%poky; ] > Common Development Models Many development models exist for which you can use the Yocto Project. This chapter overviews simple methods that use tools provided by the Yocto Project: System Development: System Development covers Board Support Package (BSP) development and kernel modification or configuration. For an example on how to create a BSP, see the "Creating a New BSP Layer Using the yocto-bsp Script" section in the Yocto Project Board Support Package (BSP) Developer's Guide. For more complete information on how to work with the kernel, see the Yocto Project Linux Kernel Development Manual. Temporary Source Code Modification: Direct modification of temporary source code is a convenient development model to quickly iterate and develop towards a solution. Once you implement the solution, you should of course take steps to get the changes upstream and applied in the affected recipes. Using a Development Shell: You can use a devshell to efficiently debug commands or simply edit packages. Working inside a development shell is a quick way to set up the OpenEmbedded build environment to work on parts of a project.
Modifying Source Code A common development workflow consists of modifying project source files that are external to the Yocto Project and then integrating that project's build output into an image built using the OpenEmbedded build system. Given this scenario, development engineers typically want to stick to their familiar project development tools and methods, which allows them to just focus on the project. Several workflows exist that allow you to develop, build, and test code that is going to be integrated into an image built using the OpenEmbedded build system. This section describes two: devtool: A set of tools to aid in working on the source code built by the OpenEmbedded build system. Section "Using devtool in Your Workflow" describes this workflow. If you want more information that showcases the workflow, click here for a presentation by Trevor Woerner that, while somewhat dated, provides detailed background information and a complete working tutorial. Quilt: A powerful tool that allows you to capture source code changes without having a clean source tree. While Quilt is not the preferred workflow of the two, this section includes it for users that are committed to using the tool. See the "Using Quilt in Your Workflow" section for more information.
Using <filename>devtool</filename> in Your Workflow As mentioned earlier, devtool helps you easily develop projects whose build output must be part of an image built using the OpenEmbedded build system. Three entry points exist that allow you to develop using devtool: devtool add devtool modify devtool upgrade The remainder of this section presents these workflows. See the "devtool Quick Reference" in the Yocto Project Reference Manual for a devtool quick reference.
Use <filename>devtool add</filename> to Add an Application The devtool add command generates a new recipe based on existing source code. This command takes advantage of the workspace layer that many devtool commands use. The command is flexible enough to allow you to extract source code into both the workspace or a separate local Git repository and to use existing code that does not need to be extracted. Depending on your particular scenario, the arguments and options you use with devtool add form different combinations. The following diagram shows common development flows you would use with the devtool add command: Generating the New Recipe: The top part of the flow shows three scenarios by which you could use devtool add to generate a recipe based on existing source code. In a shared development environment, it is typical where other developers are responsible for various areas of source code. As a developer, you are probably interested in using that source code as part of your development using the Yocto Project. All you need is access to the code, a recipe, and a controlled area in which to do your work. Within the diagram, three possible scenarios feed into the devtool add workflow: Left: The left scenario represents a common situation where the source code does not exist locally and needs to be extracted. In this situation, you just let it get extracted to the default workspace - you do not want it in some specific location outside of the workspace. Thus, everything you need will be located in the workspace: $ devtool add recipe fetchuri With this command, devtool creates a recipe and an append file in the workspace as well as extracts the upstream source files into a local Git repository also within the sources folder. Middle: The middle scenario also represents a situation where the source code does not exist locally. In this case, the code is again upstream and needs to be extracted to some local area - this time outside of the default workspace. If required, devtool always creates a Git repository locally during the extraction. Furthermore, the first positional argument srctree in this case identifies where the devtool add command will locate the extracted code outside of the workspace: $ devtool add recipe srctree fetchuri In summary, the source code is pulled from fetchuri and extracted into the location defined by srctree as a local Git repository. Within workspace, devtool creates both the recipe and an append file for the recipe. Right: The right scenario represents a situation where the source tree (srctree) has been previously prepared outside of the devtool workspace. The following command names the recipe and identifies where the existing source tree is located: $ devtool add recipe srctree The command examines the source code and creates a recipe for it placing the recipe into the workspace. Because the extracted source code already exists, devtool does not try to relocate it into the workspace - just the new the recipe is placed in the workspace. Aside from a recipe folder, the command also creates an append folder and places an initial *.bbappend within. Edit the Recipe: At this point, you can use devtool edit-recipe to open up the editor as defined by the $EDITOR environment variable and modify the file: $ devtool edit-recipe recipe From within the editor, you can make modifications to the recipe that take affect when you build it later. Build the Recipe or Rebuild the Image: At this point in the flow, the next step you take depends on what you are going to do with the new code. If you need to take the build output and eventually move it to the target hardware, you would use devtool build: $ devtool build recipe On the other hand, if you want an image to contain the recipe's packages for immediate deployment onto a device (e.g. for testing purposes), you can use the devtool build-image command: $ devtool build-image image Deploy the Build Output: When you use the devtool build command to build out your recipe, you probably want to see if the resulting build output works as expected on target hardware. This step assumes you have a previously built image that is already either running in QEMU or running on actual hardware. Also, it is assumed that for deployment of the image to the target, SSH is installed in the image and if the image is running on real hardware that you have network access to and from your development