("X", value)
</literallayout>
adds "value" to the end of variable X.
<literallayout class='monospaced'>
d.prependVar("X", value)
</literallayout>
adds "value" to the start of variable X.
<literallayout class='monospaced'>
d.delVar("X")
</literallayout>
deletes the variable X from the data store.
<literallayout class='monospaced'>
d.renameVar("X", "Y")
</literallayout>
renames variable X to Y.
<literallayout class='monospaced'>
d.getVarFlag("X", flag, expand=False)
</literallayout>
gets given flag from variable X but does not expand it.
<literallayout class='monospaced'>
d.setVarFlag("X", flag, value)
</literallayout>
sets given flag for variable X to value.
<filename>setVarFlags</filename> will not clear previous flags.
Think of this method as <filename>addVarFlags</filename>.
<literallayout class='monospaced'>
d.appendVarFlag("X", flag, value)
</literallayout>
Need description.
<literallayout class='monospaced'>
d.prependVarFlag("X", flag, value)
</literallayout>
Need description.
<literallayout class='monospaced'>
d.delVarFlag("X", flag)
</literallayout>
Need description.
<literallayout class='monospaced'>
d.setVarFlags("X", flagsdict)
</literallayout>
sets the flags specified in the <filename>dict()</filename> parameter.
<literallayout class='monospaced'>
d.getVarFlags("X")
</literallayout>
returns a <filename>dict</filename> of the flags for X.
<literallayout class='monospaced'>
d.delVarFlags
</literallayout>
deletes all the flags for a variable.
</para>
</section>
</chapter>
|