1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
|
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<chapter id="bitbake-user-manual-metadata">
<title>Syntax and Operators</title>
<para>
BitBake files have their own syntax.
The syntax has similarities to several
other languages but also has some unique features.
This section describes the available syntax and operators
as well as provides examples.
</para>
<section id='basic-syntax'>
<title>Basic Syntax</title>
<para>
This section provides some basic syntax examples.
</para>
<section id='basic-variable-setting'>
<title>Basic Variable Setting</title>
<para>
The following example sets <filename>VARIABLE</filename> to
"value".
This assignment occurs immediately as the statement is parsed.
It is a "hard" assignment.
<literallayout class='monospaced'>
VARIABLE = "value"
</literallayout>
As expected, if you include leading or trailing spaces as part of
an assignment, the spaces are retained:
<literallayout class='monospaced'>
VARIABLE = " value"
VARIABLE = "value "
</literallayout>
Setting <filename>VARIABLE</filename> to "" sets it to an empty string,
while setting the variable to " " sets it to a blank space
(i.e. these are not the same values).
<literallayout class='monospaced'>
VARIABLE = ""
VARIABLE = " "
</literallayout>
</para>
<para>
You can use single quotes instead of double quotes
when setting a variable's value.
Doing so allows you to use values that contain the double
quote character:
<literallayout class='monospaced'>
VARIABLE = 'I have a " in my value'
</literallayout>
<note>
Unlike in Bourne shells, single quotes work identically
to double quotes in all other ways.
They do not suppress variable expansions.
</note>
</para>
</section>
<section id='modifying-existing-variables'>
<title>Modifying Existing Variables</title>
<para>
Sometimes you need to modify existing variables.
Following are some cases where you might find you want to
modify an existing variable:
<itemizedlist>
<listitem><para>
Customize a recipe that uses the variable.
</para></listitem>
<listitem><para>
Change a variable's default value used in a
<filename>*.bbclass</filename> file.
</para></listitem>
<listitem><para>
Change the variable in a <filename>*.bbappend</filename>
file to override the variable in the original recipe.
</para></listitem>
<listitem><para>
Change the variable in a configuration file so that the
value overrides an existing configuration.
</para></listitem>
</itemizedlist>
</para>
<para>
Changing a variable value can sometimes depend on how the
value was originally assigned and also on the desired
intent of the change.
In particular, when you append a value to a variable that
has a default value, the resulting value might not be what
you expect.
In this case, the value you provide might replace the value
rather than append to the default value.
</para>
<para>
If after you have changed a variable's value and something
unexplained occurs, you can use BitBake to check the actual
value of the suspect variable.
You can make these checks for both configuration and recipe
level changes:
<itemizedlist>
<listitem><para>
For configuration changes, use the following:
<literallayout class='monospaced'>
$ bitbake -e
</literallayout>
This command displays variable values after the
configuration files (i.e. <filename>local.conf</filename>,
<filename>bblayers.conf</filename>,
<filename>bitbake.conf</filename> and so forth) have
been parsed.
<note>
Variables that are exported to the environment are
preceded by the string "export" in the command's
output.
</note>
</para></listitem>
<listitem><para>
For recipe changes, use the following:
<literallayout class='monospaced'>
$ bitbake <replaceable>recipe</replaceable> -e | grep VARIABLE="
</literallayout>
This command checks to see if the variable actually
makes it into a specific recipe.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='line-joining'>
<title>Line Joining</title>
<para>
Outside of
<link linkend='functions'>functions</link>, BitBake joins
any line ending in a backslash character ("\")
with the following line before parsing statements.
The most common use for the "\" character is to split variable
assignments over multiple lines, as in the following example:
<literallayout class='monospaced'>
FOO = "bar \
baz \
qaz"
</literallayout>
Both the "\" character and the newline character
that follow it are removed when joining lines.
Thus, no newline characters end up in the value of
<filename>FOO</filename>.
</para>
<para>
Consider this additional example where the two
assignments both assign "barbaz" to
<filename>FOO</filename>:
<literallayout class='monospaced'>
FOO = "barbaz"
FOO = "bar\
baz"
</literallayout>
<note>
BitBake does not interpret escape sequences like
"\n" in variable values.
For these to have an effect, the value must be passed
to some utility that interprets escape sequences,
such as <filename>printf</filename> or
<filename>echo -n</filename>.
</note>
</para>
</section>
<section id='variable-expansion'>
<title>Variable Expansion</title>
<para>
Variables can reference the contents of other variables
using a syntax that is similar to variable expansion in
Bourne shells.
The following assignments
result in A containing "aval" and B evaluating to "preavalpost".
<literallayout class='monospaced'>
A = "aval"
B = "pre${A}post"
</literallayout>
<note>
Unlike in Bourne shells, the curly braces are mandatory:
Only <filename>${FOO}</filename> and not
<filename>$FOO</filename> is recognized as an expansion of
<filename>FOO</filename>.
</note>
The "=" operator does not immediately expand variable
references in the right-hand side.
Instead, expansion is deferred until the variable assigned to
is actually used.
The result depends on the current values of the referenced
variables.
The following example should clarify this behavior:
<literallayout class='monospaced'>
A = "${B} baz"
B = "${C} bar"
C = "foo"
*At this point, ${A} equals "foo bar baz"*
C = "qux"
*At this point, ${A} equals "qux bar baz"*
B = "norf"
*At this point, ${A} equals "norf baz"*
</literallayout>
Contrast this behavior with the
<link linkend='immediate-variable-expansion'>immediate variable expansion</link>
operator (i.e. ":=").
</para>
<para>
If the variable expansion syntax is used on a variable that
does not exist, the string is kept as is.
For example, given the following assignment,
<filename>BAR</filename> expands to the literal string
"${FOO}" as long as <filename>FOO</filename> does not exist.
<literallayout class='monospaced'>
BAR = "${FOO}"
</literallayout>
</para>
</section>
<section id='setting-a-default-value'>
<title>Setting a default value (?=)</title>
<para>
You can use the "?=" operator to achieve a "softer" assignment
for a variable.
This type of assignment allows you to define a variable if it
is undefined when the statement is parsed, but to leave the
value alone if the variable has a value.
Here is an example:
<literallayout class='monospaced'>
A ?= "aval"
</literallayout>
If <filename>A</filename> is set at the time this statement is parsed,
the variable retains its value.
However, if <filename>A</filename> is not set,
the variable is set to "aval".
<note>
This assignment is immediate.
Consequently, if multiple "?=" assignments
to a single variable exist, the first of those ends up getting
used.
</note>
</para>
</section>
<section id='setting-a-weak-default-value'>
<title>Setting a weak default value (??=)</title>
<para>
It is possible to use a "weaker" assignment than in the
previous section by using the "??=" operator.
This assignment behaves identical to "?=" except that the
assignment is made at the end of the parsing process rather
than immediately.
Consequently, when multiple "??=" assignments exist, the last
one is used.
Also, any "=" or "?=" assignment will override the value set with
"??=".
Here is an example:
<literallayout class='monospaced'>
A ??= "somevalue"
A ??= "someothervalue"
</literallayout>
If <filename>A</filename> is set before the above statements are parsed,
the variable retains its value.
If <filename>A</filename> is not set,
the variable is set to "someothervalue".
</para>
<para>
Again, this assignment is a "lazy" or "weak" assignment
because it does not occur until the end
of the parsing process.
</para>
</section>
<section id='immediate-variable-expansion'>
<title>Immediate variable expansion (:=)</title>
<para>
The ":=" operator results in a variable's
contents being expanded immediately,
rather than when the variable is actually used:
<literallayout class='monospaced'>
T = "123"
A := "test ${T}"
T = "456"
B := "${T} ${C}"
C = "cval"
C := "${C}append"
</literallayout>
In this example, <filename>A</filename> contains
"test 123", even though the final value of <filename>T</filename>
is "456".
The variable <filename>B</filename> will end up containing "456 cvalappend".
This is because references to undefined variables are preserved as is
during (immediate)expansion. This is in contrast to GNU Make, where undefined
variables expand to nothing.
The variable <filename>C</filename>
contains "cvalappend" since <filename>${C}</filename> immediately
expands to "cval".
</para>
</section>
<section id='appending-and-prepending'>
<title>Appending (+=) and prepending (=+) With Spaces</title>
<para>
Appending and prepending values is common and can be accomplished
using the "+=" and "=+" operators.
These operators insert a space between the current
value and prepended or appended value.
</para>
<para>
These operators take immediate effect during parsing.
Here are some examples:
<literallayout class='monospaced'>
B = "bval"
B += "additionaldata"
C = "cval"
C =+ "test"
</literallayout>
The variable <filename>B</filename> contains
"bval additionaldata" and <filename>C</filename>
contains "test cval".
</para>
</section>
<section id='appending-and-prepending-without-spaces'>
<title>Appending (.=) and Prepending (=.) Without Spaces</title>
<para>
If you want to append or prepend values without an
inserted space, use the ".=" and "=." operators.
</para>
<para>
These operators take immediate effect during parsing.
Here are some examples:
<literallayout class='monospaced'>
B = "bval"
B .= "additionaldata"
C = "cval"
C =. "test"
</literallayout>
The variable <filename>B</filename> contains
"bvaladditionaldata" and
<filename>C</filename> contains "testcval".
</para>
</section>
<section id='appending-and-prepending-override-style-syntax'>
<title>Appending and Prepending (Override Style Syntax)</title>
<para>
You can also append and prepend a variable's value
using an override style syntax.
When you use this syntax, no spaces are inserted.
</para>
<para>
These operators differ from the ":=", ".=", "=.", "+=", and "=+"
operators in that their effects are applied at variable
expansion time rather than being immediately applied.
Here are some examples:
<literallayout class='monospaced'>
B = "bval"
B_append = " additional data"
C = "cval"
C_prepend = "additional data "
D = "dval"
D_append = "additional data"
</literallayout>
The variable <filename>B</filename> becomes
"bval additional data" and <filename>C</filename> becomes
"additional data cval".
The variable <filename>D</filename> becomes
"dvaladditional data".
<note>
You must control all spacing when you use the
override syntax.
</note>
</para>
<para>
It is also possible to append and prepend to shell
functions and BitBake-style Python functions.
See the
"<link linkend='shell-functions'>Shell Functions</link>" and
"<link linkend='bitbake-style-python-functions'>BitBake-Style Python Functions</link>
sections for examples.
</para>
</section>
<section id='removing-override-style-syntax'>
<title>Removal (Override Style Syntax)</title>
<para>
You can remove values from lists using the removal
override style syntax.
Specifying a value for removal causes all occurrences of that
value to be removed from the variable.