machine. You can deploy your build output to that target hardware by using the devtool deploy-target command: $ devtool deploy-target recipe target The target is a live target machine running as an SSH server. You can, of course, also deploy the image you build using the devtool build-image command to actual hardware. However, devtool does not provide a specific command that allows you to do this. Finish Your Work With the Recipe: The devtool finish command creates any patches corresponding to commits in the local Git repository, moves the new recipe to a more permanent layer, and then resets the recipe so that the recipe is built normally rather than from the workspace. $ devtool finish recipe layer Any changes you want to turn into patches must be committed to the Git repository in the source tree. As mentioned, the devtool finish command moves the final recipe to its permanent layer. As a final process of the devtool finish command, the state of the standard layers and the upstream source is restored so that you can build the recipe from those areas rather than the workspace. You can use the devtool reset command to put things back should you decide you do not want to proceed with your work. If you do use this command, realize that the source tree is preserved.
Use <filename>devtool modify</filename> to Modify the Source of an Existing Component The devtool modify command prepares the way to work on existing code that already has a recipe in place. The command is flexible enough to allow you to extract code, specify the existing recipe, and keep track of and gather any patch files from other developers that are associated with the code. Depending on your particular scenario, the arguments and options you use with devtool modify form different combinations. The following diagram shows common development flows you would use with the devtool modify command: Preparing to Modify the Code: The top part of the flow shows three scenarios by which you could use devtool modify to prepare to work on source files. Each scenario assumes the following: The recipe exists in some layer external to the devtool workspace. The source files exist upstream in an un-extracted state or locally in a previously extracted state. The typical situation is where another developer has created some layer for use with the Yocto Project and their recipe already resides in that layer. Furthermore, their source code is readily available either upstream or locally. Left: The left scenario represents a common situation where the source code does not exist locally and needs to be extracted. In this situation, the source is extracted into the default workspace location. The recipe, in this scenario, is in its own layer outside the workspace (i.e. meta-layername). The following command identifies the recipe and by default extracts the source files: $ devtool modify recipe Once devtoollocates the recipe, it uses the SRC_URI variable to locate the source code and any local patch files from other developers are located. You cannot provide an URL for srctree when using the devtool modify command. With this scenario, however, since no srctree argument exists, the devtool modify command by default extracts the source files to a Git structure. Furthermore, the location for the extracted source is the default area within the workspace. The result is that the command sets up both the source code and an append file within the workspace with the recipe remaining in its original location. Middle: The middle scenario represents a situation where the source code also does not exist locally. In this case, the code is again upstream and needs to be extracted to some local area as a Git repository. The recipe, in this scenario, is again in its own layer outside the workspace. The following command tells devtool what recipe with which to work and, in this case, identifies a local area for the extracted source files that is outside of the default workspace: $ devtool modify recipe srctree As with all extractions, the command uses the recipe's SRC_URI to locate the source files. Once the files are located, the command by default extracts them. Providing the srctree argument instructs devtool where to place the extracted source. Within workspace, devtool creates an append file for the recipe. The recipe remains in its original location but the source files are extracted to the location you provided with srctree. Right: The right scenario represents a situation where the source tree (srctree) exists as a previously extracted Git structure outside of the devtool workspace. In this example, the recipe also exists elsewhere in its own layer. The following command tells devtool the recipe with which to work, uses the "-n" option to indicate source does not need to be extracted, and uses srctree to point to the previously extracted source files: $ devtool modify -n recipe srctree Once the command finishes, it creates only an append file for the recipe in the workspace. The recipe and the source code remain in their original locations. Edit the Source: Once you have used the devtool modify command, you are free to make changes to the source files. You can use any editor you like to make and save your source code modifications. Build the Recipe: Once you have updated the source files, you can build the recipe. Deploy the Build Output: When you use the devtool build command to build out your recipe, you probably want to see if the resulting build output works as expected on target hardware. This step assumes you have a previously built image that is already either running in QEMU or running on actual hardware. Also, it is assumed that for deployment of the image to the target, SSH is installed in the image and if the image is running on real hardware that you have network access to and from your development machine. You can deploy your build output to that target hardware by using the devtool deploy-target command: $ devtool deploy-target recipe target The target is a live target machine running as an SSH server. You can, of course, also deploy the image you build using the devtool build-image command to actual hardware. However, devtool does not provide a specific command that allows you to do this. Finish Your Work With the Recipe: The devtool finish command creates any patches corresponding to commits in the local Git repository, updates the recipe to point to them (or creates a .bbappend file to do so, depending on the specified destination layer), and then resets the recipe so that the recipe is built normally rather than from the workspace. $ devtool finish recipe layer Any changes you want to turn into patches must be committed to the Git repository in the source tree. Because there is no need to move the recipe, devtool finish either updates the original recipe in the original layer or the command creates a .bbappend in a different layer as provided by layer. As a final process of the devtool finish command, the state of the standard layers and the upstream source is restored so that you can build the recipe from those areas rather than the workspace. You can use the devtool reset command to put things back should you decide you do not want to proceed with your work. If you do use this command, realize that the source tree is preserved.
