From b92884d1513b29ba1c74e90614bc73e768a7d833 Mon Sep 17 00:00:00 2001 From: Richard Purdie Date: Wed, 13 Feb 2008 01:04:52 +0000 Subject: linux-rp-2.6.23: Add patch to get zylonite mtd working (forward ported 2.6.14 driver) and set display to VGA git-svn-id: https://svn.o-hand.com/repos/poky/trunk@3786 311d38ba-8fff-0310-9ca6-ca027cbcb966 --- .../linux/linux-rp-2.6.23/defconfig-zylonite | 25 +- .../linux/linux-rp-2.6.23/zylonite_mtd-r0.patch | 4062 ++++++++++++++++++++ 2 files changed, 4077 insertions(+), 10 deletions(-) create mode 100644 meta/packages/linux/linux-rp-2.6.23/zylonite_mtd-r0.patch (limited to 'meta/packages/linux/linux-rp-2.6.23') diff --git a/meta/packages/linux/linux-rp-2.6.23/defconfig-zylonite b/meta/packages/linux/linux-rp-2.6.23/defconfig-zylonite index 8be4a3bd47..14ea6c355f 100644 --- a/meta/packages/linux/linux-rp-2.6.23/defconfig-zylonite +++ b/meta/packages/linux/linux-rp-2.6.23/defconfig-zylonite @@ -1,7 +1,7 @@ # # Automatically generated make config: don't edit -# Linux kernel version: 2.6.23-rc4 -# Tue Sep 25 15:57:10 2007 +# Linux kernel version: 2.6.23 +# Tue Feb 12 18:04:14 2008 # CONFIG_ARM=y CONFIG_SYS_SUPPORTS_APM_EMULATION=y @@ -65,7 +65,6 @@ CONFIG_FUTEX=y CONFIG_ANON_INODES=y CONFIG_EPOLL=y CONFIG_SIGNALFD=y -CONFIG_TIMERFD=y CONFIG_EVENTFD=y CONFIG_SHMEM=y CONFIG_VM_EVENT_COUNTERS=y @@ -262,6 +261,7 @@ CONFIG_BINFMT_ELF=y # Power management options # # CONFIG_PM is not set +CONFIG_SUSPEND_UP_POSSIBLE=y # # Networking @@ -272,6 +272,7 @@ CONFIG_NET=y # Networking options # CONFIG_PACKET=m +# CONFIG_PACKET_MMAP is not set CONFIG_UNIX=y CONFIG_XFRM=y # CONFIG_XFRM_USER is not set @@ -304,6 +305,7 @@ CONFIG_INET_TCP_DIAG=y CONFIG_TCP_CONG_CUBIC=y CONFIG_DEFAULT_TCP_CONG="cubic" # CONFIG_TCP_MD5SIG is not set +# CONFIG_IP_VS is not set # CONFIG_IPV6 is not set # CONFIG_INET6_XFRM_TUNNEL is not set # CONFIG_INET6_TUNNEL is not set @@ -370,7 +372,6 @@ CONFIG_IP_NF_RAW=m CONFIG_IP_NF_ARPTABLES=m CONFIG_IP_NF_ARPFILTER=m CONFIG_IP_NF_ARP_MANGLE=m - # CONFIG_IP_DCCP is not set # CONFIG_IP_SCTP is not set # CONFIG_TIPC is not set @@ -551,6 +552,7 @@ CONFIG_MTD_NAND=y CONFIG_MTD_NAND_IDS=y # CONFIG_MTD_NAND_DISKONCHIP is not set # CONFIG_MTD_NAND_SHARPSL is not set +CONFIG_MTD_NAND_ZYLONITE=y # CONFIG_MTD_NAND_NANDSIM is not set # CONFIG_MTD_NAND_PLATFORM is not set # CONFIG_MTD_ONENAND is not set @@ -964,11 +966,8 @@ CONFIG_FONT_8x16=y CONFIG_LOGO=y CONFIG_LOGO_LINUX_MONO=y CONFIG_LOGO_LINUX_VGA16=y -CONFIG_LOGO_LINUX_CLUT224=y -# CONFIG_LOGO_OHAND_CLUT224 is not set -# CONFIG_LOGO_OZ240_CLUT224 is not set -# CONFIG_LOGO_OZ480_CLUT224 is not set -# CONFIG_LOGO_OZ640_CLUT224 is not set +# CONFIG_LOGO_LINUX_CLUT224 is not set +CONFIG_LOGO_OHAND_CLUT224=y # # Sound @@ -1025,7 +1024,7 @@ CONFIG_SND_VERBOSE_PROCFS=y # # CONFIG_SOUND_PRIME is not set CONFIG_HID_SUPPORT=y -CONFIG_HID=m +CONFIG_HID=y # CONFIG_HID_DEBUG is not set # @@ -1237,7 +1236,13 @@ CONFIG_EXT2_FS=y # CONFIG_EXT2_FS_XATTR is not set # CONFIG_EXT2_FS_XIP is not set CONFIG_EXT3_FS=m +CONFIG_EXT3_FS_XATTR=y +# CONFIG_EXT3_FS_POSIX_ACL is not set +# CONFIG_EXT3_FS_SECURITY is not set # CONFIG_EXT4DEV_FS is not set +CONFIG_JBD=m +# CONFIG_JBD_DEBUG is not set +CONFIG_FS_MBCACHE=y # CONFIG_REISERFS_FS is not set # CONFIG_JFS_FS is not set # CONFIG_FS_POSIX_ACL is not set diff --git a/meta/packages/linux/linux-rp-2.6.23/zylonite_mtd-r0.patch b/meta/packages/linux/linux-rp-2.6.23/zylonite_mtd-r0.patch new file mode 100644 index 0000000000..231b3d76c9 --- /dev/null +++ b/meta/packages/linux/linux-rp-2.6.23/zylonite_mtd-r0.patch @@ -0,0 +1,4062 @@ +Gross hacks to make the Zylonite boot from flash in VGA. + +Flash driver forward ported to 2.6.14 + +Index: linux-2.6.23/drivers/mtd/nand/Kconfig +=================================================================== +--- linux-2.6.23.orig/drivers/mtd/nand/Kconfig 2008-02-12 18:02:36.000000000 +0000 ++++ linux-2.6.23/drivers/mtd/nand/Kconfig 2008-02-12 18:03:07.000000000 +0000 +@@ -223,6 +223,10 @@ + tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)" + depends on ARCH_PXA + ++config MTD_NAND_ZYLONITE ++ tristate "Support for NAND Flash on Zylonite" ++ depends on ARCH_PXA ++ + config MTD_NAND_BASLER_EXCITE + tristate "Support for NAND Flash on Basler eXcite" + depends on BASLER_EXCITE +Index: linux-2.6.23/drivers/mtd/nand/Makefile +=================================================================== +--- linux-2.6.23.orig/drivers/mtd/nand/Makefile 2008-02-12 18:02:36.000000000 +0000 ++++ linux-2.6.23/drivers/mtd/nand/Makefile 2008-02-12 18:03:27.000000000 +0000 +@@ -19,6 +19,7 @@ + obj-$(CONFIG_MTD_NAND_H1900) += h1910.o + obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o + obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o ++obj-$(CONFIG_MTD_NAND_ZYLONITE) += mhn_nand.o + obj-$(CONFIG_MTD_NAND_TS7250) += ts7250.o + obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o + obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o +Index: linux-2.6.23/drivers/mtd/nand/mhn_nand.c +=================================================================== +--- /dev/null 1970-01-01 00:00:00.000000000 +0000 ++++ linux-2.6.23/drivers/mtd/nand/mhn_nand.c 2008-02-12 23:54:00.000000000 +0000 +@@ -0,0 +1,3869 @@ ++/* ++ * drivers/mtd/nand/mhn_nand.c ++ * ++ * Copyright (C) 2005 Intel Coporation (chao.xie@intel.com) ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ * ++ * Overview: ++ * This is a device driver for the NAND flash device on zylonite board ++ * which utilizes the Samsung K9K1216Q0C parts. This is a 64Mibit NAND ++ * flash device. ++ ++ *(C) Copyright 2006 Marvell International Ltd. ++ * All Rights Reserved ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++//#include ++ ++//#define NDCR 0xf0000000 ++//#define NDCR (*((volatile u32 *)0xf0000000)) ++//#define NDCR __REG_2(0x43100000) /* Data Flash Control register */ ++#define NDCR_SPARE_EN (0x1<<31) ++#define NDCR_ECC_EN (0x1<<30) ++#define NDCR_DMA_EN (0x1<<29) ++#define NDCR_ND_RUN (0x1<<28) ++#define NDCR_DWIDTH_C (0x1<<27) ++#define NDCR_DWIDTH_M (0x1<<26) ++#define NDCR_PAGE_SZ (0x1<<24) ++#define NDCR_NCSX (0x1<<23) ++#define NDCR_ND_MODE (0x3<<21) ++#define NDCR_NAND_MODE 0x0 ++#define NDCR_CLR_PG_CNT (0x1<<20) ++#define NDCR_CLR_ECC ( 0x1<<19) ++#define NDCR_RD_ID_CNT_MASK (0x7<<16) ++#define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) ++#define NDCR_RA_START (0x1<<15) ++#define NDCR_PG_PER_BLK (0x1<<14) ++#define NDCR_ND_ARB_EN (0x1<<12) ++ ++//#define NDSR (*((volatile u32 *)0xf0000014)) ++//#define NDSR __REG_2(0x43100014) /* Data Controller Status Register */ ++#define NDSR_RDY (0x1<<11) ++#define NDSR_CS0_PAGED (0x1<<10) ++#define NDSR_CS1_PAGED (0x1<<9) ++#define NDSR_CS0_CMDD (0x1<<8) ++#define NDSR_CS1_CMDD (0x1<<7) ++#define NDSR_CS0_BBD (0x1<<6) ++#define NDSR_CS1_BBD (0x1<<5) ++#define NDSR_DBERR (0x1<<4) ++#define NDSR_SBERR (0x1<<3) ++#define NDSR_WRDREQ (0x1<<2) ++#define NDSR_RDDREQ (0x1<<1) ++#define NDSR_WRCMDREQ (0x1) ++ ++#define OSCR __REG(0x40A00010) /* OS Timer Counter Register */ ++//#define NDCB0 __REG_2(0x43100048) /* Data Controller Command Buffer0 */ ++//#define NDCB1 __REG_2(0x4310004C) /* Data Controller Command Buffer1 */ ++//#define NDCB2 __REG_2(0x43100050) /* Data Controller Command Buffer2 */ ++#define NDCB0_AUTO_RS (0x1<<25) ++#define NDCB0_CSEL (0x1<<24) ++#define NDCB0_CMD_TYPE_MASK (0x7<<21) ++#define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) ++#define NDCB0_NC (0x1<<20) ++#define NDCB0_DBC (0x1<<19) ++#define NDCB0_ADDR_CYC_MASK (0x7<<16) ++#define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK) ++#define NDCB0_CMD2_MASK (0xff<<8) ++#define NDCB0_CMD1_MASK (0xff) ++#define NDCB0_ADDR_CYC_SHIFT (16) ++#define DCMD0 __REG(0x4000020c) /* DMA Command Address Register Channel 0 */ ++#define DCMD1 __REG(0x4000021c) /* DMA Command Address Register Channel 1 */ ++#define DCMD2 __REG(0x4000022c) /* DMA Command Address Register Channel 2 */ ++#define DCMD3 __REG(0x4000023c) /* DMA Command Address Register Channel 3 */ ++#define DCMD4 __REG(0x4000024c) /* DMA Command Address Register Channel 4 */ ++#define DCMD5 __REG(0x4000025c) /* DMA Command Address Register Channel 5 */ ++#define DCMD6 __REG(0x4000026c) /* DMA Command Address Register Channel 6 */ ++#define DCMD7 __REG(0x4000027c) /* DMA Command Address Register Channel 7 */ ++#define DCMD8 __REG(0x4000028c) /* DMA Command Address Register Channel 8 */ ++#define DCMD9 __REG(0x4000029c) /* DMA Command Address Register Channel 9 */ ++#define DCMD10 __REG(0x400002ac) /* DMA Command Address Register Channel 10 */ ++#define DCMD11 __REG(0x400002bc) /* DMA Command Address Register Channel 11 */ ++#define DCMD12 __REG(0x400002cc) /* DMA Command Address Register Channel 12 */ ++#define DCMD13 __REG(0x400002dc) /* DMA Command Address Register Channel 13 */ ++#define DCMD14 __REG(0x400002ec) /* DMA Command Address Register Channel 14 */ ++#define DCMD15 __REG(0x400002fc) /* DMA Command Address Register Channel 15 */ ++#define DCMD(x) __REG2(0x4000020c, (x) << 4) ++#define DCMD_INCSRCADDR (1 << 31) /* Source Address Increment Setting. */ ++#define DCMD_INCTRGADDR (1 << 30) /* Target Address Increment Setting. */ ++#define DCMD_FLOWSRC (1 << 29) /* Flow Control by the source. */ ++#define DCMD_FLOWTRG (1 << 28) /* Flow Control by the target. */ ++#define DCMD_STARTIRQEN (1 << 22) /* Start Interrupt Enable */ ++#define DCMD_ENDIRQEN (1 << 21) /* End Interrupt Enable */ ++#define DCMD_ENDIAN (1 << 18) /* Device Endian-ness. */ ++#define DCMD_BURST8 (1 << 16) /* 8 byte burst */ ++#define