</para>
<para>
When you use this syntax, BitBake expects one or more strings.
Surrounding spaces and spacing are preserved.
Here is an example:
<literallayout class='monospaced'>
FOO = "123 456 789 123456 123 456 123 456"
FOO_remove = "123"
FOO_remove = "456"
FOO2 = " abc def ghi abcdef abc def abc def def"
FOO2_remove = " \
def \
abc \
ghi \
"
</literallayout>
The variable <filename>FOO</filename> becomes
" 789 123456 "
and <filename>FOO2</filename> becomes
" jkl abcdef ".
</para>
<para>
Like "_append" and "_prepend", "_remove"
is applied at variable expansion time.
</para>
</section>
<section id='override-style-operation-advantages'>
<title>Override Style Operation Advantages</title>
<para>
An advantage of the override style operations
"_append", "_prepend", and "_remove" as compared to the
"+=" and "=+" operators is that the override style
operators provide guaranteed operations.
For example, consider a class <filename>foo.bbclass</filename>
that needs to add the value "val" to the variable
<filename>FOO</filename>, and a recipe that uses
<filename>foo.bbclass</filename> as follows:
<literallayout class='monospaced'>
inherit foo
FOO = "initial"
</literallayout>
If <filename>foo.bbclass</filename> uses the "+=" operator,
as follows, then the final value of <filename>FOO</filename>
will be "initial", which is not what is desired:
<literallayout class='monospaced'>
FOO += "val"
</literallayout>
If, on the other hand, <filename>foo.bbclass</filename>
uses the "_append" operator, then the final value of
<filename>FOO</filename> will be "initial val", as intended:
<literallayout class='monospaced'>
FOO_append = " val"
</literallayout>
<note>
It is never necessary to use "+=" together with "_append".
The following sequence of assignments appends "barbaz" to
<filename>FOO</filename>:
<literallayout class='monospaced'>
FOO_append = "bar"
FOO_append = "baz"
</literallayout>
The only effect of changing the second assignment in the
previous example to use "+=" would be to add a space before
"baz" in the appended value (due to how the "+=" operator
works).
</note>
Another advantage of the override style operations is that
you can combine them with other overrides as described in the
"<link linkend='conditional-syntax-overrides'>Conditional Syntax (Overrides)</link>"
section.
</para>
</section>
<section id='variable-flag-syntax'>
<title>Variable Flag Syntax</title>
<para>
Variable flags are BitBake's implementation of variable properties
or attributes.
It is a way of tagging extra information onto a variable.
You can find more out about variable flags in general in the
"<link linkend='variable-flags'>Variable Flags</link>"
section.
</para>
<para>
You can define, append, and prepend values to variable flags.
All the standard syntax operations previously mentioned work
for variable flags except for override style syntax
(i.e. "_prepend", "_append", and "_remove").
</para>
<para>
Here are some examples showing how to set variable flags:
<literallayout class='monospaced'>
FOO[a] = "abc"
FOO[b] = "123"
FOO[a] += "456"
</literallayout>
The variable <filename>FOO</filename> has two flags:
<filename>[a]</filename> and <filename>[b]</filename>.
The flags are immediately set to "abc" and "123", respectively.
The <filename>[a]</filename> flag becomes "abc 456".
</para>
<para>
No need exists to pre-define variable flags.
You can simply start using them.
One extremely common application
is to attach some brief documentation to a BitBake variable as
follows:
<literallayout class='monospaced'>
CACHE[doc] = "The directory holding the cache of the metadata."
</literallayout>
</para>
</section>
<section id='inline-python-variable-expansion'>
<title>Inline Python Variable Expansion</title>
<para>
You can use inline Python variable expansion to
set variables.
Here is an example:
<literallayout class='monospaced'>
DATE = "${@time.strftime('%Y%m%d',time.gmtime())}"
</literallayout>
This example results in the <filename>DATE</filename>
variable being set to the current date.
</para>
<para>
Probably the most common use of this feature is to extract
the value of variables from BitBake's internal data dictionary,
<filename>d</filename>.
The following lines select the values of a package name
and its version number, respectively:
<literallayout class='monospaced'>
PN = "${@bb.parse.BBHandler.vars_from_file(d.getVar('FILE', False),d)[0] or 'defaultpkgname'}"
PV = "${@bb.parse.BBHandler.vars_from_file(d.getVar('FILE', False),d)[1] or '1.0'}"
</literallayout>
<note>
Inline Python expressions work just like variable expansions
insofar as the "=" and ":=" operators are concerned.
Given the following assignment, <filename>foo()</filename>
is called each time <filename>FOO</filename> is expanded:
<literallayout class='monospaced'>
FOO = "${@foo()}"
</literallayout>
Contrast this with the following immediate assignment, where
<filename>foo()</filename> is only called once, while the
assignment is parsed:
<literallayout class='monospaced'>
FOO := "${@foo()}"
</literallayout>
</note>
For a different way to set variables with Python code during
parsing, see the
"<link linkend='anonymous-python-functions'>Anonymous Python Functions</link>"
section.
</para>
</section>
<section id='unsetting-variables'>
<title>Unsetting variables</title>
<para>
It is possible to completely remove a variable or a variable flag
from BitBake's internal data dictionary by using the "unset" keyword.
Here is an example:
<literallayout class='monospaced'>
unset DATE
unset do_fetch[noexec]
</literallayout>
These two statements remove the <filename>DATE</filename> and the
<filename>do_fetch[noexec]</filename> flag.
</para>
</section>
<section id='providing-pathnames'>
<title>Providing Pathnames</title>
<para>
When specifying pathnames for use with BitBake,
do not use the tilde ("~") character as a shortcut
for your home directory.
Doing so might cause BitBake to not recognize the
path since BitBake does not expand this character in
the same way a shell would.
</para>
<para>
Instead, provide a fuller path as the following
example illustrates:
<literallayout class='monospaced'>
BBLAYERS ?= " \
/home/scott-lenovo/LayerA \
"
</literallayout>
</para>
</section>
</section>
<section id='exporting-variables-to-the-environment'>
<title>Exporting Variables to the Environment</title>
<para>
You can export variables to the environment of running
tasks by using the <filename>export</filename> keyword.
For example, in the following example, the
<filename>do_foo</filename> task prints "value from
the environment" when run:
<literallayout class='monospaced'>
export ENV_VARIABLE
ENV_VARIABLE = "value from the environment"
do_foo() {
bbplain "$ENV_VARIABLE"
}
</literallayout>
<note>
BitBake does not expand <filename>$ENV_VARIABLE</filename>
in this case because it lacks the obligatory
<filename>{}</filename>.
Rather, <filename>$ENV_VARIABLE</filename> is expanded
by the shell.
</note>
It does not matter whether
<filename>export ENV_VARIABLE</filename> appears before or
after assignments to <filename>ENV_VARIABLE</filename>.
</para>
<para>
It is also possible to combine <filename>export</filename>
with setting a value for the variable.
Here is an example:
<literallayout class='monospaced'>
export ENV_VARIABLE = "<replaceable>variable-value</replaceable>"
</literallayout>
In the output of <filename>bitbake -e</filename>, variables
that are exported to the environment are preceded by "export".
</para>
<para>
Among the variables commonly exported to the environment
are <filename>CC</filename> and <filename>CFLAGS</filename>,
which are picked up by many build systems.
</para>
</section>
<section id='conditional-syntax-overrides'>
<title>Conditional Syntax (Overrides)</title>
<para>
BitBake uses
<link linkend='var-bb-OVERRIDES'><filename>OVERRIDES</filename></link>
to control what variables are overridden after BitBake
parses recipes and configuration files.
This section describes how you can use
<filename>OVERRIDES</filename> as conditional metadata,
talks about key expansion in relationship to
<filename>OVERRIDES</filename>, and provides some examples
to help with understanding.
</para>
<section id='conditional-metadata'>
<title>Conditional Metadata</title>
<para>
You can use <filename>OVERRIDES</filename> to conditionally select
a specific version of a variable and to conditionally
append or prepend the value of a variable.
<note>
Overrides can only use lower-case characters.
Additionally, underscores are not permitted in override names
as they are used to separate overrides from each other and
from the variable name.
</note>
<itemizedlist>
<listitem><para><emphasis>Selecting a Variable:</emphasis>
The <filename>OVERRIDES</filename> variable is
a colon-character-separated list that contains items
for which you want to satisfy conditions.
Thus, if you have a variable that is conditional on “arm”, and “arm”
is in <filename>OVERRIDES</filename>, then the “arm”-specific
version of the variable is used rather than the non-conditional
version.
Here is an example:
<literallayout class='monospaced'>
OVERRIDES = "architecture:os:machine"
TEST = "default"
TEST_os = "osspecific"
TEST_nooverride = "othercondvalue"
</literallayout>
In this example, the <filename>OVERRIDES</filename>
variable lists three overrides:
"architecture", "os", and "machine".
The variable <filename>TEST</filename> by itself has a default
value of "default".
You select the os-specific version of the <filename>TEST</filename>
variable by appending the "os" override to the variable
(i.e.<filename>TEST_os</filename>).
</para>
<para>
To better understand this, consider a practical example
that assumes an OpenEmbedded metadata-based Linux
kernel recipe file.
The following lines from the recipe file first set
the kernel branch variable <filename>KBRANCH</filename>
to a default value, then conditionally override that
value based on the architecture of the build:
<literallayout class='monospaced'>
KBRANCH = "standard/base"
KBRANCH_qemuarm = "standard/arm-versatile-926ejs"
KBRANCH_qemumips = "standard/mti-malta32"
KBRANCH_qemuppc = "standard/qemuppc"
KBRANCH_qemux86 = "standard/common-pc/base"
KBRANCH_qemux86-64 = "standard/common-pc-64/base"
KBRANCH_qemumips64 = "standard/mti-malta64"
</literallayout>
</para></listitem>
<listitem><para><emphasis>Appending and Prepending:</emphasis>
BitBake also supports append and prepend operations to
variable values based on whether a specific item is
listed in <filename>OVERRIDES</filename>.
Here is an example:
<literallayout class='monospaced'>
DEPENDS = "glibc ncurses"
OVERRIDES = "machine:local"
DEPENDS_append_machine = " libmad"
</literallayout>
In this example, <filename>DEPENDS</filename> becomes
"glibc ncurses libmad".