Use <filename>devtool upgrade</filename> to Create a Version of the Recipe that Supports a Newer Version of the Software The devtool upgrade command updates an existing recipe so that you can build it for an updated set of source files. The command is flexible enough to allow you to specify source code revision and versioning schemes, extract code into or out of the devtool workspace, and work with any source file forms that the fetchers support. The following diagram shows the common development flow you would use with the devtool upgrade command: Initiate the Upgrade: The top part of the flow shows a typical scenario by which you could use devtool upgrade. The following conditions exist: The recipe exists in some layer external to the devtool workspace. The source files for the new release exist adjacent to the same location pointed to by SRC_URI in the recipe (e.g. a tarball with the new version number in the name, or as a different revision in the upstream Git repository). A common situation is where third-party software has undergone a revision so that it has been upgraded. The recipe you have access to is likely in your own layer. Thus, you need to upgrade the recipe to use the newer version of the software: $ devtool upgrade -V version recipe By default, the devtool upgrade command extracts source code into the sources directory in the workspace. If you want the code extracted to any other location, you need to provide the srctree positional argument with the command as follows: $ devtool upgrade -V version recipe srctree Also, in this example, the "-V" option is used to specify the new version. If the source files pointed to by the SRC_URI statement in the recipe are in a Git repository, you must provide the "-S" option and specify a revision for the software. Once devtool locates the recipe, it uses the SRC_URI variable to locate the source code and any local patch files from other developers are located. The result is that the command sets up the source code, the new version of the recipe, and an append file all within the workspace. Resolve any Conflicts created by the Upgrade: At this point, there could be some conflicts due to the software being upgraded to a new version. This would occur if your recipe specifies some patch files in SRC_URI that conflict with changes made in the new version of the software. If this is the case, you need to resolve the conflicts by editing the source and following the normal git rebase conflict resolution process. Before moving onto the next step, be sure to resolve any such conflicts created through use of a newer or different version of the software. Build the Recipe: Once you have your recipe in order, you can build it. You can either use devtool build or bitbake. Either method produces build output that is stored in TMPDIR. Deploy the Build Output: When you use the devtool build command or bitbake to build out your recipe, you probably want to see if the resulting build output works as expected on target hardware. This step assumes you have a previously built image that is already either running in QEMU or running on actual hardware. Also, it is assumed that for deployment of the image to the target, SSH is installed in the image and if the image is running on real hardware that you have network access to and from your development machine. You can deploy your build output to that target hardware by using the devtool deploy-target command: $ devtool deploy-target recipe target The target is a live target machine running as an SSH server. You can, of course, also deploy the image you build using the devtool build-image command to actual hardware. However, devtool does not provide a specific command that allows you to do this. Finish Your Work With the Recipe: The devtool finish command creates any patches corresponding to commits in the local Git repository, moves the new recipe to a more permanent layer, and then resets the recipe so that the recipe is built normally rather than from the workspace. If you specify a destination layer that is the same as the original source, then the old version of the recipe and associated files will be removed prior to adding the new version. $ devtool finish recipe layer Any changes you want to turn into patches must be committed to the Git repository in the source tree. As a final process of the devtool finish command, the state of the standard layers and the upstream source is restored so that you can build the recipe from those areas rather than the workspace. You can use the devtool reset command to put things back should you decide you do not want to proceed with your work. If you do use this command, realize that the source tree is preserved.