3.2.3. Shared State

Checksums and dependencies, as discussed in the previous section, solve half the problem. The other part of the problem is being able to use checksum information during the build and being able to reuse or rebuild specific components.

The shared state class (sstate.bbclass) is a relatively generic implementation of how to "capture" a snapshot of a given task. The idea is that the build process does not care about the source of a task's output. Output could be freshly built or it could be downloaded and unpacked from somewhere - the build process doesn't need to worry about its source.

There are two types of output, one is just about creating a directory in WORKDIR. A good example is the output of either do_install or do_package. The other type of output occurs when a set of data is merged into a shared directory tree such as the sysroot.

The Yocto Project team has tried to keep the details of the implementation hidden in sstate.bbclass. From a user's perspective, adding shared state wrapping to a task is as simple as this do_deploy example taken from do_deploy.bbclass:

     DEPLOYDIR = "${WORKDIR}/deploy-${PN}"
     SSTATETASKS += "do_deploy"
     do_deploy[sstate-name] = "deploy"
     do_deploy[sstate-inputdirs] = "${DEPLOYDIR}"
     do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}"

     python do_deploy_setscene () {
         sstate_setscene(d)
     }
     addtask do_deploy_setscene
            

In the example, we add some extra flags to the task, a name field ("deploy"), an input directory where the task sends data, and the output directory where the data from the task should eventually be copied. We also add a _setscene variant of the task and add the task name to the SSTATETASKS list.

If you have a directory whose contents you need to preserve, you can do this with a line like the following:

     do_package[sstate-plaindirs] = "${PKGD} ${PKGDEST}"
            

This method, as well as the following example, also works for multiple directories.

     do_package[sstate-inputdirs] = "${PKGDESTWORK} ${SHLIBSWORKDIR}"
     do_package[sstate-outputdirs] = "${PKGDATA_DIR} ${SHLIBSDIR}"
     do_package[sstate-lockfile] = "${PACKAGELOCK}"
            

These methods also include the ability to take a lockfile when manipulating shared state directory structures since some cases are sensitive to file additions or removals.

Behind the scenes, the shared state code works by looking in SSTATE_DIR and SSTATE_MIRRORS for shared state files. Here is an example:

     SSTATE_MIRRORS ?= "\
     file://.* http://someserver.tld/share/sstate/PATH \n \
     file://.* file:///some/local/dir/sstate/PATH"
            

Note

The shared state directory (SSTATE_DIR) is organized into two-character subdirectories, where the subdirectory names are based on the first two characters of the hash. If the shared state directory structure for a mirror has the same structure as SSTATE_DIR, you must specify "PATH" as part of the URI to enable the build system to map to the appropriate subdirectory.

The shared state package validity can be detected just by looking at the filename since the filename contains the task checksum (or signature) as described earlier in this section. If a valid shared state package is found, the build process downloads it and uses it to accelerate the task.

The build processes uses the *_setscene tasks for the task acceleration phase. BitBake goes through this phase before the main execution code and tries to accelerate any tasks for which it can find shared state packages. If a shared state package for a task is available, the shared state package is used. This means the task and any tasks on which it is dependent are not executed.

As a real world example, the aim is when building an IPK-based image, only the do_package_write_ipk tasks would have their shared state packages fetched and extracted. Since the sysroot is not used, it would never get extracted. This is another reason why a task-based approach is preferred over a recipe-based approach, which would have to install the output from every task.