</para>
<para>
Again, using an OpenEmbedded metadata-based
kernel recipe file as an example, the
following lines will conditionally append to the
<filename>KERNEL_FEATURES</filename> variable based
on the architecture:
<literallayout class='monospaced'>
KERNEL_FEATURES_append = " ${KERNEL_EXTRA_FEATURES}"
KERNEL_FEATURES_append_qemux86=" cfg/sound.scc cfg/paravirt_kvm.scc"
KERNEL_FEATURES_append_qemux86-64=" cfg/sound.scc cfg/paravirt_kvm.scc"
</literallayout>
</para></listitem>
<listitem><para><emphasis>Setting a Variable for a Single Task:</emphasis>
BitBake supports setting a variable just for the
duration of a single task.
Here is an example:
<literallayout class='monospaced'>
FOO_task-configure = "val 1"
FOO_task-compile = "val 2"
</literallayout>
In the previous example, <filename>FOO</filename>
has the value "val 1" while the
<filename>do_configure</filename> task is executed,
and the value "val 2" while the
<filename>do_compile</filename> task is executed.
</para>
<para>Internally, this is implemented by prepending
the task (e.g. "task-compile:") to the value of
<link linkend='var-bb-OVERRIDES'><filename>OVERRIDES</filename></link>
for the local datastore of the <filename>do_compile</filename>
task.</para>
<para>You can also use this syntax with other combinations
(e.g. "<filename>_prepend</filename>") as shown in the
following example:
<literallayout class='monospaced'>
EXTRA_OEMAKE_prepend_task-compile = "${PARALLEL_MAKE} "
</literallayout>
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='key-expansion'>
<title>Key Expansion</title>
<para>
Key expansion happens when the BitBake datastore is finalized.
To better understand this, consider the following example:
<literallayout class='monospaced'>
A${B} = "X"
B = "2"
A2 = "Y"
</literallayout>
In this case, after all the parsing is complete,
BitBake expands <filename>${B}</filename> into "2".
This expansion causes <filename>A2</filename>, which was
set to "Y" before the expansion, to become "X".
</para>
</section>
<section id='variable-interaction-worked-examples'>
<title>Examples</title>
<para>
Despite the previous explanations that show the different forms of
variable definitions, it can be hard to work
out exactly what happens when variable operators, conditional
overrides, and unconditional overrides are combined.
This section presents some common scenarios along
with explanations for variable interactions that
typically confuse users.
</para>
<para>
There is often confusion concerning the order in which
overrides and various "append" operators take effect.
Recall that an append or prepend operation using "_append"
and "_prepend" does not result in an immediate assignment
as would "+=", ".=", "=+", or "=.".
Consider the following example:
<literallayout class='monospaced'>
OVERRIDES = "foo"
A = "Z"
A_foo_append = "X"
</literallayout>
For this case, <filename>A</filename> is
unconditionally set to "Z" and "X" is
unconditionally and immediately appended to the variable
<filename>A_foo</filename>.
Because overrides have not been applied yet,
<filename>A_foo</filename> is set to "X" due to the append
and <filename>A</filename> simply equals "Z".
</para>
<para>
Applying overrides, however, changes things.
Since "foo" is listed in <filename>OVERRIDES</filename>,
the conditional variable <filename>A</filename> is replaced
with the "foo" version, which is equal to "X".
So effectively, <filename>A_foo</filename> replaces <filename>A</filename>.
</para>
<para>
This next example changes the order of the override and
the append:
<literallayout class='monospaced'>
OVERRIDES = "foo"
A = "Z"
A_append_foo = "X"
</literallayout>
For this case, before overrides are handled,
<filename>A</filename> is set to "Z" and <filename>A_append_foo</filename>
is set to "X".
Once the override for "foo" is applied, however,
<filename>A</filename> gets appended with "X".
Consequently, <filename>A</filename> becomes "ZX".
Notice that spaces are not appended.
</para>
<para>
This next example has the order of the appends and overrides reversed
back as in the first example:
<literallayout class='monospaced'>
OVERRIDES = "foo"
A = "Y"
A_foo_append = "Z"
A_foo_append = "X"
</literallayout>
For this case, before any overrides are resolved,
<filename>A</filename> is set to "Y" using an immediate assignment.
After this immediate assignment, <filename>A_foo</filename> is set
to "Z", and then further appended with
"X" leaving the variable set to "ZX".
Finally, applying the override for "foo" results in the conditional
variable <filename>A</filename> becoming "ZX" (i.e.
<filename>A</filename> is replaced with <filename>A_foo</filename>).
</para>
<para>
This final example mixes in some varying operators:
<literallayout class='monospaced'>
A = "1"
A_append = "2"
A_append = "3"
A += "4"
A .= "5"
</literallayout>
For this case, the type of append operators are affecting the
order of assignments as BitBake passes through the code
multiple times.
Initially, <filename>A</filename> is set to "1 45" because
of the three statements that use immediate operators.
After these assignments are made, BitBake applies the
"_append" operations.
Those operations result in <filename>A</filename> becoming "1 4523".
</para>
</section>
</section>
<section id='sharing-functionality'>
<title>Sharing Functionality</title>
<para>
BitBake allows for metadata sharing through include files
(<filename>.inc</filename>) and class files
(<filename>.bbclass</filename>).
For example, suppose you have a piece of common functionality
such as a task definition that you want to share between
more than one recipe.
In this case, creating a <filename>.bbclass</filename>
file that contains the common functionality and then using
the <filename>inherit</filename> directive in your recipes to
inherit the class would be a common way to share the task.
</para>
<para>
This section presents the mechanisms BitBake provides to
allow you to share functionality between recipes.
Specifically, the mechanisms include <filename>include</filename>,
<filename>inherit</filename>, <filename>INHERIT</filename>, and
<filename>require</filename> directives.
</para>
<section id='locating-include-and-class-files'>
<title>Locating Include and Class Files</title>
<para>
BitBake uses the
<link linkend='var-bb-BBPATH'><filename>BBPATH</filename></link>
variable to locate needed include and class files.
Additionally, BitBake searches the current directory for
<filename>include</filename> and <filename>require</filename>
directives.
<note>
The <filename>BBPATH</filename> variable is analogous to
the environment variable <filename>PATH</filename>.
</note>
</para>
<para>
In order for include and class files to be found by BitBake,
they need to be located in a "classes" subdirectory that can
be found in <filename>BBPATH</filename>.
</para>
</section>
<section id='inherit-directive'>
<title><filename>inherit</filename> Directive</title>
<para>
When writing a recipe or class file, you can use the
<filename>inherit</filename> directive to inherit the
functionality of a class (<filename>.bbclass</filename>).
BitBake only supports this directive when used within recipe
and class files (i.e. <filename>.bb</filename> and
<filename>.bbclass</filename>).
</para>
<para>
The <filename>inherit</filename> directive is a rudimentary
means of specifying functionality contained in class files
that your recipes require.
For example, you can easily abstract out the tasks involved in
building a package that uses Autoconf and Automake and put
those tasks into a class file and then have your recipe
inherit that class file.
</para>
<para>
As an example, your recipes could use the following directive
to inherit an <filename>autotools.bbclass</filename> file.
The class file would contain common functionality for using
Autotools that could be shared across recipes:
<literallayout class='monospaced'>
inherit autotools
</literallayout>
In this case, BitBake would search for the directory
<filename>classes/autotools.bbclass</filename>
in <filename>BBPATH</filename>.
<note>
You can override any values and functions of the
inherited class within your recipe by doing so
after the "inherit" statement.
</note>
If you want to use the directive to inherit
multiple classes, separate them with spaces.
The following example shows how to inherit both the
<filename>buildhistory</filename> and <filename>rm_work</filename>
classes:
<literallayout class='monospaced'>
inherit buildhistory rm_work
</literallayout>
</para>
<para>
An advantage with the inherit directive as compared to both
the
<link linkend='include-directive'>include</link> and
<link linkend='require-inclusion'>require</link> directives
is that you can inherit class files conditionally.
You can accomplish this by using a variable expression
after the <filename>inherit</filename> statement.
Here is an example:
<literallayout class='monospaced'>
inherit ${VARNAME}
</literallayout>
If <filename>VARNAME</filename> is going to be set, it needs
to be set before the <filename>inherit</filename> statement
is parsed.
One way to achieve a conditional inherit in this case is to use
overrides:
<literallayout class='monospaced'>
VARIABLE = ""
VARIABLE_someoverride = "myclass"
</literallayout>
</para>
<para>
Another method is by using anonymous Python.
Here is an example:
<literallayout class='monospaced'>
python () {
if condition == value:
d.setVar('VARIABLE', 'myclass')
else:
d.setVar('VARIABLE', '')
}
</literallayout>
</para>
<para>
Alternatively, you could use an in-line Python expression
in the following form:
<literallayout class='monospaced'>
inherit ${@'classname' if condition else ''}
inherit ${@functionname(params)}
</literallayout>
In all cases, if the expression evaluates to an empty
string, the statement does not trigger a syntax error
because it becomes a no-op.
</para>
</section>
<section id='include-directive'>
<title><filename>include</filename> Directive</title>
<para>
BitBake understands the <filename>include</filename>
directive.
This directive causes BitBake to parse whatever file you specify,
and to insert that file at that location.
The directive is much like its equivalent in Make except
that if the path specified on the include line is a relative
path, BitBake locates the first file it can find
within <filename>BBPATH</filename>.
</para>
<para>
The include directive is a more generic method of including
functionality as compared to the
<link linkend='inherit-directive'>inherit</link> directive,
which is restricted to class (i.e. <filename>.bbclass</filename>)
files.
The include directive is applicable for any other kind of
shared or encapsulated functionality or configuration that
does not suit a <filename>.bbclass</filename> file.
</para>
<para>
As an example, suppose you needed a recipe to include some
self-test definitions:
<literallayout class='monospaced'>
include test_defs.inc
</literallayout>
<note>
The <filename>include</filename> directive does not
produce an error when the file cannot be found.
Consequently, it is recommended that if the file you
are including is expected to exist, you should use
<link linkend='require-inclusion'><filename>require</filename></link>
instead of <filename>include</filename>.
Doing so makes sure that an error is produced if the
file cannot be found.
</note>
</para>
</section>
<section id='require-inclusion'>
<title><filename>require</filename> Directive</title>
<para>
BitBake understands the <filename>require</filename>
directive.
This directive behaves just like the
<filename>include</filename> directive with the exception that
BitBake raises a parsing error if the file to be included cannot
be found.
Thus, any file you require is inserted into the file that is
being parsed at the location of the directive.
</para>
<para>
The require directive, like the include directive previously
described, is a more generic method of including
functionality as compared to the
<link linkend='inherit-directive'>inherit</link> directive,
which is restricted to class (i.e. <filename>.bbclass</filename>)
files.
The require directive is applicable for any other kind of
shared or encapsulated functionality or configuration that
does not suit a <filename>.bbclass</filename> file.