DCMD_BURST16 (2 << 16) /* 16 byte burst */ ++#define DCMD_BURST32 (3 << 16) /* 32 byte burst */ ++#define DCMD_WIDTH1 (1 << 14) /* 1 byte width */ ++#define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */ ++#define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */ ++#define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */ ++#define DCMD_RXPCDR (DCMD_INCTRGADDR|DCMD_FLOWSRC|DCMD_BURST32|DCMD_WIDTH4) ++#define DCMD_RXMCDR (DCMD_INCTRGADDR|DCMD_FLOWSRC|DCMD_BURST32|DCMD_WIDTH4) ++#define DCMD_TXPCDR (DCMD_INCSRCADDR|DCMD_FLOWTRG|DCMD_BURST32|DCMD_WIDTH4) ++#define DRCMR(n) __REG2(0x40000100, (n)<<2) ++#define DRCMR97 __REG(0x40001184) /* Request to Channel Map Register for NAND interface data transmit & receive Request */ ++#define DRCMR98 __REG(0x40001188) /* Reserved */ ++#define DRCMR99 __REG(0x4000118C) /* Request to Channel Map Register for NAND interface command transmit Request */ ++#define DRCMRRXSADR DRCMR2 ++#define DRCMRTXSADR DRCMR3 ++#define DRCMRRXBTRBR DRCMR4 ++#define DRCMRTXBTTHR DRCMR5 ++#define DRCMRRXFFRBR DRCMR6 ++#define DRCMRTXFFTHR DRCMR7 ++#define DRCMRRXMCDR DRCMR8 ++#define DRCMRRXMODR DRCMR9 ++#define DRCMRTXMODR DRCMR10 ++#define DRCMRRXPCDR DRCMR11 ++#define DRCMRTXPCDR DRCMR12 ++#define DRCMRRXSSDR DRCMR13 ++#define DRCMRTXSSDR DRCMR14 ++#define DRCMRRXICDR DRCMR17 ++#define DRCMRTXICDR DRCMR18 ++#define DRCMRRXSTRBR DRCMR19 ++#define DRCMRTXSTTHR DRCMR20 ++#define DRCMRRXMMC DRCMR21 ++#define DRCMRTXMMC DRCMR22 ++#define DRCMRRXMMC2 DRCMR93 ++#define DRCMRTXMMC2 DRCMR94 ++#define DRCMRRXMMC3 DRCMR100 ++#define DRCMRTXMMC3 DRCMR101 ++#define DRCMRUDC(x) DRCMR((x) + 24) ++#define DRCMR_MAPVLD (1 << 7) /* Map Valid (read / write) */ ++#define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */ ++#define DCSR0 __REG(0x40000000) /* DMA Control / Status Register for Channel 0 */ ++#define DCSR1 __REG(0x40000004) /* DMA Control / Status Register for Channel 1 */ ++#define DCSR2 __REG(0x40000008) /* DMA Control / Status Register for Channel 2 */ ++#define DCSR3 __REG(0x4000000c) /* DMA Control / Status Register for Channel 3 */ ++#define DCSR4 __REG(0x40000010) /* DMA Control / Status Register for Channel 4 */ ++#define DCSR5 __REG(0x40000014) /* DMA Control / Status Register for Channel 5 */ ++#define DCSR6 __REG(0x40000018) /* DMA Control / Status Register for Channel 6 */ ++#define DCSR7 __REG(0x4000001c) /* DMA Control / Status Register for Channel 7 */ ++#define DCSR8 __REG(0x40000020) /* DMA Control / Status Register for Channel 8 */ ++#define DCSR9 __REG(0x40000024) /* DMA Control / Status Register for Channel 9 */ ++#define DCSR10 __REG(0x40000028) /* DMA Control / Status Register for Channel 10 */ ++#define DCSR11 __REG(0x4000002c) /* DMA Control / Status Register for Channel 11 */ ++#define DCSR12 __REG(0x40000030) /* DMA Control / Status Register for Channel 12 */ ++#define DCSR13 __REG(0x40000034) /* DMA Control / Status Register for Channel 13 */ ++#define DCSR14 __REG(0x40000038) /* DMA Control / Status Register for Channel 14 */ ++#define DCSR15 __REG(0x4000003c) /* DMA Control / Status Register for Channel 15 */ ++#define DCSR16 __REG(0x40000040) /* DMA Control / Status Register for Channel 16 */ ++#define DCSR17 __REG(0x40000044) /* DMA Control / Status Register for Channel 17 */ ++#define DCSR18 __REG(0x40000048) /* DMA Control / Status Register for Channel 18 */ ++#define DCSR19 __REG(0x4000004c) /* DMA Control / Status Register for Channel 19 */ ++#define DCSR20 __REG(0x40000050) /* DMA Control / Status Register for Channel 20 */ ++#define DCSR21 __REG(0x40000054) /* DMA Control / Status Register for Channel 21 */ ++#define DCSR22 __REG(0x40000058) /* DMA Control / Status Register for Channel 22 */ ++#define DCSR23 __REG(0x4000005c) /* DMA Control / Status Register for Channel 23 */ ++#define DCSR24 __REG(0x40000060) /* DMA Control / Status Register for Channel 24 */ ++#define DCSR25 __REG(0x40000064) /* DMA Control / Status Register for Channel 25 */ ++#define DCSR26 __REG(0x40000068) /* DMA Control / Status Register for Channel 26 */ ++#define DCSR27 __REG(0x4000006c) /* DMA Control / Status Register for Channel 27 */ ++#define DCSR28 __REG(0x40000070) /* DMA Control / Status Register for Channel 28 */ ++#define DCSR29 __REG(0x40000074) /* DMA Control / Status Register for Channel 29 */ ++#define DCSR30 __REG(0x40000078) /* DMA Control / Status Register for Channel 30 */ ++#define DCSR31 __REG(0x4000007c) /* DMA Control / Status Register for Channel 31 */ ++#define DCSR(x) __REG2(0x40000000, (x) << 2) ++#define DCSR_RUN (1 << 31) /* Run Bit (read / write) */ ++#define DCSR_NODESC (1 << 30) /* No-Descriptor Fetch (read / write) */ ++#define DCSR_STOPIRQEN (1 << 29) /* Stop Interrupt Enable (read / write) */ ++#define DCSR_EORIRQEN (1 << 28) /* End of Receive Interrupt Enable (R/W) */ ++#define DCSR_EORJMPEN (1 << 27) /* Jump to next descriptor on EOR */ ++#define DCSR_EORSTOPEN (1 << 26) /* STOP on an EOR */ ++#define DCSR_SETCMPST (1 << 25) /* Set Descriptor Compare Status */ ++#define DCSR_CLRCMPST (1 << 24) /* Clear Descriptor Compare Status */ ++#define DCSR_CMPST (1 << 10) /* The Descriptor Compare Status */ ++#define DCSR_EORINTR (1 << 9) /* The end of Receive */ ++#define DCSR_REQPEND (1 << 8) /* Request Pending (read-only) */ ++#define DCSR_RASINTR (1 << 4) /* Request After Channel Stopped */ ++#define DCSR_STOPSTATE (1 << 3) /* Stop State (read-only) */ ++#define DCSR_ENDINTR (1 << 2) /* End Interrupt (read / write) */ ++#define DCSR_STARTINTR (1 << 1) /* Start Interrupt (read / write) */ ++#define DCSR_BUSERR (1 << 0) /* Bus Error Interrupt (read / write) */ ++#define DDADR(x) __REG2(0x40000200, (x) << 4) ++//#define __REG_2(x) (*((volatile u32 *)io_p2v_2(x))) ++#define IRQ_NAND PXA_IRQ(45) ++#define CKEN_NAND 4 ///< NAND Flash Controller Clock Enable ++ ++/* #define CONFIG_MTD_NAND_MONAHANS_DEBUG */ ++#ifdef CONFIG_MTD_NAND_MONAHANS_DEBUG ++#define D1(x) do { \ ++ printk(KERN_DEBUG "%s: ", __FUNCTION__); \ ++ x; \ ++ }while(0) ++ ++#define DPRINTK(fmt,args...) printk(KERN_DEBUG fmt, ##args ) ++#define PRINT_BUF(buf, num) print_buf(buf, num) ++#else ++#define D1(x) ++#define DPRINTK(fmt,args...) ++#define PRINT_BUF(buf, num) ++#endif ++ ++/* DFC timing 0 register */ ++#define DFC_TIMING_tRP 0 ++#define DFC_TIMING_tRH 3 ++#define DFC_TIMING_tWP 8 ++#define DFC_TIMING_tWH 11 ++#define DFC_TIMING_tCS 16 ++#define DFC_TIMING_tCH 19 ++ ++/* DFC timing 1 register */ ++#define DFC_TIMING_tAR 0 ++#define DFC_TIMING_tWHR 4 ++#define DFC_TIMING_tR 16 ++ ++/* max value for each timing setting in DFC */ ++#define DFC_TIMING_MAX_tCH 7 ++#define DFC_TIMING_MAX_tCS 7 ++#define DFC_TIMING_MAX_tWH 7 ++#define DFC_TIMING_MAX_tWP 7 ++#define DFC_TIMING_MAX_tRH 7 ++#define DFC_TIMING_MAX_tRP 7 ++#define DFC_TIMING_MAX_tR 65535 ++#define DFC_TIMING_MAX_tWHR 15 ++#define DFC_TIMING_MAX_tAR 15 ++ ++/* ++ * The Data Flash Controller Flash timing structure ++ * For NAND flash used on Zylonite board(Samsung K9K1216Q0C), ++ * user should use value at end of each row of following member ++ * bracketed. ++ */ ++struct dfc_flash_timing { ++ uint32_t tCH; /* Enable signal hold time */ ++ uint32_t tCS; /* Enable signal setup time */ ++ uint32_t tWH; /* ND_nWE high duration */ ++ uint32_t tWP; /* ND_nWE pulse time */ ++ uint32_t tRH; /* ND_nRE high duration */ ++ uint32_t tRP; /* ND_nRE pulse width */ ++ uint32_t tR; /* ND_nWE high to ND_nRE low for read */ ++ uint32_t tWHR;/* ND_nWE high to ND_nRE low delay for status read */ ++ uint32_t tAR; /* ND_ALE low to ND_nRE low delay */ ++}; ++ ++/* DFC command type */ ++enum { ++ DFC_CMD_READ = 0x00000000, ++ DFC_CMD_PROGRAM = 0x00200000, ++ DFC_CMD_ERASE = 0x00400000, ++ DFC_CMD_READ_ID = 0x00600000, ++ DFC_CMD_STATUS_READ = 0x00800000, ++ DFC_CMD_RESET = 0x00a00000 ++}; ++ ++/* ++ * The Data Flash Controller Flash specification structure ++ * For NAND flash used on Zylonite board(Samsung K9K1216Q0C), ++ * user should use value at end of each row of following member ++ * bracketed. ++ */ ++struct dfc_flash_info { ++ struct dfc_flash_timing timing; /* NAND Flash timing */ ++ ++ int enable_arbiter;/* Data flash bus arbiter enable (ND_ARB_EN) */ ++ uint32_t page_per_block;/* Pages per block (PG_PER_BLK) */ ++ uint32_t row_addr_start;/* Row address start position (RA_START) */ ++ uint32_t read_id_bytes; /* returned ID bytes(RD_ID_CNT) */ ++ uint32_t dfc_mode; /* NAND, CARBONDALE, PIXLEY... (ND_MODE) */ ++ uint32_t ncsx; /* Chip select don't care bit (NCSX) */ ++ uint32_t page_size; /* Page size in bytes (PAGE_SZ) */ ++ uint32_t oob_size; /* OOB size */ ++ uint32_t flash_width; /* Width of Flash memory (DWIDTH_M) */ ++ uint32_t dfc_width; /* Width of flash controller(DWIDTH_C) */ ++ uint32_t num_blocks; /* Number of physical blocks in Flash */ ++ uint32_t chip_id; ++ ++ /* command codes */ ++ uint32_t read1; /* Read */ ++ uint32_t read2; /* unused, DFC don't support yet */ ++ uint32_t program; /* two cycle command */ ++ uint32_t read_status; ++ uint32_t read_id; ++ uint32_t erase; /* two cycle command */ ++ uint32_t reset; ++ uint32_t lock; /* lock whole flash */ ++ uint32_t unlock; /* two cycle command, supporting partial unlock */ ++ uint32_t lock_status; /* read block lock status */ ++ ++ /* addr2ndcb1 - encode address cycles into register NDCB1 */ ++ /* ndbbr2addr - convert register NDBBR to bad block address */ ++ int (*addr2ndcb1)(uint16_t cmd, uint32_t addr, uint32_t *p); ++ int (*ndbbr2addr)(uint16_t cmd, uint32_t ndbbr,uint32_t *p); ++}; ++ ++enum { ++ DFC_FLASH_NULL = 0 , ++ DFC_FLASH_Samsung_512Mb_X_16 = 1, ++ DFC_FLASH_Micron_1Gb_X_8 = 2, ++ DFC_FLASH_Micron_1Gb_X_16 = 3, ++ DFC_FLASH_STM_1Gb_X_16 = 4, ++ DFC_FLASH_STM_2Gb_X_16 = 5, ++ DFC_FLASH_END, ++}; ++ ++static int dfc_get_flash_info(int type, struct dfc_flash_info **flash_info); ++ ++#define DFC_NDCR 0 ++#define DFC_NDTR0CS0 1 ++#define DFC_NDTR1CS0 3 ++#define DFC_NDSR 5 ++#define DFC_NDPCR 6 ++#define DFC_NDBDR0 7 ++#define DFC_NDBDR1 8 ++#define DFC_NDDB 16 ++#define DFC_NDCB0 18 ++#define DFC_NDCB1 19 ++#define DFC_NDCB2 20 ++ ++/* The Data Flash Controller Mode structure */ ++struct dfc_mode { ++ int enable_dma; /* DMA, or nonDMA mode */ ++ int enable_ecc; /* ECC on/off */ ++ int enable_spare; /* Spare enable */ ++ int chip_select; /* CS0 or CS1 */ ++}; ++ ++/* The Data Flash Controller Context structure */ ++struct dfc_context { ++ unsigned char __iomem *membase; /* DFC register base */ ++ struct dfc_mode *dfc_mode; /* DFC mode */ ++ int data_dma_ch; /* Data DMA channel number */ ++ int cmd_dma_ch; /* CMD DMA channel number */ ++ struct dfc_flash_info *flash_info; /* Flash Spec */ ++ struct mtd_info *mtd; ++}; ++ ++#define NDCB0_DMA_ADDR 0x43100048 ++#define NDDB_DMA_ADDR 0x43100040 ++ ++#define NDSR_MASK 0xFFF ++ ++/* The following data is a rough evaluation */ ++ ++/* microsecond, for readID/readStatus/reset */ ++#define NAND_OTHER_TIMEOUT 10 ++/* microsecond, for readID/readStatus/reset */ ++#define NAND_CMD_TIMEOUT 10 ++ ++#define BBT_BLOCK_BAD 0x03 ++#define BBT_BLOCK_GOOD 0x00 ++#define BBT_BLOCK_REV1 0x01 ++#define BBT_BLOCK_REV2 0x02 ++ ++#define BUFLEN (2048 + 64) ++ ++/* ++ * DFC data size enumeration transfered from/to controller, ++ * including padding (zero)to be a multiple of 32. ++ */ ++enum { ++ DFC_DATA_SIZE_STATUS = 8, /* ReadStatus/ReadBlockLockStatus */ ++ DFC_DATA_SIZE_ID = 7, /* ReadID */ ++ ++ DFC_DATA_SIZE_32 = 32, ++ DFC_DATA_SIZE_512 = 512, /* R/W disabling spare area */ ++ DFC_DATA_SIZE_520 = 520, /* Spare=1, ECC=1 */ ++ DFC_DATA_SIZE_528 = 528, /* Spare=1, ECC=0 */ ++ DFC_DATA_SIZE_544 = 544, /* R/W enabling spare area.(DMA mode)*/ ++ ++ DFC_DATA_SIZE_64 = 64, ++ DFC_DATA_SIZE_2048 = 2048, /* R/W disabling spare area */ ++ DFC_DATA_SIZE_2088 = 2088, /* R/W enabling spare area with ecc */ ++ DFC_DATA_SIZE_2112 = 2112, /* R/W enabling spare area without ecc*/ ++ DFC_DATA_SIZE_2096 = 2096, /* R/W enabling spare area */ ++ DFC_DATA_SIZE_UNUSED = 0xFFFF ++}; ++ ++/* DFC padding size enumeration transfered from/to controller */ ++enum { ++ /* ++ * ReadStatus/ReadBlockLockStatus/ReadID/ ++ * Read/Program disabling spare area(Both 512 and 2048) ++ * Read/Program enabling spare area, disabling ECC ++ */ ++ DFC_PADDING_SIZE_0 = 0, ++ ++ /* Read/program with SPARE_EN=1, ECC_EN=0, pgSize=512 */ ++ DFC_PADDING_SIZE_16 = 16, ++ /* for read/program with SPARE_EN=1, ECC_EN=1, pgSize=512 and 2048 */ ++ DFC_PADDING_SIZE_24 = 24, ++ DFC_PADDING_SIZE_UNUSED = 0xFFFF ++}; ++ ++static unsigned int flash_config = DFC_FLASH_NULL; ++ ++void dfc_set_timing(struct dfc_context *context, struct dfc_flash_timing *t); ++void dfc_set_dma(struct dfc_context *context); ++void dfc_set_ecc(struct dfc_context *context); ++void dfc_set_spare(struct dfc_context *context); ++ ++int dfc_get_pattern(struct dfc_context *context, uint16_t cmd, ++ int *data_size, int *padding); ++ ++static int dfc_wait_event(struct dfc_context *context, uint32_t event, ++ uint32_t *event_out, uint32_t timeout, int enable_int); ++ ++int dfc_send_cmd(struct dfc_context *context, uint16_t cmd, ++ uint32_t addr, int num_pages); ++ ++void dfc_stop(struct dfc_context *context); ++void dfc_read_fifo_partial(struct dfc_context *context, uint8_t *buffer, ++ int nbytes, int data_size); ++void dfc_write_fifo_partial(struct dfc_context *context, uint8_t *buffer, ++ int nbytes, int data_size); ++ ++void dfc_read_fifo(struct dfc_context *context, uint8_t *buffer, int nbytes); ++void dfc_write_fifo(struct dfc_context *context, uint8_t *buffer, int nbytes); ++ ++void dfc_read_badblock_addr(struct dfc_context *context, uint32_t *bbaddr); ++ ++void dfc_clear_int(struct dfc_context *context, uint32_t int_mask); ++void dfc_enable_int(struct dfc_context *context, uint32_t int_mask); ++void dfc_disable_int(struct dfc_context *context, uint32_t int_mask); ++ ++/* high level primitives */ ++int dfc_init(struct dfc_context *context, int type); ++int dfc_init_no_gpio(struct dfc_context *context, int type); ++ ++int dfc_reset_flash(struct dfc_context *context); ++ ++int dfc_setup_cmd_dma(struct dfc_context *context, ++ uint16_t cmd, uint32_t addr, int num_pages, ++ uint32_t *buf, uint32_t buf_phys, ++ uint32_t next_desc_phys, uint32_t dma_int_en, ++ struct pxa_dma_desc *dma_desc); ++ ++int dfc_setup_data_dma(struct dfc_context *context, ++ uint16_t cmd, uint32_t buf_phys, ++ uint32_t next_desc_phys, uint32_t dma_int_en, ++ struct pxa_dma_desc *dma_desc); ++ ++void dfc_start_cmd_dma(struct dfc_context *context, ++ struct pxa_dma_desc *dma_desc); ++void dfc_start_data_dma(struct dfc_context *context, ++ struct pxa_dma_desc *dma_desc); ++static int monahans_df_dev_ready(struct mtd_info *mtd); ++ ++#ifdef CONFIG_DVFM ++static int mhn_nand_dvfm_notifier(unsigned cmd, void *client_data, void *info); ++static struct mhn_fv_notifier dvfm_notifier = { ++ .name = "monahans-nand-flash", ++ .priority = 0, ++ .notifier_call = mhn_nand_dvfm_notifier, ++}; ++#endif ++ ++static unsigned short search_rel_block(int block, struct mtd_info *mtd); ++ ++/***************************************************************************** ++ * The DFC registers read/write routines ++ *****************************************************************************/ ++static inline void dfc_write(struct dfc_context *context, int offset, ++ unsigned long value) ++{ ++ offset <<= 2; ++ writel(value, context->membase + offset); ++} ++ ++static inline unsigned int dfc_read(struct dfc_context *context, int offset) ++{ ++ offset <<= 2; ++ return __raw_readl(context->membase + offset); ++} ++ ++/**************************************************************************** ++ * Flash Information ++ ***************************************************************************/ ++ ++static int Samsung512MbX16Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p); ++static int Samsung512MbX16NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p); ++ ++static struct dfc_flash_info samsung512MbX16 = ++{ ++ .timing = { ++ .tCH = 10, /* tCH, Enable signal hold time */ ++ .tCS = 0, /* tCS, Enable signal setup time */ ++ .tWH = 20, /* tWH, ND_nWE high duration */ ++ .tWP = 40, /* tWP, ND_nWE pulse time */ ++ .tRH = 30, /* tRH, ND_nRE high duration */ ++ .tRP = 40, /* tRP, ND_nRE pulse width */ ++ /* tR = tR+tRR+tWB+1, ND_nWE high to ND_nRE low for read */ ++ .tR = 11123, ++ /* tWHR, ND_nWE high to ND_nRE low delay for status read */ ++ .tWHR = 110, ++ .tAR = 10, /* tAR, ND_ALE low to ND_nRE low delay */ ++ }, ++ .enable_arbiter = 1, /* Data flash bus arbiter enable */ ++ .page_per_block = 32, /* Pages per block */ ++ .row_addr_start = 0, /* Second cycle start, Row address start position */ ++ .read_id_bytes = 2, /* 2 bytes, returned ID bytes */ ++ .dfc_mode = 0, /* NAND mode */ ++ .ncsx = 0, ++ .page_size = 512, /* Page size in bytes */ ++ .oob_size = 16, /* OOB size in bytes */ ++ .flash_width = 16, /* Width of Flash memory */ ++ .dfc_width = 16, /* Width of flash controller */ ++ .num_blocks = 4096, /* Number of physical blocks in Flash */ ++ .chip_id = 0x46ec, ++ ++ /* command codes */ ++ .read1 = 0x0000, /* Read */ ++ .read2 = 0x0050, /* Read1 unused, current DFC don't support */ ++ .program = 0x1080, /* Write, two cycle command */ ++ .read_status = 0x0070, /* Read status */ ++ .read_id = 0x0090, /* Read ID */ ++ .erase = 0xD060, /* Erase, two cycle command */ ++ .reset = 0x00FF, /* Reset */ ++ .lock = 0x002A, /* Lock whole flash */ ++ .unlock = 0x2423, /* Unlock, two cycle command, supporting partial unlock */ ++ .lock_status = 0x007A, /* Read block lock status */ ++ .addr2ndcb1 = Samsung512MbX16Addr2NDCB1, ++ .ndbbr2addr = Samsung512MbX16NDBBR2Addr, ++}; ++ ++static int Samsung512MbX16Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p) ++{ ++ uint32_t ndcb1 = 0; ++ ++ if (addr >= 0x4000000) return -EINVAL; ++ ++ if (cmd == samsung512MbX16.read1 || cmd == samsung512MbX16.program) { ++ ndcb1 = (addr & 0xFF) | ((addr >> 1) & 0x01FFFF00); ++ } else if (cmd == samsung512MbX16.erase) { ++ ndcb1 = ((addr >> 9) & 0x00FFFFFF); ++ } ++ ++ *p = ndcb1; ++ return 0; ++ ++} ++ ++static int Samsung512MbX16NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p) ++{ ++ *p = ndbbr << 9; ++ return 0; ++} ++ ++static int Micron1GbX8Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p); ++static int Micron1GbX8NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p); ++ ++static struct dfc_flash_info micron1GbX8 = ++{ ++ .timing = { ++ .tCH = 10, /* tCH, Enable signal hold time */ ++ .tCS = 25, /* tCS, Enable signal setup time */ ++ .tWH = 15, /* tWH, ND_nWE high duration */ ++ .tWP = 25, /* tWP, ND_nWE pulse time */ ++ .tRH = 15, /* tRH, ND_nRE high duration */ ++ .tRP = 25, /* tRP, ND_nRE pulse width */ ++ /* tR = tR+tRR+tWB+1, ND_nWE high to ND_nRE low for read */ ++ .tR = 25000, ++ /* tWHR, ND_nWE high to ND_nRE low delay for status read */ ++ .tWHR = 60, ++ .tAR = 10, /* tAR, ND_ALE low to ND_nRE low delay */ ++ }, ++ .enable_arbiter = 1, /* Data flash bus arbiter enable */ ++ .page_per_block = 64, /* Pages per block */ ++ .row_addr_start = 1, /* Second cycle start, Row address start position */ ++ .read_id_bytes = 4, /* Returned