</para>
<para>
Similar to how BitBake handles
<link linkend='include-directive'><filename>include</filename></link>,
if the path specified
on the require line is a relative path, BitBake locates
the first file it can find within <filename>BBPATH</filename>.
</para>
<para>
As an example, suppose you have two versions of a recipe
(e.g. <filename>foo_1.2.2.bb</filename> and
<filename>foo_2.0.0.bb</filename>) where
each version contains some identical functionality that could be
shared.
You could create an include file named <filename>foo.inc</filename>
that contains the common definitions needed to build "foo".
You need to be sure <filename>foo.inc</filename> is located in the
same directory as your two recipe files as well.
Once these conditions are set up, you can share the functionality
using a <filename>require</filename> directive from within each
recipe:
<literallayout class='monospaced'>
require foo.inc
</literallayout>
</para>
</section>
<section id='inherit-configuration-directive'>
<title><filename>INHERIT</filename> Configuration Directive</title>
<para>
When creating a configuration file (<filename>.conf</filename>),
you can use the
<link linkend='var-bb-INHERIT'><filename>INHERIT</filename></link>
configuration directive to inherit a class.
BitBake only supports this directive when used within
a configuration file.
</para>
<para>
As an example, suppose you needed to inherit a class
file called <filename>abc.bbclass</filename> from a
configuration file as follows:
<literallayout class='monospaced'>
INHERIT += "abc"
</literallayout>
This configuration directive causes the named
class to be inherited at the point of the directive
during parsing.
As with the <filename>inherit</filename> directive, the
<filename>.bbclass</filename> file must be located in a
"classes" subdirectory in one of the directories specified
in <filename>BBPATH</filename>.
<note>
Because <filename>.conf</filename> files are parsed
first during BitBake's execution, using
<filename>INHERIT</filename> to inherit a class effectively
inherits the class globally (i.e. for all recipes).
</note>
If you want to use the directive to inherit
multiple classes, you can provide them on the same line in the
<filename>local.conf</filename> file.
Use spaces to separate the classes.
The following example shows how to inherit both the
<filename>autotools</filename> and <filename>pkgconfig</filename>
classes:
<literallayout class='monospaced'>
INHERIT += "autotools pkgconfig"
</literallayout>
</para>
</section>
</section>
<section id='functions'>
<title>Functions</title>
<para>
As with most languages, functions are the building blocks that
are used to build up operations into tasks.
BitBake supports these types of functions:
<itemizedlist>
<listitem><para><emphasis>Shell Functions:</emphasis>
Functions written in shell script and executed either
directly as functions, tasks, or both.
They can also be called by other shell functions.
</para></listitem>
<listitem><para><emphasis>BitBake-Style Python Functions:</emphasis>
Functions written in Python and executed by BitBake or other
Python functions using <filename>bb.build.exec_func()</filename>.
</para></listitem>
<listitem><para><emphasis>Python Functions:</emphasis>
Functions written in Python and executed by Python.
</para></listitem>
<listitem><para><emphasis>Anonymous Python Functions:</emphasis>
Python functions executed automatically during
parsing.
</para></listitem>
</itemizedlist>
Regardless of the type of function, you can only
define them in class (<filename>.bbclass</filename>)
and recipe (<filename>.bb</filename> or <filename>.inc</filename>)
files.
</para>
<section id='shell-functions'>
<title>Shell Functions</title>
<para>
Functions written in shell script and executed either
directly as functions, tasks, or both.
They can also be called by other shell functions.
Here is an example shell function definition:
<literallayout class='monospaced'>
some_function () {
echo "Hello World"
}
</literallayout>
When you create these types of functions in your recipe
or class files, you need to follow the shell programming
rules.
The scripts are executed by <filename>/bin/sh</filename>,
which may not be a bash shell but might be something
such as <filename>dash</filename>.
You should not use Bash-specific script (bashisms).
</para>
<para>
Overrides and override-style operators like
<filename>_append</filename> and
<filename>_prepend</filename> can also be applied to
shell functions.
Most commonly, this application would be used in a
<filename>.bbappend</filename> file to modify functions in
the main recipe.
It can also be used to modify functions inherited from
classes.
</para>
<para>
As an example, consider the following:
<literallayout class='monospaced'>
do_foo() {
bbplain first
fn
}
fn_prepend() {
bbplain second
}
fn() {
bbplain third
}
do_foo_append() {
bbplain fourth
}
</literallayout>
Running <filename>do_foo</filename>
prints the following:
<literallayout class='monospaced'>
recipename do_foo: first
recipename do_foo: second
recipename do_foo: third
recipename do_foo: fourth
</literallayout>
<note>
Overrides and override-style operators can
be applied to any shell function, not just
<link linkend='tasks'>tasks</link>.
</note>
You can use the <filename>bitbake -e</filename> <replaceable>recipename</replaceable>
command to view the final assembled function
after all overrides have been applied.
</para>
</section>
<section id='bitbake-style-python-functions'>
<title>BitBake-Style Python Functions</title>
<para>
These functions are written in Python and executed by
BitBake or other Python functions using
<filename>bb.build.exec_func()</filename>.
</para>
<para>
An example BitBake function is:
<literallayout class='monospaced'>
python some_python_function () {
d.setVar("TEXT", "Hello World")
print d.getVar("TEXT")
}
</literallayout>
Because the Python "bb" and "os" modules are already
imported, you do not need to import these modules.
Also in these types of functions, the datastore ("d")
is a global variable and is always automatically
available.
<note>
Variable expressions (e.g. <filename>${X}</filename>)
are no longer expanded within Python functions.
This behavior is intentional in order to allow you
to freely set variable values to expandable expressions
without having them expanded prematurely.
If you do wish to expand a variable within a Python
function, use <filename>d.getVar("X")</filename>.
Or, for more complicated expressions, use
<filename>d.expand()</filename>.
</note>
</para>
<para>
Similar to shell functions, you can also apply overrides
and override-style operators to BitBake-style Python
functions.
</para>
<para>
As an example, consider the following:
<literallayout class='monospaced'>
python do_foo_prepend() {
bb.plain("first")
}
python do_foo() {
bb.plain("second")
}
python do_foo_append() {
bb.plain("third")
}
</literallayout>
Running <filename>do_foo</filename> prints
the following:
<literallayout class='monospaced'>
recipename do_foo: first
recipename do_foo: second
recipename do_foo: third
</literallayout>
You can use the <filename>bitbake -e</filename> <replaceable>recipename</replaceable>
command to view the final assembled function
after all overrides have been applied.
</para>
</section>
<section id='python-functions'>
<title>Python Functions</title>
<para>
These functions are written in Python and are executed by
other Python code.
Examples of Python functions are utility functions
that you intend to call from in-line Python or
from within other Python functions.
Here is an example:
<literallayout class='monospaced'>
def get_depends(d):
if d.getVar('SOMECONDITION'):
return "dependencywithcond"
else:
return "dependency"
SOMECONDITION = "1"
DEPENDS = "${@get_depends(d)}"
</literallayout>
This would result in <filename>DEPENDS</filename>
containing <filename>dependencywithcond</filename>.
</para>
<para>
Here are some things to know about Python functions:
<itemizedlist>
<listitem><para>Python functions can take parameters.
</para></listitem>
<listitem><para>The BitBake datastore is not
automatically available.
Consequently, you must pass it in as a
parameter to the function.
</para></listitem>
<listitem><para>The "bb" and "os" Python modules are
automatically available.
You do not need to import them.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='bitbake-style-python-functions-versus-python-functions'>
<title>BitBake-Style Python Functions Versus Python Functions</title>
<para>
Following are some important differences between
BitBake-style Python functions and regular Python
functions defined with "def":
<itemizedlist>
<listitem><para>
Only BitBake-style Python functions can be
<link linkend='tasks'>tasks</link>.
</para></listitem>
<listitem><para>
Overrides and override-style operators can only
be applied to BitBake-style Python functions.
</para></listitem>
<listitem><para>
Only regular Python functions can take arguments
and return values.
</para></listitem>
<listitem><para>
<link linkend='variable-flags'>Variable flags</link>
such as <filename>[dirs]</filename>,
<filename>[cleandirs]</filename>, and
<filename>[lockfiles]</filename> can be used
on BitBake-style Python functions, but not on
regular Python functions.
</para></listitem>
<listitem><para>
BitBake-style Python functions generate a separate
<filename>${</filename><link linkend='var-bb-T'><filename>T</filename></link><filename>}/run.</filename><replaceable>function-name</replaceable><filename>.</filename><replaceable>pid</replaceable>
script that is executed to run the function, and also
generate a log file in
<filename>${T}/log.</filename><replaceable>function-name</replaceable><filename>.</filename><replaceable>pid</replaceable>
if they are executed as tasks.</para>
<para>
Regular Python functions execute "inline" and do not
generate any files in <filename>${T}</filename>.
</para></listitem>
<listitem><para>
Regular Python functions are called with the usual
Python syntax.
BitBake-style Python functions are usually tasks and
are called directly by BitBake, but can also be called
manually from Python code by using the
<filename>bb.build.exec_func()</filename> function.
Here is an example:
<literallayout class='monospaced'>
bb.build.exec_func("my_bitbake_style_function", d)
</literallayout>
<note>
<filename>bb.build.exec_func()</filename> can also
be used to run shell functions from Python code.
If you want to run a shell function before a Python
function within the same task, then you can use a
parent helper Python function that starts by running
the shell function with
<filename>bb.build.exec_func()</filename> and then
runs the Python code.
</note></para>
<para>To detect errors from functions executed with
<filename>bb.build.exec_func()</filename>, you
can catch the <filename>bb.build.FuncFailed</filename>
exception.
<note>
Functions in metadata (recipes and classes) should
not themselves raise
<filename>bb.build.FuncFailed</filename>.
Rather, <filename>bb.build.FuncFailed</filename>
should be viewed as a general indicator that the
called function failed by raising an exception.
For example, an exception raised by
<filename>bb.fatal()</filename> will be caught inside
<filename>bb.build.exec_func()</filename>, and a
<filename>bb.build.FuncFailed</filename> will be raised
in response.
</note>
</para></listitem>
</itemizedlist>
</para>
<para>
Due to their simplicity, you should prefer regular Python functions
over BitBake-style Python functions unless you need a feature specific
to BitBake-style Python functions.
Regular Python functions in metadata are a more recent invention than
BitBake-style Python functions, and older code tends to use
<filename>bb.build.exec_func()</filename> more often.
</para>
</section>
<section id='anonymous-python-functions'>
<title>Anonymous Python Functions</title>
<para>
Sometimes it is useful to set variables or perform
other operations programmatically during parsing.
To do this, you can define special Python functions,
called anonymous Python functions, that run at the
end of parsing.
For example, the following conditionally sets a variable
based on the value of another variable:
<literallayout class='monospaced'>
python () {
if d.getVar('SOMEVAR') == 'value':
d.setVar('ANOTHERVAR', 'value2')
}
</literallayout>
An equivalent way to mark a function as an anonymous
function is to give it the name "__anonymous", rather
than no name.
</para>
<para>
Anonymous Python functions always run at the end
of parsing, regardless of where they are defined.
If a recipe contains many anonymous functions, they
run in the same order as they are defined within the
recipe.
As an example, consider the following snippet:
<literallayout class='monospaced'>
python () {
d.setVar('FOO', 'foo 2')
}
FOO = "foo 1"
python () {
d.appendVar('BAR', ' bar 2')
}
BAR = "bar 1"
</literallayout>
The previous example is conceptually equivalent to the
following snippet:
<literallayout class='monospaced'>
FOO = "foo 1"
BAR = "bar 1"
FOO = "foo 2"
BAR += "bar 2"
</literallayout>
<filename>FOO</filename> ends up with the value "foo 2",
and <filename>BAR</filename> with the value "bar 1 bar 2".
Just as in the second snippet, the values set for the
variables within the anonymous functions become available
to tasks, which always run after parsing.
</para>
<para>
Overrides and override-style operators such as
"<filename>_append</filename>" are applied before
anonymous functions run.
In the following example, <filename>FOO</filename> ends
up with the value "foo from anonymous":
<literallayout class='monospaced'>
FOO = "foo"
FOO_append = " from outside"
python () {
d.setVar("FOO", "foo from anonymous")
}
</literallayout>
For methods you can use with anonymous Python functions,
see the
"<link linkend='functions-you-can-call-from-within-python'>Functions You Can Call From Within Python</link>"
section.
For a different method to run Python code during parsing,
see the
"<link linkend='inline-python-variable-expansion'>Inline Python Variable Expansion</link>"
section.
</para>
</section>
<section id='flexible-inheritance-for-class-functions'>
<title>Flexible Inheritance for Class Functions</title>
<para>
Through coding techniques and the use of
<filename>EXPORT_FUNCTIONS</filename>, BitBake supports
exporting a function from a class such that the
class function appears as the default implementation
of the function, but can still be called if a recipe
inheriting the class needs to define its own version of
the function.
</para>
<para>
To understand the benefits of this feature, consider
the basic scenario where a class defines a task function
and your recipe inherits the class.
In this basic scenario, your recipe inherits the task
function as defined in the class.
If desired, your recipe can add to the start and end of the
function by using the "_prepend" or "_append" operations
respectively, or it can redefine the function completely.
However, if it redefines the function, there is
no means for it to call the class version of the function.
<filename>EXPORT_FUNCTIONS</filename> provides a mechanism
that enables the recipe's version of the function to call
the original version of the function.
</para>
<para>
To make use of this technique, you need the following
things in place:
<itemizedlist>
<listitem><para>
The class needs to define the function as follows:
<literallayout class='monospaced'>
<replaceable>classname</replaceable><filename>_</filename><replaceable>functionname</replaceable>
</literallayout>
For example, if you have a class file
<filename>bar.bbclass</filename> and a function named
<filename>do_foo</filename>, the class must define the function
as follows:
<literallayout class='monospaced'>
bar_do_foo
</literallayout>
</para></listitem>
<listitem><para>
The class needs to contain the <filename>EXPORT_FUNCTIONS</filename>
statement as follows:
<literallayout class='monospaced'>
EXPORT_FUNCTIONS <replaceable>functionname</replaceable>
</literallayout>
For example, continuing with the same example, the
statement in the <filename>bar.bbclass</filename> would be
as follows:
<literallayout class='monospaced'>
EXPORT_FUNCTIONS do_foo
</literallayout>
</para></listitem>
<listitem><para>
You need to call the function appropriately from within your
recipe.
Continuing with the same example, if your recipe
needs to call the class version of the function,
it should call <filename>bar_do_foo</filename>.
Assuming <filename>do_foo</filename> was a shell function
and <filename>EXPORT_FUNCTIONS</filename> was used as above,
the recipe's function could conditionally call the
class version of the function as follows:
<literallayout class='monospaced'>
do_foo() {
if [ somecondition ] ; then
bar_do_foo
else
# Do something else
fi
}
</literallayout>
To call your modified version of the function as defined
in your recipe, call it as <filename>do_foo</filename>.
</para></listitem>
</itemizedlist>
With these conditions met, your single recipe
can freely choose between the original function
as defined in the class file and the modified function in your recipe.
If you do not set up these conditions, you are limited to using one function
or the other.
</para>
</section>
</section>
<section id='tasks'>
<title>Tasks</title>
<para>
Tasks are BitBake execution units that make up the
steps that BitBake can run for a given recipe.
Tasks are only supported in recipes and classes
(i.e. in <filename>.bb</filename> files and files
included or inherited from <filename>.bb</filename>
files).
By convention, tasks have names that start with "do_".
</para>
<section id='promoting-a-function-to-a-task'>
<title>Promoting a Function to a Task</title>
<para>
Tasks are either
<link linkend='shell-functions'>shell functions</link> or
<link linkend='bitbake-style-python-functions'>BitBake-style Python functions</link>
that have been promoted to tasks by using the
<filename>addtask</filename> command.
The <filename>addtask</filename> command can also
optionally describe dependencies between the
task and other tasks.
Here is an example that shows how to define a task
and declare some dependencies:
<literallayout class='monospaced'>
python do_printdate () {
import time
print time.strftime('%Y%m%d', time.gmtime())
}
addtask printdate after do_fetch before do_build
</literallayout>
The first argument to <filename>addtask</filename>
is the name of the function to promote to
a task.
If the name does not start with "do_", "do_" is
implicitly added, which enforces the convention that
all task names start with "do_".
</para>
<para>
In the previous example, the
<filename>do_printdate</filename> task becomes a
dependency of the <filename>do_build</filename>
task, which is the default task (i.e. the task run by
the <filename>bitbake</filename> command unless
another task is specified explicitly).
Additionally, the <filename>do_printdate</filename>
task becomes dependent upon the
<filename>do_fetch</filename> task.
Running the <filename>do_build</filename> task
results in the <filename>do_printdate</filename>
task running first.
<note>
If you try out the previous example, you might see that
the <filename>do_printdate</filename> task is only run
the first time you build the recipe with
the <filename>bitbake</filename> command.
This is because BitBake considers the task "up-to-date"
after that initial run.
If you want to force the task to always be rerun for
experimentation purposes, you can make BitBake always
consider the task "out-of-date" by using the
<filename>[</filename><link linkend='variable-flags'><filename>nostamp</filename></link><filename>]</filename>
variable flag, as follows:
<literallayout class='monospaced'>
do_printdate[nostamp] = "1"
</literallayout>
You can also explicitly run the task and provide the
<filename>-f</filename> option as follows:
<literallayout class='monospaced'>
$ bitbake <replaceable>recipe</replaceable> -c printdate -f
</literallayout>
When manually selecting a task to run with the
<filename>bitbake</filename> <replaceable>recipe</replaceable> <filename>-c</filename> <replaceable>task</replaceable>
command, you can omit the "do_" prefix as part of the
task name.
</note>
</para>
<para>
You might wonder about the practical effects of using
<filename>addtask</filename> without specifying any
dependencies as is done in the following example:
<literallayout class='monospaced'>
addtask printdate
</literallayout>
In this example, assuming dependencies have not been
added through some other means, the only way to run
the task is by explicitly selecting it with
<filename>bitbake</filename> <replaceable>recipe</replaceable> <filename>-c printdate</filename>.
You can use the
<filename>do_listtasks</filename> task to list all tasks
defined in a recipe as shown in the following example:
<literallayout class='monospaced'>
$ bitbake <replaceable>recipe</replaceable> -c listtasks
</literallayout>
For more information on task dependencies, see the
"<link linkend='dependencies'>Dependencies</link>"
section.
</para>
<para>
See the
"<link linkend='variable-flags'>Variable Flags</link>"
section for information on variable flags you can use with
tasks.
</para>
</section>
<section id='deleting-a-task'>
<title>Deleting a Task</title>
<para>
As well as being able to add tasks, you can delete them.
Simply use the <filename>deltask</filename> command to
delete a task.
For example, to delete the example task used in the previous
sections, you would use:
<literallayout class='monospaced'>
deltask printdate
</literallayout>
If you delete a task using the <filename>deltask</filename>
command and the task has dependencies, the dependencies are
not reconnected.
For example, suppose you have three tasks named
<filename>do_a</filename>, <filename>do_b</filename>, and
<filename>do_c</filename>.
Furthermore, <filename>do_c</filename> is dependent on
<filename>do_b</filename>, which in turn is dependent on
<filename>do_a</filename>.
Given this scenario, if you use <filename>deltask</filename>
to delete <filename>do_b</filename>, the implicit dependency
relationship between <filename>do_c</filename> and
<filename>do_a</filename> through <filename>do_b</filename>
no longer exists, and <filename>do_c</filename> dependencies
are not updated to include <filename>do_a</filename>.
Thus, <filename>do_c</filename> is free to run before
<filename>do_a</filename>.
</para>
<para>
If you want dependencies such as these to remain intact, use
the <filename>[noexec]</filename> varflag to disable the task
instead of using the <filename>deltask</filename> command to
delete it:
<literallayout class='monospaced'>
do_b[noexec] = "1"
</literallayout>
</para>
</section>
<section id='passing-information-into-the-build-task-environment'>
<title>Passing Information Into the Build Task Environment</title>
<para>
When running a task, BitBake tightly controls the shell execution
environment of the build tasks to make
sure unwanted contamination from the build machine cannot
influence the build.
<note>
By default, BitBake cleans the environment to include only those
things exported or listed in its whitelist to ensure that the build
environment is reproducible and consistent.
You can prevent this "cleaning" by setting the
<link linkend='var-bb-BB_PRESERVE_ENV'><filename>BB_PRESERVE_ENV</filename></link>
variable.
</note>
Consequently, if you do want something to get passed into the
build task environment, you must take these two steps:
<orderedlist>
<listitem><para>
Tell BitBake to load what you want from the environment
into the datastore.
You can do so through the
<link linkend='var-bb-BB_ENV_WHITELIST'><filename>BB_ENV_WHITELIST</filename></link>
and
<link linkend='var-bb-BB_ENV_EXTRAWHITE'><filename>BB_ENV_EXTRAWHITE</filename></link>
variables.
For example, assume you want to prevent the build system from
accessing your <filename>$HOME/.ccache</filename>
directory.
The following command "whitelists" the environment variable
<filename>CCACHE_DIR</filename> causing BitBake to allow that
variable into the datastore:
<literallayout class='monospaced'>
export BB_ENV_EXTRAWHITE="$BB_ENV_EXTRAWHITE CCACHE_DIR"
</literallayout></para></listitem>
<listitem><para>
Tell BitBake to export what you have loaded into the
datastore to the task environment of every running task.
Loading something from the environment into the datastore
(previous step) only makes it available in the datastore.
To export it to the task environment of every running task,
use a command similar to the following in your local configuration
file <filename>local.conf</filename> or your
distribution configuration file:
<literallayout class='monospaced'>
export CCACHE_DIR
</literallayout>
<note>
A side effect of the previous steps is that BitBake
records the variable as a dependency of the build process
in things like the setscene checksums.
If doing so results in unnecessary rebuilds of tasks, you can
whitelist the variable so that the setscene code
ignores the dependency when it creates checksums.
</note></para></listitem>
</orderedlist>
</para>
<para>
Sometimes, it is useful to be able to obtain information
from the original execution environment.
BitBake saves a copy of the original environment into
a special variable named
<link linkend='var-bb-BB_ORIGENV'><filename>BB_ORIGENV</filename></link>.
</para>
<para>
The <filename>BB_ORIGENV</filename> variable returns a datastore
object that can be queried using the standard datastore operators
such as <filename>getVar(, False)</filename>.
The datastore object is useful, for example, to find the original
<filename>DISPLAY</filename> variable.
Here is an example:
<literallayout class='monospaced'>
origenv = d.getVar("BB_ORIGENV", False)
bar = origenv.getVar("BAR", False)
</literallayout>
The previous example returns <filename>BAR</filename> from the original
execution environment.
</para>
</section>
</section>
<section id='variable-flags'>
<title>Variable Flags</title>
<para>
Variable flags (varflags) help control a task's functionality
and dependencies.
BitBake reads and writes varflags to the datastore using the following
command forms:
<literallayout class='monospaced'>
<replaceable>variable</replaceable> = d.getVarFlags("<replaceable>variable</replaceable>")
self.d.setVarFlags("FOO", {"func": True})
</literallayout>
</para>
<para>
When working with varflags, the same syntax, with the exception of
overrides, applies.
In other words, you can set, append, and prepend varflags just like
variables.
See the
"<link linkend='variable-flag-syntax'>Variable Flag Syntax</link>"
section for details.
</para>
<para>
BitBake has a defined set of varflags available for recipes and
classes.
Tasks support a number of these flags which control various
functionality of the task:
<itemizedlist>
<listitem><para><emphasis><filename>[cleandirs]</filename>:</emphasis>
Empty directories that should be created before the
task runs.
Directories that already exist are removed and recreated
to empty them.
</para></listitem>
<listitem><para><emphasis><filename>[depends]</filename>:</emphasis>
Controls inter-task dependencies.
See the
<link linkend='var-bb-DEPENDS'><filename>DEPENDS</filename></link>
variable and the
"<link linkend='inter-task-dependencies'>Inter-Task Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis><filename>[deptask]</filename>:</emphasis>
Controls task build-time dependencies.
See the
<link linkend='var-bb-DEPENDS'><filename>DEPENDS</filename></link>
variable and the
"<link linkend='build-dependencies'>Build Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis><filename>[dirs]</filename>:</emphasis>
Directories that should be created before the task runs.
Directories that already exist are left as is.
The last directory listed is used as the
current working directory for the task.
</para></listitem>
<listitem><para><emphasis><filename>[lockfiles]</filename>:</emphasis>
Specifies one or more lockfiles to lock while the task
executes.
Only one task may hold a lockfile, and any task that
attempts to lock an already locked file will block until
the lock is released.
You can use this variable flag to accomplish mutual
exclusion.
</para></listitem>
<listitem><para><emphasis><filename>[noexec]</filename>:</emphasis>
When set to "1", marks the task as being empty, with
no execution required.
You can use the <filename>[noexec]</filename> flag to set up
tasks as dependency placeholders, or to disable tasks defined
elsewhere that are not needed in a particular recipe.
</para></listitem>
<listitem><para><emphasis><filename>[nostamp]</filename>:</emphasis>
When set to "1", tells BitBake to not generate a stamp
file for a task, which implies the task should always
be executed.
<note><title>Caution</title>
Any task that depends (possibly indirectly) on a
<filename>[nostamp]</filename> task will always be
executed as well.
This can cause unnecessary rebuilding if you are
not careful.
</note>
</para></listitem>
<listitem><para><emphasis><filename>[number_threads]</filename>:</emphasis>
Limits tasks to a specific number of simultaneous threads
during execution.
This varflag is useful when your build host has a large number
of cores but certain tasks need to be rate-limited due to various
kinds of resource constraints (e.g. to avoid network throttling).
<filename>number_threads</filename> works similarly to the
<link linkend='var-bb-BB_NUMBER_THREADS'><filename>BB_NUMBER_THREADS</filename></link>
variable but is task-specific.</para>
<para>Set the value globally.
For example, the following makes sure the
<filename>do_fetch</filename> task uses no more than two
simultaneous execution threads:
<literallayout class='monospaced'>
do_fetch[number_threads] = "2"
</literallayout>
<note><title>Warnings</title>
<itemizedlist>
<listitem><para>
Setting the varflag in individual recipes rather
than globally can result in unpredictable behavior.
</para></listitem>
<listitem><para>
Setting the varflag to a value greater than the
value used in the <filename>BB_NUMBER_THREADS</filename>
variable causes <filename>number_threads</filename>
to have no effect.
</para></listitem>
</itemizedlist>
</note>
</para></listitem>
<listitem><para><emphasis><filename>[postfuncs]</filename>:</emphasis>
List of functions to call after the completion of the task.
</para></listitem>
<listitem><para><emphasis><filename>[prefuncs]</filename>:</emphasis>
List of functions to call before the task executes.
</para></listitem>
<listitem><para><emphasis><filename>[rdepends]</filename>:</emphasis>
Controls inter-task runtime dependencies.
See the
<link linkend='var-bb-RDEPENDS'><filename>RDEPENDS</filename></link>
variable, the
<link linkend='var-bb-RRECOMMENDS'><filename>RRECOMMENDS</filename></link>
variable, and the
"<link linkend='inter-task-dependencies'>Inter-Task Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis><filename>[rdeptask]</filename>:</emphasis>
Controls task runtime dependencies.
See the
<link linkend='var-bb-RDEPENDS'><filename>RDEPENDS</filename></link>
variable, the
<link linkend='var-bb-RRECOMMENDS'><filename>RRECOMMENDS</filename></link>
variable, and the
"<link linkend='runtime-dependencies'>Runtime Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis><filename>[recideptask]</filename>:</emphasis>
When set in conjunction with
<filename>recrdeptask</filename>, specifies a task that
should be inspected for additional dependencies.
</para></listitem>
<listitem><para><emphasis><filename>[recrdeptask]</filename>:</emphasis>
Controls task recursive runtime dependencies.
See the
<link linkend='var-bb-RDEPENDS'><filename>RDEPENDS</filename></link>
variable, the
<link linkend='var-bb-RRECOMMENDS'><filename>RRECOMMENDS</filename></link>
variable, and the
"<link linkend='recursive-dependencies'>Recursive Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis><filename>[stamp-extra-info]</filename>:</emphasis>
Extra stamp information to append to the task's stamp.
As an example, OpenEmbedded uses this flag to allow
machine-specific tasks.
</para></listitem>
<listitem><para><emphasis><filename>[umask]</filename>:</emphasis>
The umask to run the task under.
</para></listitem>
</itemizedlist>
</para>
<para>
Several varflags are useful for controlling how signatures are
calculated for variables.
For more information on this process, see the
"<link linkend='checksums'>Checksums (Signatures)</link>"
section.
<itemizedlist>
<listitem><para><emphasis><filename>[vardeps]</filename>:</emphasis>
Specifies a space-separated list of additional
variables to add to a variable's dependencies
for the purposes of calculating its signature.
Adding variables to this list is useful, for example, when
a function refers to a variable in a manner that
does not allow BitBake to automatically determine
that the variable is referred to.
</para></listitem>
<listitem><para><emphasis><filename>[vardepsexclude]</filename>:</emphasis>
Specifies a space-separated list of variables
that should be excluded from a variable's dependencies
for the purposes of calculating its signature.
</para></listitem>
<listitem><para><emphasis><filename>[vardepvalue]</filename>:</emphasis>
If set, instructs BitBake to ignore the actual
value of the variable and instead use the specified
value when calculating the variable's signature.
</para></listitem>
<listitem><para><emphasis><filename>[vardepvalueexclude]</filename>:</emphasis>
Specifies a pipe-separated list of strings to exclude
from the variable's value when calculating the
variable's signature.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='events'>
<title>Events</title>
<para>
BitBake allows installation of event handlers within recipe
and class files.
Events are triggered at certain points during operation, such
as the beginning of operation against a given recipe
(i.e. <filename>*.bb</filename>), the start of a given task,
a task failure, a task success, and so forth.
The intent is to make it easy to do things like email
notification on build failures.
</para>
<para>
Following is an example event handler that prints the name
of the event and the content of the
<filename>FILE</filename> variable:
<literallayout class='monospaced'>
addhandler myclass_eventhandler
python myclass_eventhandler() {
from bb.event import getName
print("The name of the Event is %s" % getName(e))
print("The file we run for is %s" % d.getVar('FILE'))
}
myclass_eventhandler[eventmask] = "bb.event.BuildStarted bb.event.BuildCompleted"
</literallayout>
In the previous example, an eventmask has been set so that
the handler only sees the "BuildStarted" and "BuildCompleted"
events.
This event handler gets called every time an event matching
the eventmask is triggered.
A global variable "e" is defined, which represents the current
event.
With the <filename>getName(e)</filename> method, you can get
the name of the triggered event.
The global datastore is available as "d".
In legacy code, you might see "e.data" used to get the datastore.
However, realize that "e.data" is deprecated and you should use
"d" going forward.
</para>
<para>
The context of the datastore is appropriate to the event
in question.
For example, "BuildStarted" and "BuildCompleted" events run
before any tasks are executed so would be in the global
configuration datastore namespace.
No recipe-specific metadata exists in that namespace.
The "BuildStarted" and "BuildCompleted" events also run in
the main cooker/server process rather than any worker context.
Thus, any changes made to the datastore would be seen by other
cooker/server events within the current build but not seen
outside of that build or in any worker context.
Task events run in the actual tasks in question consequently
have recipe-specific and task-specific contents.
These events run in the worker context and are discarded at
the end of task execution.
</para>
<para>
During a standard build, the following common events might
occur.
The following events are the most common kinds of events that
most metadata might have an interest in viewing:
<itemizedlist>
<listitem><para>
<filename>bb.event.ConfigParsed()</filename>:
Fired when the base configuration; which consists of
<filename>bitbake.conf</filename>,
<filename>base.bbclass</filename> and any global
<filename>INHERIT</filename> statements; has been parsed.
You can see multiple such events when each of the
workers parse the base configuration or if the server
changes configuration and reparses.
Any given datastore only has one such event executed
against it, however.
If
<link linkende='var-bb-BB_INVALIDCONF'><filename>BB_INVALIDCONF</filename></link>
is set in the datastore by the event handler, the
configuration is reparsed and a new event triggered,
allowing the metadata to update configuration.
</para></listitem>
<listitem><para>
<filename>bb.event.HeartbeatEvent()</filename>:
Fires at regular time intervals of one second.
You can configure the interval time using the
<filename>BB_HEARTBEAT_EVENT</filename> variable.
The event's "time" attribute is the
<filename>time.time()</filename> value when the
event is triggered.
This event is useful for activities such as
system state monitoring.
</para></listitem>
<listitem><para>
<filename>bb.event.ParseStarted()</filename>:
Fired when BitBake is about to start parsing recipes.
This event's "total" attribute represents the number of
recipes BitBake plans to parse.
</para></listitem>
<listitem><para>
<filename>bb.event.ParseProgress()</filename>:
Fired as parsing progresses.
This event's "current" attribute is the number of
recipes parsed as well as the "total" attribute.
</para></listitem>
<listitem><para>
<filename>bb.event.ParseCompleted()</filename>:
Fired when parsing is complete.
This event's "cached", "parsed", "skipped", "virtuals",
"masked", and "errors" attributes provide statistics
for the parsing results.
</para></listitem>
<listitem><para>
<filename>bb.event.BuildStarted()</filename>:
Fired when a new build starts.
BitBake fires multiple "BuildStarted" events (one per configuration)
when multiple configuration (multiconfig) is enabled.
</para></listitem>
<listitem><para>
<filename>bb.build.TaskStarted()</filename>:
Fired when a task starts.
This event's "taskfile" attribute points to the recipe
from which the task originates.
The "taskname" attribute, which is the task's name,
includes the <filename>do_</filename> prefix, and the
"logfile" attribute point to where the task's output is
stored.
Finally, the "time" attribute is the task's execution start
time.
</para></listitem>
<listitem><para>
<filename>bb.build.TaskInvalid()</filename>:
Fired if BitBake tries to execute a task that does not exist.
</para></listitem>
<listitem><para>
<filename>bb.build.TaskFailedSilent()</filename>:
Fired for setscene tasks that fail and should not be
presented to the user verbosely.
</para></listitem>
<listitem><para>
<filename>bb.build.TaskFailed()</filename>:
Fired for normal tasks that fail.
</para></listitem>
<listitem><para>
<filename>bb.build.TaskSucceeded()</filename>:
Fired when a task successfully completes.
</para></listitem>
<listitem><para>
<filename>bb.event.BuildCompleted()</filename>:
Fired when a build finishes.
</para></listitem>
<listitem><para>
<filename>bb.cooker.CookerExit()</filename>:
Fired when the BitBake server/cooker shuts down.
This event is usually only seen by the UIs as a
sign they should also shutdown.
</para></listitem>
</itemizedlist>
</para>
<para>
This next list of example events occur based on specific
requests to the server.
These events are often used to communicate larger pieces of
information from the BitBake server to other parts of
BitBake such as user interfaces:
<itemizedlist>
<listitem><para>
<filename>bb.event.TreeDataPreparationStarted()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.TreeDataPreparationProgress()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.TreeDataPreparationCompleted()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.DepTreeGenerated()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.CoreBaseFilesFound()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.ConfigFilePathFound()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.FilesMatchingFound()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.ConfigFilesFound()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.TargetsTreeGenerated()</filename>
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='variants-class-extension-mechanism'>
<title>Variants - Class Extension Mechanism</title>
<para>
BitBake supports two features that facilitate creating
from a single recipe file multiple incarnations of that
recipe file where all incarnations are buildable.
These features are enabled through the
<link linkend='var-bb-BBCLASSEXTEND'><filename>BBCLASSEXTEND</filename></link>
and
<link linkend='var-bb-BBVERSIONS'><filename>BBVERSIONS</filename></link>
variables.
<note>
The mechanism for this class extension is extremely
specific to the implementation.
Usually, the recipe's
<link linkend='var-bb-PROVIDES'><filename>PROVIDES</filename></link>,
<link linkend='var-bb-PN'><filename>PN</filename></link>, and
<link linkend='var-bb-DEPENDS'><filename>DEPENDS</filename></link>
variables would need to be modified by the extension class.
For specific examples, see the OE-Core
<filename>native</filename>, <filename>nativesdk</filename>,
and <filename>multilib</filename> classes.
</note>
<itemizedlist>
<listitem><para><emphasis><filename>BBCLASSEXTEND</filename>:</emphasis>
This variable is a space separated list of classes used to "extend" the
recipe for each variant.
Here is an example that results in a second incarnation of the current
recipe being available.
This second incarnation will have the "native" class inherited.
<literallayout class='monospaced'>
BBCLASSEXTEND = "native"
</literallayout></para></listitem>
<listitem><para><emphasis><filename>BBVERSIONS</filename>:</emphasis>
This variable allows a single recipe to build multiple versions of a
project from a single recipe file.
You can also specify conditional metadata
(using the
<link linkend='var-bb-OVERRIDES'><filename>OVERRIDES</filename></link>
mechanism) for a single version, or an optionally named range of versions.
Here is an example:
<literallayout class='monospaced'>
BBVERSIONS = "1.0 2.0 git"
SRC_URI_git = "git://someurl/somepath.git"
BBVERSIONS = "1.0.[0-6]:1.0.0+ \ 1.0.[7-9]:1.0.7+"
SRC_URI_append_1.0.7+ = "file://some_patch_which_the_new_versions_need.patch;patch=1"
</literallayout>
The name of the range defaults to the original version of the
recipe.
For example, in OpenEmbedded, the recipe file
<filename>foo_1.0.0+.bb</filename> creates a default name range
of <filename>1.0.0+</filename>.
This is useful because the range name is not only placed
into overrides, but it is also made available for the metadata to use
in the variable that defines the base recipe versions for use in
<filename>file://</filename> search paths
(<link linkend='var-bb-FILESPATH'><filename>FILESPATH</filename></link>).
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='dependencies'>
<title>Dependencies</title>
<para>
To allow for efficient parallel processing, BitBake handles
dependencies at the task level.
Dependencies can exist both between tasks within a single recipe
and between tasks in different recipes.
Following are examples of each:
<itemizedlist>
<listitem><para>For tasks within a single recipe, a
recipe's <filename>do_configure</filename>
task might need to complete before its
<filename>do_compile</filename> task can run.
</para></listitem>
<listitem><para>For tasks in different recipes, one
recipe's <filename>do_configure</filename>
task might require another recipe's
<filename>do_populate_sysroot</filename>
task to finish first such that the libraries and headers
provided by the other recipe are available.
</para></listitem>
</itemizedlist>
</para>
<para>
This section describes several ways to declare dependencies.
Remember, even though dependencies are declared in different ways, they
are all simply dependencies between tasks.
</para>
<section id='dependencies-internal-to-the-bb-file'>
<title>Dependencies Internal to the <filename>.bb</filename> File</title>
<para>
BitBake uses the <filename>addtask</filename> directive
to manage dependencies that are internal to a given recipe
file.
You can use the <filename>addtask</filename> directive to
indicate when a task is dependent on other tasks or when
other tasks depend on that recipe.
Here is an example:
<literallayout class='monospaced'>
addtask printdate after do_fetch before do_build
</literallayout>
In this example, the <filename>do_printdate</filename>
task depends on the completion of the
<filename>do_fetch</filename> task, and the
<filename>do_build</filename> task depends on the
completion of the <filename>do_printdate</filename>
task.
<note><para>
For a task to run, it must be a direct or indirect
dependency of some other task that is scheduled to
run.</para>
<para>For illustration, here are some examples:
<itemizedlist>
<listitem><para>
The directive
<filename>addtask mytask before do_configure</filename>
causes <filename>do_mytask</filename> to run before
<filename>do_configure</filename> runs.
Be aware that <filename>do_mytask</filename> still only
runs if its <link linkend='checksums'>input checksum</link>
has changed since the last time it was run.
Changes to the input checksum of
<filename>do_mytask</filename> also indirectly cause
<filename>do_configure</filename> to run.
</para></listitem>
<listitem><para>
The directive
<filename>addtask mytask after do_configure</filename>
by itself never causes <filename>do_mytask</filename>
to run.
<filename>do_mytask</filename> can still be run manually
as follows:
<literallayout class='monospaced'>
$ bitbake <replaceable>recipe</replaceable> -c mytask
</literallayout>
Declaring <filename>do_mytask</filename> as a dependency
of some other task that is scheduled to run also causes
it to run.
Regardless, the task runs after
<filename>do_configure</filename>.
</para></listitem>
</itemizedlist></para>
</note>
</para>
</section>
<section id='build-dependencies'>
<title>Build Dependencies</title>
<para>
BitBake uses the
<link linkend='var-bb-DEPENDS'><filename>DEPENDS</filename></link>
variable to manage build time dependencies.
The <filename>[deptask]</filename> varflag for tasks
signifies the task of each
item listed in <filename>DEPENDS</filename> that must
complete before that task can be executed.
Here is an example:
<literallayout class='monospaced'>
do_configure[deptask] = "do_populate_sysroot"
</literallayout>
In this example, the <filename>do_populate_sysroot</filename>
task of each item in <filename>DEPENDS</filename> must complete before
<filename>do_configure</filename> can execute.
</para>
</section>
<section id='runtime-dependencies'>
<title>Runtime Dependencies</title>
<para>
BitBake uses the
<link linkend='var-bb-PACKAGES'><filename>PACKAGES</filename></link>,
<link linkend='var-bb-RDEPENDS'><filename>RDEPENDS</filename></link>, and
<link linkend='var-bb-RRECOMMENDS'><filename>RRECOMMENDS</filename></link>
variables to manage runtime dependencies.
</para>
<para>
The <filename>PACKAGES</filename> variable lists runtime
packages.
Each of those packages can have <filename>RDEPENDS</filename> and
<filename>RRECOMMENDS</filename> runtime dependencies.
The <filename>[rdeptask]</filename> flag for tasks is used to
signify the task of each
item runtime dependency which must have completed before that
task can be executed.
<literallayout class='monospaced'>
do_package_qa[rdeptask] = "do_packagedata"
</literallayout>
In the previous example, the <filename>do_packagedata</filename>
task of each item in <filename>RDEPENDS</filename> must have
completed before <filename>do_package_qa</filename> can execute.
</para>
</section>
<section id='recursive-dependencies'>
<title>Recursive Dependencies</title>
<para>
BitBake uses the <filename>[recrdeptask]</filename> flag to manage
recursive task dependencies.
BitBake looks through the build-time and runtime
dependencies of the current recipe, looks through
the task's inter-task
dependencies, and then adds dependencies for the
listed task.
Once BitBake has accomplished this, it recursively works through
the dependencies of those tasks.
Iterative passes continue until all dependencies are discovered
and added.
</para>
<para>
The <filename>[recrdeptask]</filename> flag is most commonly
used in high-level
recipes that need to wait for some task to finish "globally".
For example, <filename>image.bbclass</filename> has the following:
<literallayout class='monospaced'>
do_rootfs[recrdeptask] += "do_packagedata"
</literallayout>
This statement says that the <filename>do_packagedata</filename>
task of the current recipe and all recipes reachable
(by way of dependencies) from the
image recipe must run before the <filename>do_rootfs</filename>
task can run.
</para>
<para>
You might want to not only have BitBake look for
dependencies of those tasks, but also have BitBake look
for build-time and runtime dependencies of the dependent
tasks as well.
If that is the case, you need to reference the task name
itself in the task list:
<literallayout class='monospaced'>
do_a[recrdeptask] = "do_a do_b"
</literallayout>
</para>
</section>
<section id='inter-task-dependencies'>
<title>Inter-Task Dependencies</title>
<para>
BitBake uses the <filename>[depends]</filename>
flag in a more generic form
to manage inter-task dependencies.
This more generic form allows for inter-dependency
checks for specific tasks rather than checks for
the data in <filename>DEPENDS</filename>.
Here is an example:
<literallayout class='monospaced'>
do_patch[depends] = "quilt-native:do_populate_sysroot"
</literallayout>
In this example, the <filename>do_populate_sysroot</filename>
task of the target <filename>quilt-native</filename>
must have completed before the
<filename>do_patch</filename> task can execute.
</para>
<para>
The <filename>[rdepends]</filename> flag works in a similar
way but takes targets
in the runtime namespace instead of the build-time dependency
namespace.
</para>
</section>
</section>
<section id='functions-you-can-call-from-within-python'>
<title>Functions You Can Call From Within Python</title>
<para>
BitBake provides many functions you can call from
within Python functions.
This section lists the most commonly used functions,
and mentions where to find others.
</para>
<section id='functions-for-accessing-datastore-variables'>
<title>Functions for Accessing Datastore Variables</title>
<para>
It is often necessary to access variables in the
BitBake datastore using Python functions.
The BitBake datastore has an API that allows you this
access.
Here is a list of available operations:
</para>
<para>
<informaltable frame='none'>
<tgroup cols='2' align='left' colsep='1' rowsep='1'>
<colspec colname='c1' colwidth='1*'/>
<colspec colname='c2' colwidth='1*'/>
<thead>
<row>
<entry align="left"><emphasis>Operation</emphasis></entry>
<entry align="left"><emphasis>Description</emphasis></entry>
</row>
</thead>
<tbody>
<row>
<entry align="left"><filename>d.getVar("X", expand)</filename></entry>
<entry align="left">Returns the value of variable "X".
Using "expand=True" expands the value.
Returns "None" if the variable "X" does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.setVar("X", "value")</filename></entry>
<entry align="left">Sets the variable "X" to "value".</entry>
</row>
<row>
<entry align="left"><filename>d.appendVar("X", "value")</filename></entry>
<entry align="left">Adds "value" to the end of the variable "X".
Acts like <filename>d.setVar("X", "value")</filename>
if the variable "X" does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.prependVar("X", "value")</filename></entry>
<entry align="left">Adds "value" to the start of the variable "X".
Acts like <filename>d.setVar("X", "value")</filename>
if the variable "X" does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.delVar("X")</filename></entry>
<entry align="left">Deletes the variable "X" from the datastore.
Does nothing if the variable "X" does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.renameVar("X", "Y")</filename></entry>
<entry align="left">Renames the variable "X" to "Y".
Does nothing if the variable "X" does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.getVarFlag("X", flag, expand)</filename></entry>
<entry align="left">Returns the value of variable "X".
Using "expand=True" expands the value.
Returns "None" if either the variable "X" or the named flag
does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.setVarFlag("X", flag, "value")</filename></entry>
<entry align="left">Sets the named flag for variable "X" to "value".</entry>
</row>
<row>
<entry align="left"><filename>d.appendVarFlag("X", flag, "value")</filename></entry>
<entry align="left">Appends "value" to the named flag on the
variable "X".
Acts like <filename>d.setVarFlag("X", flag, "value")</filename>
if the named flag does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.prependVarFlag("X", flag, "value")</filename></entry>
<entry align="left">Prepends "value" to the named flag on
the variable "X".
Acts like <filename>d.setVarFlag("X", flag, "value")</filename>
if the named flag does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.delVarFlag("X", flag)</filename></entry>
<entry align="left">Deletes the named flag on the variable
"X" from the datastore.</entry>
</row>
<row>
<entry align="left"><filename>d.setVarFlags("X", flagsdict)</filename></entry>
<entry align="left">Sets the flags specified in
the <filename>flagsdict()</filename> parameter.
<filename>setVarFlags</filename> does not clear previous flags.
Think of this operation as <filename>addVarFlags</filename>.</entry>
</row>
<row>
<entry align="left"><filename>d.getVarFlags("X")</filename></entry>
<entry align="left">Returns a <filename>flagsdict</filename>
of the flags for the variable "X".
Returns "None" if the variable "X" does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.delVarFlags("X")</filename></entry>
<entry align="left">Deletes all the flags for the variable "X".
Does nothing if the variable "X" does not exist.</entry>
</row>
<row>
<entry align="left"><filename>d.expand(expression)</filename></entry>
<entry align="left">Expands variable references in the specified
string expression.
References to variables that do not exist are left as is.
For example, <filename>d.expand("foo ${X}")</filename>
expands to the literal string "foo ${X}" if the
variable "X" does not exist.</entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
</section>
<section id='other-functions'>
<title>Other Functions</title>
<para>
You can find many other functions that can be called
from Python by looking at the source code of the
<filename>bb</filename> module, which is in
<filename>bitbake/lib/bb</filename>.
For example,
<filename>bitbake/lib/bb/utils.py</filename> includes
the commonly used functions
<filename>bb.utils.contains()</filename> and
<filename>bb.utils.mkdirhier()</filename>, which come
with docstrings.
</para>
</section>
</section>
<section id='task-checksums-and-setscene'>
<title>Task Checksums and Setscene</title>
<para>
BitBake uses checksums (or signatures) along with the setscene
to determine if a task needs to be run.
This section describes the process.
To help understand how BitBake does this, the section assumes an
OpenEmbedded metadata-based example.
</para>
<para>
These checksums are stored in
<link linkend='var-bb-STAMP'><filename>STAMP</filename></link>.
You can examine the checksums using the following BitBake command:
<literallayout class='monospaced'>
$ bitbake-dumpsigs
</literallayout>
This command returns the signature data in a readable format
that allows you to examine the inputs used when the
OpenEmbedded build system generates signatures.
For example, using <filename>bitbake-dumpsigs</filename>
allows you to examine the <filename>do_compile</filename>
task's “sigdata” for a C application (e.g.
<filename>bash</filename>).
Running the command also reveals that the “CC” variable is part of
the inputs that are hashed.
Any changes to this variable would invalidate the stamp and
cause the <filename>do_compile</filename> task to run.
</para>
<para>
The following list describes related variables:
<itemizedlist>
<listitem><para>
<link linkend='var-bb-BB_HASHCHECK_FUNCTION'><filename>BB_HASHCHECK_FUNCTION</filename></link>:
Specifies the name of the function to call during
the "setscene" part of the task's execution in order
to validate the list of task hashes.
</para></listitem>
<listitem><para>
<link linkend='var-bb-BB_SETSCENE_DEPVALID'><filename>BB_SETSCENE_DEPVALID</filename></link>:
Specifies a function BitBake calls that determines
whether BitBake requires a setscene dependency to
be met.
</para></listitem>
<listitem><para>
<link linkend='var-bb-BB_SETSCENE_VERIFY_FUNCTION2'><filename>BB_SETSCENE_VERIFY_FUNCTION2</filename></link>:
Specifies a function to call that verifies the list of
planned task execution before the main task execution
happens.
</para></listitem>
<listitem><para>
<link linkend='var-bb-BB_STAMP_POLICY'><filename>BB_STAMP_POLICY</filename></link>:
Defines the mode for comparing timestamps of stamp files.
</para></listitem>
<listitem><para>
<link linkend='var-bb-BB_STAMP_WHITELIST'><filename>BB_STAMP_WHITELIST</filename></link>:
Lists stamp files that are looked at when the stamp policy
is "whitelist".
</para></listitem>
<listitem><para>
<link linkend='var-bb-BB_TASKHASH'><filename>BB_TASKHASH</filename></link>:
Within an executing task, this variable holds the hash
of the task as returned by the currently enabled
signature generator.
</para></listitem>
<listitem><para>
<link linkend='var-bb-STAMP'><filename>STAMP</filename></link>:
The base path to create stamp files.
</para></listitem>
<listitem><para>
<link linkend='var-bb-STAMPCLEAN'><filename>STAMPCLEAN</filename></link>:
Again, the base path to create stamp files but can use wildcards
for matching a range of files for clean operations.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='wildcard-support-in-variables'>
<title>Wildcard Support in Variables</title>
<para>
Support for wildcard use in variables varies depending on the
context in which it is used.
For example, some variables and file names allow limited use of
wildcards through the "<filename>%</filename>" and
"<filename>*</filename>" characters.
Other variables or names support Python's
<ulink url='https://docs.python.org/3/library/glob.html'><filename>glob</filename></ulink>
syntax,
<ulink url='https://docs.python.org/3/library/fnmatch.html#module-fnmatch'><filename>fnmatch</filename></ulink>
syntax, or
<ulink url='https://docs.python.org/3/library/re.html#re'><filename>Regular Expression (re)</filename></ulink>
syntax.
</para>
<para>
For variables that have wildcard suport, the
documentation describes which form of wildcard, its
use, and its limitations.
</para>
</section>
</chapter>
|