ID bytes */ ++ .dfc_mode = 0, /* NAND mode */ ++ .ncsx = 0, ++ .page_size = 2048, /* Page size in bytes */ ++ .oob_size = 64, /* OOB size in bytes */ ++ .flash_width = 8, /* Width of Flash memory */ ++ .dfc_width = 8, /* Width of flash controller */ ++ .num_blocks = 1024, /* Number of physical blocks in Flash */ ++ .chip_id = 0xa12c, ++ /* command codes */ ++ .read1 = 0x3000, /* Read */ ++ .read2 = 0x0050, /* Read1 unused, current DFC don't support */ ++ .program = 0x1080, /* Write, two cycle command */ ++ .read_status = 0x0070, /* Read status */ ++ .read_id = 0x0090, /* Read ID */ ++ .erase = 0xD060, /* Erase, two cycle command */ ++ .reset = 0x00FF, /* Reset */ ++ .lock = 0x002A, /* Lock whole flash */ ++ .unlock = 0x2423, /* Unlock, two cycle command, supporting partial unlock */ ++ .lock_status = 0x007A, /* Read block lock status */ ++ .addr2ndcb1 = Micron1GbX8Addr2NDCB1, ++ .ndbbr2addr = Micron1GbX8NDBBR2Addr, ++}; ++ ++static int Micron1GbX8Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p) ++{ ++ uint32_t ndcb1 = 0; ++ uint32_t page; ++ ++ if (addr >= 0x8000000) ++ return -EINVAL; ++ page = addr / micron1GbX8.page_size; ++ addr = (page / micron1GbX8.page_per_block) << 18 | ++ (page % micron1GbX8.page_per_block) << 12; ++ ++ if (cmd == micron1GbX8.read1 || cmd == micron1GbX8.program) { ++ ndcb1 = (addr & 0xFFF) | ((addr << 4) & 0xFFFF0000); ++ } ++ else if (cmd == micron1GbX8.erase) { ++ ndcb1 = ((addr >> 18) << 6) & 0xFFFF; ++ } ++ ++ *p = ndcb1; ++ return 0; ++} ++ ++static int Micron1GbX8NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p) ++{ ++ if (cmd == micron1GbX8.read1 || cmd == micron1GbX8.program) { ++ *p = ((ndbbr & 0xF) << 8) | ((ndbbr >> 8) << 16); ++ } ++ else if (cmd == micron1GbX8.erase) { ++ *p = (ndbbr >> 6) << 18; ++ } ++ ++ ++ return 0; ++} ++ ++ ++static int Micron1GbX16Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p); ++static int Micron1GbX16NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p); ++ ++static struct dfc_flash_info micron1GbX16 = ++{ ++ .timing = { ++ .tCH = 10, /* tCH, Enable signal hold time */ ++ .tCS = 25, /* tCS, Enable signal setup time */ ++ .tWH = 15, /* tWH, ND_nWE high duration */ ++ .tWP = 25, /* tWP, ND_nWE pulse time */ ++ .tRH = 15, /* tRH, ND_nRE high duration */ ++ .tRP = 25, /* tRP, ND_nRE pulse width */ ++ /* tR = tR+tRR+tWB+1, ND_nWE high to ND_nRE low for read */ ++ .tR = 25000, ++ /* tWHR, ND_nWE high to ND_nRE low delay for status read */ ++ .tWHR = 60, ++ .tAR = 10, /* tAR, ND_ALE low to ND_nRE low delay */ ++ }, ++ .enable_arbiter = 1, /* Data flash bus arbiter enable */ ++ .page_per_block = 64, /* Pages per block */ ++ .row_addr_start = 1, /* Second cycle start, Row address start position */ ++ .read_id_bytes = 4, /* Returned ID bytes */ ++ .dfc_mode = 0, /* NAND mode */ ++ .ncsx = 0, ++ .page_size = 2048, /* Page size in bytes */ ++ .oob_size = 64, /* OOB size in bytes */ ++ .flash_width = 16, /* Width of Flash memory */ ++ .dfc_width = 16, /* Width of flash controller */ ++ .num_blocks = 1024, /* Number of physical blocks in Flash */ ++ .chip_id = 0xb12c, ++ ++ /* command codes */ ++ .read1 = 0x3000, /* Read */ ++ .read2 = 0x0050, /* Read1 unused, current DFC don't support */ ++ .program = 0x1080, /* Write, two cycle command */ ++ .read_status = 0x0070, /* Read status */ ++ .read_id = 0x0090, /* Read ID */ ++ .erase = 0xD060, /* Erase, two cycle command */ ++ .reset = 0x00FF, /* Reset */ ++ .lock = 0x002A, /* Lock whole flash */ ++ .unlock = 0x2423, /* Unlock, two cycle command, supporting partial unlock */ ++ .lock_status = 0x007A, /* Read block lock status */ ++ .addr2ndcb1 = Micron1GbX16Addr2NDCB1, ++ .ndbbr2addr = Micron1GbX16NDBBR2Addr, ++}; ++ ++static int Micron1GbX16Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p) ++{ ++ uint32_t ndcb1 = 0; ++ uint32_t page; ++ ++ if (addr >= 0x8000000) ++ return -EINVAL; ++ page = addr / micron1GbX16.page_size; ++ addr = (page / micron1GbX16.page_per_block) << 17 | ++ (page % micron1GbX16.page_per_block) << 11; ++ ++ if (cmd == micron1GbX16.read1 || cmd == micron1GbX16.program) { ++ ndcb1 = (addr & 0x7FF) | ((addr << 5) & 0xFFFF0000); ++ } ++ else if (cmd == micron1GbX16.erase) { ++ ndcb1 = ((addr >> 17) << 6) & 0xFFFF; ++ } ++ *p = ndcb1; ++ return 0; ++} ++ ++static int Micron1GbX16NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p) ++{ ++ if (cmd == micron1GbX16.read1 || cmd == micron1GbX16.program) { ++ *p = ((ndbbr & 0x7) << 8) | ((ndbbr >> 8) << 16); ++ } ++ else if (cmd == micron1GbX16.erase) { ++ *p = (ndbbr >> 6) << 17; ++ } ++ ++ return 0; ++} ++ ++static int STM1GbX16Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p); ++static int STM1GbX16NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p); ++ ++static struct dfc_flash_info stm1GbX16 = ++{ ++ .timing = { ++ .tCH = 10, /* tCH, Enable signal hold time */ ++ .tCS = 10, /* tCS, Enable signal setup time */ ++ .tWH = 20, /* tWH, ND_nWE high duration */ ++ .tWP = 25, /* tWP, ND_nWE pulse time */ ++ .tRH = 20, /* tRH, ND_nRE high duration */ ++ .tRP = 25, /* tRP, ND_nRE pulse width */ ++ /* tR = tR+tRR+tWB+1, ND_nWE high to ND_nRE low for read */ ++ .tR = 25000, ++ /* tWHR, ND_nWE high to ND_nRE low delay for status read */ ++ .tWHR = 60, ++ .tAR = 10, /* tAR, ND_ALE low to ND_nRE low delay */ ++ }, ++ .enable_arbiter = 1, /* Data flash bus arbiter enable */ ++ .page_per_block = 64, /* Pages per block */ ++ .row_addr_start = 1, /* Second cycle start, Row address start position */ ++ .read_id_bytes = 4, /* Returned ID bytes */ ++ .dfc_mode = 0, /* NAND mode */ ++ .ncsx = 0, ++ .page_size = 2048, /* Page size in bytes */ ++ .oob_size = 64, /* OOB size in bytes */ ++ .flash_width = 16, /* Width of Flash memory */ ++ .dfc_width = 16, /* Width of flash controller */ ++ .num_blocks = 1024, /* Number of physical blocks in Flash */ ++ .chip_id = 0xb120, ++ ++ /* command codes */ ++ .read1 = 0x3000, /* Read */ ++ .read2 = 0x0050, /* Read1 unused, current DFC don't support */ ++ .program = 0x1080, /* Write, two cycle command */ ++ .read_status = 0x0070, /* Read status */ ++ .read_id = 0x0090, /* Read ID */ ++ .erase = 0xD060, /* Erase, two cycle command */ ++ .reset = 0x00FF, /* Reset */ ++ .lock = 0x002A, /* Lock whole flash */ ++ .unlock = 0x2423, /* Unlock, two cycle command, supporting partial unlock */ ++ .lock_status = 0x007A, /* Read block lock status */ ++ .addr2ndcb1 = STM1GbX16Addr2NDCB1, ++ .ndbbr2addr = STM1GbX16NDBBR2Addr, ++}; ++ ++static int STM1GbX16Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p) ++{ ++ uint32_t ndcb1 = 0; ++ uint32_t page; ++ ++ if (addr >= 0x8000000) ++ return -EINVAL; ++ page = addr / stm1GbX16.page_size; ++ addr = (page / stm1GbX16.page_per_block) << 17 | ++ (page % stm1GbX16.page_per_block) << 11; ++ ++ if (cmd == stm1GbX16.read1 || cmd == stm1GbX16.program) { ++ ndcb1 = (addr & 0x7FF) | ((addr << 5) & 0xFFFF0000); ++ } ++ else if (cmd == stm1GbX16.erase) { ++ ndcb1 = ((addr >> 17) << 6) & 0xFFFF; ++ } ++ *p = ndcb1; ++ return 0; ++} ++ ++static int STM1GbX16NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p) ++{ ++ if (cmd == stm1GbX16.read1 || cmd == stm1GbX16.program) { ++ *p = ((ndbbr & 0x7) << 8) | ((ndbbr >> 8) << 16); ++ } ++ else if (cmd == stm1GbX16.erase) { ++ *p = (ndbbr >> 6) << 17; ++ } ++ ++ return 0; ++} ++ ++static int STM2GbX16Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p); ++static int STM2GbX16NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p); ++ ++static struct dfc_flash_info stm2GbX16 = ++{ ++ .timing = { ++ .tCH = 10, /* tCH, Enable signal hold time */ ++ .tCS = 10, /* tCS, Enable signal setup time */ ++ .tWH = 20, /* tWH, ND_nWE high duration */ ++ .tWP = 25, /* tWP, ND_nWE pulse time */ ++ .tRH = 20, /* tRH, ND_nRE high duration */ ++ .tRP = 25, /* tRP, ND_nRE pulse width */ ++ /* tR = tR+tRR+tWB+1, ND_nWE high to ND_nRE low for read */ ++ .tR = 25000, ++ /* tWHR, ND_nWE high to ND_nRE low delay for status read */ ++ .tWHR = 60, ++ .tAR = 10, /* tAR, ND_ALE low to ND_nRE low delay */ ++ }, ++ .enable_arbiter = 1, /* Data flash bus arbiter enable */ ++ .page_per_block = 64, /* Pages per block */ ++ .row_addr_start = 1, /* Second cycle start, Row address start position */ ++ .read_id_bytes = 4, /* Returned ID bytes */ ++ .dfc_mode = 0, /* NAND mode */ ++ .ncsx = 0, ++ .page_size = 2048, /* Page size in bytes */ ++ .oob_size = 64, /* OOB size in bytes */ ++ .flash_width = 16, /* Width of Flash memory */ ++ .dfc_width = 16, /* Width of flash controller */ ++ .num_blocks = 2048, /* Number of physical blocks in Flash */ ++ .chip_id = 0xca20, ++ ++ /* command codes */ ++ .read1 = 0x3000, /* Read */ ++ .read2 = 0x0050, /* Read1 unused, current DFC don't support */ ++ .program = 0x1080, /* Write, two cycle command */ ++ .read_status = 0x0070, /* Read status */ ++ .read_id = 0x0090, /* Read ID */ ++ .erase = 0xD060, /* Erase, two cycle command */ ++ .reset = 0x00FF, /* Reset */ ++ .lock = 0x002A, /* Lock whole flash */ ++ .unlock = 0x2423, /* Unlock, two cycle command, supporting partial unlock */ ++ .lock_status = 0x007A, /* Read block lock status */ ++ .addr2ndcb1 = STM2GbX16Addr2NDCB1, ++ .ndbbr2addr = STM2GbX16NDBBR2Addr, ++}; ++ ++static int STM2GbX16Addr2NDCB1(uint16_t cmd, uint32_t addr, uint32_t *p) ++{ ++ uint32_t ndcb1 = 0; ++ uint32_t page; ++ ++ if (addr >= 0x8000000) ++ return -EINVAL; ++ page = addr / stm2GbX16.page_size; ++ addr = (page / stm2GbX16.page_per_block) << 17 | ++ (page % stm2GbX16.page_per_block) << 11; ++ ++ if (cmd == stm2GbX16.read1 || cmd == stm2GbX16.program) { ++ ndcb1 = (addr & 0x7FF) | ((addr << 5) & 0xFFFF0000); ++ } ++ else if (cmd == stm2GbX16.erase) { ++ ndcb1 = ((addr >> 17) << 6) & 0xFFFF; ++ } ++ *p = ndcb1; ++ return 0; ++} ++ ++static int STM2GbX16NDBBR2Addr(uint16_t cmd, uint32_t ndbbr, uint32_t *p) ++{ ++ if (cmd == stm2GbX16.read1 || cmd == stm2GbX16.program) { ++ *p = ((ndbbr & 0x7) << 8) | ((ndbbr >> 8) << 16); ++ } ++ else if (cmd == stm2GbX16.erase) { ++ *p = (ndbbr >> 6) << 17; ++ } ++ ++ return 0; ++} ++ ++static struct { ++ int type; ++ struct dfc_flash_info *flash_info; ++} type_info[] = { ++ { DFC_FLASH_Samsung_512Mb_X_16, &samsung512MbX16}, ++ { DFC_FLASH_Micron_1Gb_X_8, µn1GbX8}, ++ { DFC_FLASH_Micron_1Gb_X_16, µn1GbX16}, ++ { DFC_FLASH_STM_1Gb_X_16, &stm1GbX16}, ++ { DFC_FLASH_STM_2Gb_X_16, &stm2GbX16}, ++ { DFC_FLASH_NULL, NULL}, ++}; ++ ++int dfc_get_flash_info(int type, struct dfc_flash_info **flash_info) ++{ ++ uint32_t i = 0; ++ ++ while(type_info[i].type != DFC_FLASH_NULL) { ++ if (type_info[i].type == type) { ++ *flash_info = type_info[i].flash_info; ++ return 0; ++ } ++ i++; ++ } ++ *flash_info = NULL; ++ return -EINVAL; ++} ++ ++/****************************************************************************** ++ dfc_set_timing ++ ++ Description: ++ This function sets flash timing property in DFC timing register ++ according to input timing value embodied in context structure. ++ It is called once during the hardware initialization. ++ Input Parameters: ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++//#if defined(CONFIG_CPU_MONAHANS_L) || defined(CONFIG_CPU_MONAHANS_LV) ++#define DFC_CLOCK 208 ++//#else ++//#define DFC_CLOCK 104 ++//#endif ++#define CLOCK_NS DFC_CLOCK/1000 ++ ++void dfc_set_timing(struct dfc_context *context, struct dfc_flash_timing *t) ++{ ++ struct dfc_flash_timing timing = *t; ++ ++ uint32_t r0 = 0; ++ uint32_t r1 = 0; ++ ++ /* ++ * num of clock cycles = time (ns) / one clock sycle (ns) + 1 ++ * - integer division will truncate the result, so add a 1 in all cases ++ * - subtract the extra 1 cycle added to all register timing values ++ */ ++ timing.tCH = min(((int) (timing.tCH * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tCH); ++ timing.tCS = min(((int) (timing.tCS * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tCS); ++ timing.tWH = min(((int) (timing.tWH * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tWH); ++ timing.tWP = min(((int) (timing.tWP * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tWP); ++ timing.tRH = min(((int) (timing.tRH * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tRH); ++ timing.tRP = min(((int) (timing.tRP * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tRP); ++ ++ r0 = (timing.tCH << DFC_TIMING_tCH) | ++ (timing.tCS << DFC_TIMING_tCS) | ++ (timing.tWH << DFC_TIMING_tWH) | ++ (timing.tWP << DFC_TIMING_tWP) | ++ (timing.tRH << DFC_TIMING_tRH) | ++ (timing.tRP << DFC_TIMING_tRP); ++ ++ dfc_write(context, DFC_NDTR0CS0, r0); ++ ++ timing.tR = min(((int) (timing.tR * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tR); ++ timing.tWHR = min(((int) (timing.tWHR * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tWHR); ++ timing.tAR = min(((int) (timing.tAR * CLOCK_NS) + 1), ++ DFC_TIMING_MAX_tAR); ++ ++ r1 = (timing.tR << DFC_TIMING_tR) | ++ (timing.tWHR << DFC_TIMING_tWHR) | ++ (timing.tAR << DFC_TIMING_tAR); ++ ++ dfc_write(context, DFC_NDTR1CS0, r1); ++ return; ++} ++ ++/****************************************************************************** ++ dfc_set_dma ++ ++ Description: ++ Enables or Disables DMA in line with setting in DFC mode of context ++ structure. DMA mode of DFC. Performs a read-modify-write operation that ++ only changes the driven DMA_EN bit field In DMA mode, all commands and ++ data are transferred by DMA. DMA can be enable/disable on the fly. ++ Input Parameters: ++ context -Pointer to DFC context structure ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void ++dfc_set_dma(struct dfc_context* context) ++{ ++ uint32_t ndcr; ++ ++ ndcr = dfc_read(context, DFC_NDCR); ++ if (context->dfc_mode->enable_dma) ++ ndcr |= NDCR_DMA_EN; ++ else ++ ndcr &= ~NDCR_DMA_EN; ++ ++ dfc_write(context, DFC_NDCR, ndcr); ++ ++ /* Read again to make sure write work */ ++ ndcr = dfc_read(context, DFC_NDCR); ++ return; ++} ++ ++ ++/****************************************************************************** ++ dfc_set_ecc ++ ++ Description: ++ This function enables or disables hardware ECC capability of DFC in line ++ with setting in DFC mode of context structure. ++ Input Parameters: ++ context -Pointer to DFC context structure ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void ++dfc_set_ecc(struct dfc_context* context) ++{ ++ uint32_t ndcr; ++ ++ ndcr = dfc_read(context, DFC_NDCR); ++ if (context->dfc_mode->enable_ecc) ++ ndcr |= NDCR_ECC_EN; ++ else ++ ndcr &= ~NDCR_ECC_EN; ++ ++ dfc_write(context, DFC_NDCR, ndcr); ++ ++ /* Read again to make sure write work */ ++ ndcr = dfc_read(context, DFC_NDCR); ++ return; ++} ++ ++/****************************************************************************** ++ dfc_set_spare ++ ++ Description: ++ This function enables or disables accesses to spare area of NAND Flash ++ through DFC in line with setting in DFC mode of context structure. ++ Input Parameters: ++ context -Pointer to DFC context structure ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void ++dfc_set_spare(struct dfc_context* context) ++{ ++ uint32_t ndcr; ++ ++ ndcr = dfc_read(context, DFC_NDCR); ++ if (context->dfc_mode->enable_spare) ++ ndcr |= NDCR_SPARE_EN; ++ else ++ ndcr &= ~NDCR_SPARE_EN; ++ ++ dfc_write(context, DFC_NDCR, ndcr); ++ ++ /* Read again to make sure write work */ ++ ndcr = dfc_read(context, DFC_NDCR); ++ return; ++} ++ ++static unsigned int get_delta (unsigned int start) ++{ ++ unsigned int stop = OSCR; ++ return (stop - start); ++} ++ ++static int dfc_wait_event(struct dfc_context *context, uint32_t event, ++ uint32_t *event_out, uint32_t timeout, int enable_int) ++{ ++ uint32_t ndsr; ++ uint32_t to = 3 * timeout; /* 3 ticks ~ 1us */ ++ int status; ++ int start = OSCR; ++ ++ if (enable_int) ++ dfc_enable_int(context, event); ++ ++ while (1) { ++ ndsr = dfc_read(context, DFC_NDSR); ++ ndsr &= NDSR_MASK; ++ if (ndsr & event) { ++ /* event happened */ ++ *event_out = ndsr & event; ++ dfc_clear_int(context, *event_out); ++ status = 0; ++ break; ++ } else if (get_delta(start) > to) { ++ status = -ETIME; ++ break; ++ } ++ } ++ ++ if (enable_int) ++ dfc_disable_int(context, event); ++ return status; ++} ++ ++/****************************************************************************** ++ dfc_get_pattern ++ ++ Description: ++ This function is used to retrieve buffer size setting for a transaction ++ based on cmd. ++ Input Parameters: ++ context - Pointer to DFC context structure ++ cmd ++ Specifies type of command to be sent to NAND flash .The LSB of this ++ parameter defines the first command code for 2-cycles command. The ++ MSB defines the second command code for 2-cycles command. If MSB is ++ set to zero, this indicates that one cycle command ++ Output Parameters: ++ data_size ++ It is used to retrieve length of data transferred to/from DFC, ++ which includes padding bytes ++ padding ++ It is used to retrieve how many padding bytes there should be ++ in buffer of data_size. ++ Returns: ++ 0 ++ If size setting is returned successfully ++ -EINVAL ++ If page size specified in flash spec of context structure is not 512 or ++ 2048;If specified command index is not read1/program/erase/reset/readID/ ++ readStatus. ++*******************************************************************************/ ++int dfc_get_pattern(struct dfc_context *context, uint16_t cmd, ++ int *data_size, int *padding) ++{ ++ struct dfc_mode* dfc_mode = context->dfc_mode; ++ struct dfc_flash_info * flash_info = context->flash_info; ++ uint32_t page_size = context->flash_info->page_size; /* 512 or 2048 */ ++ ++ if (cmd == flash_info->read1 || ++ cmd == flash_info->program) { ++ if (512 == page_size) { ++ /* add for DMA */ ++ if (dfc_mode->enable_dma) { ++ *data_size = DFC_DATA_SIZE_544; ++ if (dfc_mode->enable_ecc) ++ *padding = DFC_PADDING_SIZE_24; ++ else ++ *padding = DFC_PADDING_SIZE_16; ++ } else if (!dfc_mode->enable_spare) { ++ *data_size = DFC_DATA_SIZE_512; ++ *padding = DFC_PADDING_SIZE_0; ++ } else { ++ ++ if (dfc_mode->enable_ecc) ++ *data_size = DFC_DATA_SIZE_520; ++ else ++ *data_size = DFC_DATA_SIZE_528; ++ ++ *padding = DFC_PADDING_SIZE_0; ++ } ++ } else if (2048 == page_size) { ++ /* add for DMA */ ++ if (dfc_mode->enable_dma) { ++ *data_size = DFC_DATA_SIZE_2112; ++ if (dfc_mode->enable_ecc) ++ *padding = DFC_PADDING_SIZE_24; ++ else ++ *padding = DFC_PADDING_SIZE_0; ++ } else if (!dfc_mode->enable_spare) { ++ *data_size = DFC_DATA_SIZE_2048; ++ *padding = DFC_PADDING_SIZE_0; ++ } else { ++ ++ if (dfc_mode->enable_ecc) ++ *data_size = DFC_DATA_SIZE_2088; ++ else ++ *data_size = DFC_DATA_SIZE_2112; ++ ++ *padding = DFC_PADDING_SIZE_0; ++ } ++ } else /* if the page_size is neither 512 or 2048 */ ++ return -EINVAL; ++ } else if (cmd == flash_info->read_id) { ++ *data_size = DFC_DATA_SIZE_ID; ++ *padding = DFC_PADDING_SIZE_0; ++ } else if(cmd == flash_info->read_status) { ++ *data_size = DFC_DATA_SIZE_STATUS; ++ *padding = DFC_PADDING_SIZE_0; ++ } else if (cmd == flash_info->erase || cmd == flash_info->reset) { ++ *data_size = DFC_DATA_SIZE_UNUSED; ++ *padding = DFC_PADDING_SIZE_UNUSED; ++ } else ++ return -EINVAL; ++ return 0; ++} ++ ++ ++/****************************************************************************** ++ dfc_send_cmd ++ ++ Description: ++ This function configures DFC to send command through DFC to NAND flash ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ cmd ++ Specifies type of command to be sent to NAND flash .The LSB of this ++ parameter defines the first command code for 2-cycles command. The ++ MSB defines the second command code for 2-cycles command. If MSB is ++ set to zero, this indicates that one cycle command ++ addr ++ Address sent out to the flash device withthis command. For page read/ ++ program commands , 4-cycles address is sent. For erase command only ++ 3-cycles address is sent. If it is equal to 0xFFFFFFFF, the address ++ should not be used. ++ num_pages ++ It specifies the number of pages of data to be transferred for ++ a program or read commands. Unused for any other commands than ++ read/program. ++ ++ Output Parameters: ++ None ++ Returns: ++ 0 ++ If size setting is returned successfully ++ -EINVAL ++ If specified command index is not read1/program/erase/reset/readID/ ++ readStatus. ++*******************************************************************************/ ++int dfc_send_cmd(struct dfc_context *context, uint16_t cmd, ++ uint32_t addr, int num_pages) ++{ ++ struct dfc_flash_info *flash_info = context->flash_info; ++ struct dfc_mode *dfc_mode = context->dfc_mode; ++ uint8_t cmd2; ++ uint32_t event_out; ++ uint32_t ndcb0=0, ndcb1=0, ndcb2=0, ndcr; ++ int status; ++ ++ /* It is a must to set ND_RUN firstly, then write command buffer ++ * If conversely,it does not work ++ */ ++ dfc_write(context, DFC_NDSR, NDSR_MASK); ++ ++ /* Set ND_RUN */ ++ ndcr = dfc_read(context, DFC_NDCR); ++ dfc_write(context, DFC_NDCR, (ndcr | NDCR_ND_RUN)); ++ ++ // Wait for write command request ++ status = dfc_wait_event(context, NDSR_WRCMDREQ, ++ &event_out, NAND_CMD_TIMEOUT, 0); ++ ++ if (status) /* Timeout */ ++ return status; ++ ++ cmd2 = (cmd>>8) & 0xFF; ++ ndcb0 = cmd | (dfc_mode->chip_select<<24) | ((cmd2?1:0)<<19); ++ ++ if (cmd == flash_info->read1) { ++ if (0xFFFFFFFF != addr) { ++ ndcb0 |= NDCB0_ADDR_CYC(4); ++ status = flash_info->addr2ndcb1(cmd, addr, &ndcb1); ++ if (status) ++ return status; ++ ndcb2 = (num_pages - 1) << 8; ++ } ++ } else if (cmd == flash_info->program) { ++ ndcb0 |= NDCB0_CMD_TYPE(1) | NDCB0_AUTO_RS; ++ ndcb0 |= NDCB0_ADDR_CYC(4); ++ status = flash_info->addr2ndcb1(cmd, addr, &ndcb1); ++ if (status) ++ return status; ++ ndcb2 = (num_pages-1) << 8; ++ } else if (cmd == flash_info->erase) { ++ ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS; ++ ndcb0 |= NDCB0_ADDR_CYC(3); ++ status = flash_info->addr2ndcb1(cmd, addr, &ndcb1); ++ if (status) ++ return status; ++ } else if (cmd == flash_info->read_id) { ++ ndcb0 |= NDCB0_CMD_TYPE(3); ++ } else if(cmd == flash_info->read_status) { ++ ndcb0 |= NDCB0_CMD_TYPE(4); ++ } else if(cmd == flash_info->reset) { ++ ndcb0 |= NDCB0_CMD_TYPE(5); ++ } else if (cmd == flash_info->lock) { ++ ndcb0 |= NDCB0_CMD_TYPE(5); ++ } else ++ return -EINVAL; ++ ++ /* Write to DFC command register */ ++ dfc_write(context, DFC_NDCB0, ndcb0); ++ dfc_write(context, DFC_NDCB0, ndcb1); ++ dfc_write(context, DFC_NDCB0, ndcb2); ++ ++ return 0; ++} ++ ++/****************************************************************************** ++ dfc_stop ++ ++ Description: ++ This function clears ND_RUN bit of NDCR. ++ Input Parameters: ++ context--Pointer to DFC context structure ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void dfc_stop(struct dfc_context *context) ++{ ++ unsigned int ndcr; ++ ndcr = dfc_read(context, DFC_NDCR); ++ dfc_write(context, DFC_NDCR, (ndcr & ~NDCR_ND_RUN)); ++ ndcr = dfc_read(context, DFC_NDCR); ++ ++ return; ++} ++ ++int dfc_setup_cmd_dma(struct dfc_context *context, ++ uint16_t cmd, uint32_t addr, int num_pages, ++ uint32_t *buf, uint32_t buf_phys, ++ uint32_t next_desc_phys, uint32_t dma_int_en, ++ struct pxa_dma_desc *dma_desc) ++{ ++ struct dfc_flash_info *flash_info = context->flash_info; ++ struct dfc_mode *dfc_mode = context->dfc_mode; ++ uint8_t cmd2; ++ uint32_t event_out; ++ uint32_t ndcb0=0, ndcb1=0, ndcb2=0, ndcr; ++ int status; ++ ++ /* ++ * It is a must to set ND_RUN firstly, then write command buffer ++ * If conversely,it does not work ++ */ ++ dfc_write(context, DFC_NDSR, NDSR_MASK); ++ ++ /* Set ND_RUN */ ++ ndcr = dfc_read(context, DFC_NDCR); ++ ndcr |= NDCR_ND_RUN; ++ dfc_write(context, DFC_NDCR, ndcr); ++ ++ /* Wait for write command request */ ++ status = dfc_wait_event(context, NDSR_WRCMDREQ, ++ &event_out, NAND_CMD_TIMEOUT, 0); ++ ++ if (status) ++ return status; /* Timeout */ ++ ++ cmd2 = (cmd>>8) & 0xFF; ++ ndcb0 = cmd | (dfc_mode->chip_select<<24) | ((cmd2?1:0)<<19); ++ ++ if (cmd == flash_info->read1) { ++ if (0xFFFFFFFF != addr) { ++ ndcb0 |= NDCB0_ADDR_CYC(4); ++ status = flash_info->addr2ndcb1(cmd, addr, &ndcb1); ++ if (status) ++ return status; ++ ndcb2 = (num_pages-1) << 8; ++ } ++ } else if (cmd == flash_info->program) { ++ ndcb0 |= NDCB0_CMD_TYPE(1) | NDCB0_AUTO_RS; ++ ndcb0 |= NDCB0_ADDR_CYC(4); ++ ++ status = flash_info->addr2ndcb1(cmd, addr, &ndcb1); ++ if (status) ++ return status; ++ ndcb2 = (num_pages-1) << 8; ++ } else if (cmd == flash_info->erase) { ++ ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS; ++ ndcb0 |= NDCB0_ADDR_CYC(3); ++ ++ status = flash_info->addr2ndcb1(cmd, addr, &ndcb1); ++ if (status) ++ return status; ++ } else if (cmd == flash_info->read_id) { ++ ndcb0 |= NDCB0_CMD_TYPE(3); ++ } else if (cmd == flash_info->read_status) { ++ ndcb0 |= NDCB0_CMD_TYPE(4); ++ } else if (cmd == flash_info->reset) { ++ ndcb0 |= NDCB0_CMD_TYPE(5); ++ } else if (cmd == flash_info->lock) { ++ ndcb0 |= NDCB0_CMD_TYPE(5); ++ } else ++ return -EINVAL; ++ ++ *((uint32_t *)buf) = ndcb0; ++ *((uint32_t *)buf + 1) = ndcb1; ++ *((uint32_t *)buf + 2) = ndcb2; ++ ++ dma_int_en &= (DCMD_STARTIRQEN | DCMD_ENDIRQEN); ++ ++ dma_desc->ddadr = next_desc_phys; ++ dma_desc->dsadr = buf_phys; ++ dma_desc->dtadr = NDCB0_DMA_ADDR; ++ dma_desc->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG | dma_int_en | ++ DCMD_WIDTH4 | DCMD_BURST16 | 12; ++ return 0; ++} ++ ++int dfc_setup_data_dma(struct dfc_context* context, ++ uint16_t cmd, uint32_t buf_phys, ++ uint32_t next_desc_phys, uint32_t dma_int_en, ++ struct pxa_dma_desc* dma_desc) ++{ ++ struct dfc_flash_info * flash_info = context->flash_info; ++ int data_size, padding; ++ ++ dfc_get_pattern(context, cmd, &data_size, &padding); ++ ++ dma_desc->ddadr = next_desc_phys; ++ dma_int_en &= (DCMD_STARTIRQEN | DCMD_ENDIRQEN); ++ ++ if (cmd == flash_info->program) { ++ ++ dma_desc->dsadr = buf_phys; ++ dma_desc->dtadr = NDDB_DMA_ADDR; ++ dma_desc->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG | dma_int_en | ++ DCMD_WIDTH4 | DCMD_BURST32 | data_size; ++ ++ } else if (cmd == flash_info->read1 || cmd == flash_info->read_id || ++ cmd == flash_info->read_status) { ++ ++ dma_desc->dsadr = NDDB_DMA_ADDR; ++ dma_desc->dtadr = buf_phys; ++ dma_desc->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC | dma_int_en | ++ DCMD_WIDTH4 | DCMD_BURST32 | data_size; ++ } ++ else ++ return -EINVAL; ++ return 0; ++} ++ ++void dfc_start_cmd_dma(struct dfc_context* context, struct pxa_dma_desc* dma_desc) ++{ ++ DRCMR99 = DRCMR_MAPVLD | context->cmd_dma_ch; /* NAND CMD DRCMR */ ++ DDADR(context->cmd_dma_ch) = (uint32_t)dma_desc; ++ DCSR(context->cmd_dma_ch) |= DCSR_RUN; ++} ++ ++void dfc_start_data_dma(struct dfc_context* context, struct pxa_dma_desc* dma_desc) ++{ ++ DRCMR97 = DRCMR_MAPVLD | context->data_dma_ch; ++ DDADR(context->data_dma_ch) = (uint32_t)dma_desc; ++ DCSR(context->data_dma_ch) |= DCSR_RUN; ++} ++ ++/****************************************************************************** ++ dfc_read_fifo_partial ++ ++ Description: ++ This function reads data from data buffer of DFC.Bytes can be any less than ++ or equal to data_size, the left is ignored by ReadFIFO though they will be ++ read from NDDB to clear data buffer. ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ nbytes ++ Indicating how much data should be read into buffer. ++ data_size ++ Specifing length of data transferred to/from DFC, which includes ++ padding bytes ++ Output Parameters: ++ pBuffer ++ Pointer to the data buffer where data should be placed. ++ Returns: ++ None ++*******************************************************************************/ ++void dfc_read_fifo_partial(struct dfc_context *context, uint8_t *buffer, ++ int nbytes, int data_size) ++{ ++ uint32_t data = 0; ++ uint32_t i = 0; ++ uint32_t bytes_multi; ++ uint32_t bytes_remain; ++ ++ ++ if (1 == data_size) { ++ data = dfc_read(context, DFC_NDDB) & 0xFF; ++ *buffer++ = (uint8_t)data; ++ } else if (2 == data_size) { ++ data = dfc_read(context, DFC_NDDB) & 0xFFFF; ++ *buffer++ = data & 0xFF; ++ *buffer++ = (data >> 8) & 0xFF; ++ } else { ++ bytes_multi = (nbytes & 0xFFFFFFFC); ++ bytes_remain = nbytes & 0x03; ++ ++ i = 0; ++ /* Read the bytes_multi*4 bytes data */ ++ while (i < bytes_multi) { ++ data = dfc_read(context, DFC_NDDB); ++ /* FIXME: we don't know whether the buffer ++ * align to 4 bytes or not. Cast the buffer ++ * to int is not safe here. Especially under ++ * gcc 4.x. Used memcpy here. But the memcpy ++ * may be not correct on BE architecture. ++ * --by Yin, Fengwei ++ */ ++ memcpy(buffer, &data, sizeof(data)); ++ i += sizeof(data); ++ buffer += sizeof(data); ++ } ++ ++ /* Read the left bytes_remain bytes data */ ++ if (bytes_remain) { ++ data = dfc_read(context, DFC_NDDB); ++ for (i = 0; i < bytes_remain; i++) ++ *buffer++ = (uint8_t)((data >> (8*i)) & 0xFF); ++ } ++ ++ /* When read the remain bytes, we always read 4 bytes data ++ * to DFC. So the data_size should subtract following number. ++ */ ++ data_size -= bytes_multi + (bytes_remain ? sizeof(data) : 0); ++ ++ /* We need Read data_size bytes data totally */ ++ while (data_size > 0) { ++ data = dfc_read(context, DFC_NDDB); ++ data_size -= sizeof(data); ++ } ++ ++/* ++ while(i < ((uint32_t)data_size) ) { ++ if (i < bytes_multi) { ++ temp = (uint32_t *)buffer; ++ *temp = dfc_reg->nddb; ++ } else if (i == bytes_multi && bytes_remain){ ++ uint32_t j = 0; ++ data = dfc_reg->nddb; ++ while (j++ < bytes_remain) { ++ *buffer++ = (uint8_t) \ ++ ((data>>(8*j)) & 0xFF); ++ } ++ } else { ++ data = dfc_reg->nddb; ++ } ++ i += 4; ++ buffer += 4; ++ } ++*/ ++ } ++ return; ++} ++ ++/****************************************************************************** ++ dfc_write_fifo_partial ++ ++ Description: ++ Write to data buffer of DFC from a buffer. Bytes can be same as ++ data_size, also can be data_size-padding, but can¡¯t be random value, ++ the left will be automatically padded by WriteFIFO. ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ bytes ++ Indicating how much data should be read into buffer. ++ data_size ++ Specifing length of data transferred to/from DFC, which includes ++ padding bytes ++ buffer ++ Pointer to the data buffer where data will be taken from to be written ++ to DFC data buffer ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void dfc_write_fifo_partial(struct dfc_context *context, uint8_t *buffer, ++ int nbytes, int data_size) ++{ ++ uint32_t i = 0; ++ ++ uint32_t bytes_multi = (nbytes & 0xFFFFFFFC); ++ uint32_t bytes_remain = nbytes & 0x03; ++ uint32_t temp; ++ /* ++ * caller guarantee buffer contains appropriate data thereby ++ * it is impossible for nbytes not to be a multiple of 4 byte ++ */ ++ ++ /* Write the bytes_multi*4 bytes data */ ++ while (i < bytes_multi) { ++ temp = buffer[0] | buffer[1] << 8 | ++ buffer[2] << 16 | buffer[3] << 24; ++ dfc_write(context, DFC_NDDB, temp); ++ buffer += 4; ++ i += 4; ++ } ++ ++ /* Write the left bytes_remain bytes data */ ++ if (bytes_remain) { ++ temp = 0xFFFFFFFF; ++ for (i = 0; i < bytes_remain; i++) ++ temp &= *buffer++ << i*8; ++ ++ dfc_write(context, DFC_NDDB, temp); ++ } ++ ++ /* When write the remain bytes, we always write 4 bytes data ++ * to DFC. So the data_size should subtract following number. ++ */ ++ data_size -= bytes_multi + (bytes_remain ? sizeof(temp) : 0); ++ ++ while (data_size > 0) { ++ dfc_write(context, DFC_NDDB, 0xFFFFFFFF); ++ data_size -= 4; ++ } ++ ++/* ++ while (i < ((uint32_t)data_size)) { ++ if (i < bytes_multi) { ++ temp = (uint32_t *)buffer; ++ dfc_reg->nddb = *temp; ++ } ++ else if (i == bytes_multi && bytes_remain) { ++ uint32_t j = 0, data = 0xFFFFFFFF; ++ while (j < bytes_remain) { ++ data &= (uint8_t)(*buffer) << j; ++ buffer++; ++ j++; ++ } ++ dfc_reg->nddb = data; ++ } ++ else { ++ dfc_reg->nddb = 0xFFFFFFFF; ++ } ++ i += 4; ++ buffer += 4; ++ } ++*/ ++ ++ return; ++} ++ ++/****************************************************************************** ++ dfc_read_fifo ++ Description: ++ This function reads data from data buffer of DFC.Bytes can be any less ++ than or equal to data_size, the left is ignored by ReadFIFO though they ++ will be read from NDDB to clear data buffer. ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ nbytes ++ Indicating how much data should be read into buffer. ++ data_size ++ Specifing length of data transferred to/from DFC, which includes ++ padding bytes ++ Output Parameters: ++ buffer ++ Pointer to the data buffer where data should be placed. ++ Returns: ++ None ++*******************************************************************************/ ++ ++void dfc_read_fifo(struct dfc_context *context, uint8_t *buffer, int nbytes) ++{ ++ uint32_t i = 0; ++ ++ uint32_t bytes_multi = (nbytes & 0xFFFFFFFC); ++ uint32_t bytes_remain = nbytes & 0x03; ++ uint32_t temp; ++ ++ /* Read the bytes_multi*4 bytes data */ ++ while (i < bytes_multi) { ++ temp = dfc_read(context, DFC_NDDB); ++ /* FIXME: we don't know whether the buffer ++ * align to 4 bytes or not. Cast the buffer ++ * to int is not safe here. Especially under ++ * gcc 4.x. Used memcpy here. But the memcpy ++ * may be not correct on BE architecture. ++ * --by Yin, Fengwei ++ */ ++ memcpy(buffer, &temp, sizeof(temp)); ++ i += sizeof(temp); ++ buffer += sizeof(temp); ++ } ++ ++ /* Read the left bytes_remain bytes data */ ++ temp = dfc_read(context, DFC_NDDB); ++ for (i = 0; i < bytes_remain; i++) { ++ *buffer++ = (uint8_t)((temp >> (8*i)) & 0xFF); ++ } ++ ++/* ++ while (i < bytes_multi) { ++ temp = (uint32_t *)buffer; ++ *temp = dfc_reg->nddb; ++ i += 4; ++ buffer += 4; ++ } ++ ++ if (bytes_remain) { ++ data = dfc_reg->nddb; ++ for (i = 0; i < bytes_remain; i++) { ++ *buffer++ = (uint8_t)((data>>(8*i)) & 0xFF); ++ } ++ } ++*/ ++ ++ return; ++} ++ ++/****************************************************************************** ++ dfc_write_fifo ++ Description: ++ Write to data buffer of DFC from a buffer.Bytes can be same as data_size, ++ also can be data_size-padding, but can¡¯t be random value, the left will ++ be automatically padded by WriteFIFO. ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ nbytes ++ Indicating how much data should be read into buffer. ++ data_size ++ Specifing length of data transferred to/from DFC, which includes ++ padding bytes ++ buffer ++ Pointer to the data buffer where data will be taken from to be written to ++ DFC data buffer ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void dfc_write_fifo(struct dfc_context *context, uint8_t *buffer, int nbytes) ++{ ++ uint32_t bytes_multi = (nbytes & 0xFFFFFFFC); ++ uint32_t bytes_remain = nbytes & 0x03; ++ uint32_t i=0; ++ uint32_t temp; ++ ++ /* Write the bytes_multi*4 bytes data */ ++ while (i < bytes_multi) { ++ temp = buffer[0] | buffer[1] << 8 | ++ buffer[2] << 16 | buffer[3] << 24; ++ dfc_write(context, DFC_NDDB, temp); ++ buffer += 4; ++ i += 4; ++ } ++ ++ /* Write the left bytes_remain bytes data */ ++ temp = 0xFFFFFFFF; ++ for (i = 0; i < bytes_remain; i++) ++ temp &= *buffer++ << i*8; ++ dfc_write(context, DFC_NDDB, temp); ++ ++/* ++ while (i < nbytes) { ++ temp = (uint32_t *)buffer; ++ dfc_reg->nddb = *temp; ++ i += 4; ++ buffer += 4; ++ } ++*/ ++} ++ ++/****************************************************************************** ++ dfc_read_badblock_addr ++ ++ Description: ++ This function reads bad block address in units of block starting from 0 ++ if bad block is detected. It takes into the account if the operation is ++ for CS0 or CS1 depending on settings of chip_select parameter of DFC ++ Mode structure. ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ Output Parameters: ++ pBadBlockAddr ++ Used to retrieve bad block address back to caller if bad block is ++ detected ++ Returns: ++ None ++*******************************************************************************/ ++void dfc_read_badblock_addr(struct dfc_context *context, uint32_t *bbaddr) ++{ ++ uint32_t ndbdr; ++ if (0 == context->dfc_mode->chip_select) ++ ndbdr = dfc_read(context, DFC_NDBDR0); ++ else ++ ndbdr = dfc_read(context, DFC_NDBDR1); ++ ++ if (512 == context->flash_info->page_size) { ++ ndbdr = (ndbdr >> 5) & 0xFFF; ++ *bbaddr = ndbdr; ++ } else if (2048 == context->flash_info->page_size) { ++ /* 16 bits LB */ ++ ndbdr = (ndbdr >> 8); ++ *bbaddr = ndbdr; ++ } ++ return; ++} ++ ++/****************************************************************************** ++ dfc_enable_int ++ ++ Description: ++ This function is used to enable DFC interrupts. The bits in int_mask ++ will be used to unmask NDCR register to enable corresponding interrupts. ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ int_mask ++ Specifies what interrupts to enable ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void dfc_enable_int(struct dfc_context *context, uint32_t int_mask) ++{ ++ uint32_t ndcr; ++ ++ ndcr = dfc_read(context, DFC_NDCR); ++ ndcr &= ~int_mask; ++ dfc_write(context, DFC_NDCR, ndcr); ++ ++ ndcr = dfc_read(context, DFC_NDCR); ++ return; ++} ++ ++/****************************************************************************** ++ dfc_disable_int ++ ++ Description: ++ This function is used to disable DFC interrupts. ++ The bits inint_mask will be used to mask NDCR register to disable ++ corresponding interrupts. ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ int_mask ++ Specifies what interrupts to disable ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void dfc_disable_int(struct dfc_context *context, uint32_t int_mask) ++{ ++ uint32_t ndcr; ++ ++ ndcr = dfc_read(context, DFC_NDCR); ++ ndcr |= int_mask; ++ dfc_write(context, DFC_NDCR, ndcr); ++ ++ ndcr = dfc_read(context, DFC_NDCR); ++ return; ++} ++ ++/****************************************************************************** ++ dfc_clear_int ++ ++ Description: ++ This function is used to disable DFC interrupts. ++ The bits in int_mask will be used to clear corresponding interrupts ++ in NDCR register ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ int_mask ++ Specifies what interrupts to clear ++ Output Parameters: ++ None ++ Returns: ++ None ++*******************************************************************************/ ++void dfc_clear_int(struct dfc_context *context, uint32_t int_mask) ++{ ++ dfc_write(context, DFC_NDSR, int_mask); ++ ++ dfc_read(context, DFC_NDSR); ++ return; ++} ++ ++/* ++ * high level primitives ++ */ ++ ++/****************************************************************************** ++ dfc_init ++ ++ Description: ++ This function does entire DFC initialization according to the NAND ++ flash type currently used with platform, including setting MFP, set ++ flash timing, set DFC mode, configuring specified flash parameters ++ in DFC, clear ECC logic and page count register. ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ Output Parameters: ++ None ++ Returns: ++ 0 ++ if MFPRs are set correctly ++ -EINVAL ++ if specified flash is not support by check bytes per page and pages per ++ block ++******************************************************************************/ ++ ++static mfp_cfg_t pxa300_nand_cfg[] = { ++ /* NAND */ ++ MFP_CFG_X(DF_INT_RnB, AF0, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nRE_nOE, AF1, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nWE, AF1, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_CLE_nOE, AF0, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nADV1_ALE, AF1, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nCS0, AF1, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nCS1, AF0, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_IO0, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO1, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO2, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO3, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO4, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO5, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO6, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO7, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO8, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO9, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO10, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO11, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO12, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO13, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO14, AF1, DS08X, PULL_LOW), ++}; ++ ++#define ARRAY_AND_SIZE(x) (x), ARRAY_SIZE(x) ++ ++int dfc_init(struct dfc_context* context, int type) ++{ ++ int status; ++ struct dfc_flash_info * flash_info; ++ uint32_t ndcr = 0x00000FFF; /* disable all interrupts */ ++ ++ status = dfc_get_flash_info(type, &flash_info); ++ if (status) ++ return status; ++ context->flash_info = flash_info; ++ ++ pxa3xx_mfp_config(ARRAY_AND_SIZE(pxa300_nand_cfg)); ++ //enable_dfc_pins(); ++ ++ dfc_set_timing(context, &context->flash_info->timing); ++ ++ if (flash_info->enable_arbiter) ++ ndcr |= NDCR_ND_ARB_EN; ++ ++ if (64 == flash_info->page_per_block) ++ ndcr |= NDCR_PG_PER_BLK; ++ else if (32 != flash_info->page_per_block) ++ return -EINVAL; ++ ++ if (flash_info->row_addr_start) ++ ndcr |= NDCR_RA_START; ++ ++ ndcr |= (flash_info->read_id_bytes)<<16; ++ ++ ndcr |= (flash_info->dfc_mode) << 21; ++ ++ if (flash_info->ncsx) ++ ndcr |= NDCR_NCSX; ++ ++ if (2048 == flash_info->page_size) ++ ndcr |= NDCR_PAGE_SZ; ++ else if (512 != flash_info->page_size) ++ return -EINVAL; ++ ++ if (16 == flash_info->flash_width) ++ ndcr |= NDCR_DWIDTH_M; ++ else if (8 != flash_info->flash_width) ++ return -EINVAL; ++ ++ if (16 == flash_info->dfc_width) ++ ndcr |= NDCR_DWIDTH_C; ++ else if (8 != flash_info->dfc_width) ++ return -EINVAL; ++ ++ dfc_write(context, DFC_NDCR, ndcr); ++ ++ dfc_set_dma(context); ++ dfc_set_ecc(context); ++ dfc_set_spare(context); ++ ++ return 0; ++} ++ ++/****************************************************************************** ++ dfc_init_no_gpio ++ ++ Description: ++ This function does entire DFC initialization according to the NAND ++ flash type currently used with platform, including set flash timing, ++ set DFC mode, configuring specified flash parameters in DFC, clear ++ ECC logic and page count register. The only difference with dfc_init ++ is that it does not set MFP&GPIO, very useful in OS loader ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ Output Parameters: ++ None ++ Returns: ++ 0 ++ if MFPRs are set correctly ++ -EINVAL ++ if specified flash is not support by check bytes per page and pages ++ per block ++******************************************************************************/ ++int dfc_init_no_gpio(struct dfc_context* context, int type) ++{ ++ struct dfc_flash_info * flash_info; ++ uint32_t ndcr = 0x00000FFF; /* disable all interrupts */ ++ int status; ++ ++ status = dfc_get_flash_info(type, &flash_info); ++ if (status) ++ return status; ++ context->flash_info = flash_info; ++ ++ dfc_set_timing(context, &context->flash_info->timing); ++ ++ if (flash_info->enable_arbiter) ++ ndcr |= NDCR_ND_ARB_EN; ++ ++ if (64 == flash_info->page_per_block) ++ ndcr |= NDCR_PG_PER_BLK; ++ else if (32 != flash_info->page_per_block) ++ return -EINVAL; ++ ++ if (flash_info->row_addr_start) ++ ndcr |= NDCR_RA_START; ++ ++ ndcr |= (flash_info->read_id_bytes)<<16; ++ ++ ndcr |= (flash_info->dfc_mode) << 21; ++ ++ if (flash_info->ncsx) ++ ndcr |= NDCR_NCSX; ++ ++ if (2048 == flash_info->page_size) ++ ndcr |= NDCR_PAGE_SZ; ++ else if (512 != flash_info->page_size) ++ return -EINVAL; ++ ++ if (16 == flash_info->flash_width) ++ ndcr |= NDCR_DWIDTH_M; ++ else if (8 != flash_info->flash_width) ++ return -EINVAL; ++ ++ if (16 == flash_info->dfc_width) ++ ndcr |= NDCR_DWIDTH_C; ++ else if (8 != flash_info->dfc_width) ++ return -EINVAL; ++ ++ dfc_write(context, DFC_NDCR, ndcr); ++ ++ dfc_set_dma(context); ++ dfc_set_ecc(context); ++ dfc_set_spare(context); ++ ++ return 0; ++} ++ ++/* ++ * This macro will be used in following NAND operation functions. ++ * It is used to clear command buffer to ensure cmd buffer is empty ++ * in case of operation is timeout ++ */ ++#define ClearCMDBuf() do { \ ++ dfc_stop(context); \ ++ udelay(NAND_OTHER_TIMEOUT); \ ++ } while (0) ++ ++/****************************************************************************** ++ dfc_reset_flash ++ ++ Description: ++ It reset the flash. The function can be called at any time when the ++ device is in Busy state during random read/program/erase mode and ++ reset operation will abort all these operations. After reset operation ++ the device is ready to wait for next command ++ Input Parameters: ++ context ++ Pointer to DFC context structure ++ Output Parameters: ++ None ++ Returns: ++ 0 ++ execution succeeds ++ -ETIME ++ if timeout ++*******************************************************************************/ ++int dfc_reset_flash(struct dfc_context *context) ++{ ++ struct dfc_flash_info *flash_info = context->flash_info; ++ uint32_t event, event_out; ++ unsigned long timeo; ++ int status; ++ ++ /* Send command */ ++ dfc_send_cmd(context, (uint16_t)flash_info->reset, 0xFFFFFFFF, 0); ++ ++ event = (context->dfc_mode->chip_select)? \ ++ NDSR_CS1_CMDD : NDSR_CS0_CMDD; ++ ++ /* Wait for CMDDM(command done successfully) */ ++ status = dfc_wait_event(context, event, &event_out, ++ NAND_OTHER_TIMEOUT, 0); ++ ++ if (status) { ++ ClearCMDBuf(); ++ return status; ++ } ++ ++ ++ /* Wait until flash device is stable or timeout (10ms) */ ++ timeo = jiffies + HZ; ++ do { ++ if (monahans_df_dev_ready(context->mtd)) ++ break; ++ } while (time_before(jiffies, timeo)); ++ ++ return 0; ++} ++ ++int dfc_readid(struct dfc_context *context, uint32_t *id) ++{ ++ struct dfc_flash_info *flash_info = context->flash_info; ++ uint32_t event_out; ++ int status; ++ char tmp[DFC_DATA_SIZE_ID]; ++ ++ /* Send command */ ++ status = dfc_send_cmd(context, (uint16_t)flash_info->read_id, ++ 0xFFFFFFFF, 0); ++ if (status) { ++ ClearCMDBuf(); ++ return status; ++ } ++ ++ /* Wait for CMDDM(command done successfully) */ ++ status = dfc_wait_event(context, NDSR_RDDREQ, &event_out, ++ NAND_OTHER_TIMEOUT, 0); ++ if (status) { ++ ClearCMDBuf(); ++ return status; ++ } ++ dfc_read_fifo_partial(context, (unsigned char *)tmp, ++ context->flash_info->read_id_bytes, DFC_DATA_SIZE_ID); ++ ++ *id = tmp[0] | (tmp[1] << 8); ++ return 0; ++} ++ ++#define ERR_NONE 0x0 ++#define ERR_DMABUSERR (-0x01) ++#define ERR_SENDCMD (-0x02) ++#define ERR_DBERR (-0x03) ++#define ERR_BBERR (-0x04) ++#define ERR_BUSY (-0x05) ++ ++#define STATE_CMD_SEND 0x1 ++#define STATE_CMD_HANDLE 0x2 ++#define STATE_DMA_TRANSFER 0x3 ++#define STATE_DMA_DONE 0x4 ++#define STATE_READY 0x5 ++#define STATE_SUSPENDED 0x6 ++#define STATE_DATA_TRANSFER 0x7 ++ ++#define NAND_RELOC_MAX 127 ++#define NAND_RELOC_HEADER 0x524e ++#define MAX_CHIP 1 ++#define NAND_CMD_DMA_LEN 12 ++ ++#define MAX_TIM_SIZE 0x1000 ++#define MAX_BBT_SLOTS 24 ++ ++struct reloc_item { ++ unsigned short from; ++ unsigned short to; ++}; ++ ++struct reloc_table { ++ unsigned short header; ++ unsigned short total; ++ struct reloc_item reloc[NAND_RELOC_MAX]; ++}; ++ ++struct monahans_dfc_info { ++ unsigned int state; ++ struct dfc_context *context; ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ dma_addr_t data_buf_addr; ++ char *data_buf; ++ int data_dma; ++ struct pxa_dma_desc *data_desc; ++ dma_addr_t data_desc_addr; ++ dma_addr_t cmd_buf_addr; ++ char *cmd_buf; ++ int cmd_dma; ++ struct pxa_dma_desc *cmd_desc; ++ dma_addr_t cmd_desc_addr; ++ u64 dma_mask; ++#else ++ char *data_buf; ++#endif ++ u32 current_slot; ++ struct reloc_table table; ++ unsigned int table_init; ++ /* relate to the command */ ++ unsigned int cmd; ++ unsigned int addr; ++ unsigned int column; ++ int retcode; ++ unsigned int buf_count; ++ struct completion cmd_complete; ++}; ++ ++static struct dfc_mode dfc_mode = ++{ ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ 1, /* enable DMA */ ++#else ++ 0, ++#endif ++ 1, /* enable ECC */ ++ 1, /* enable SPARE */ ++ 0, /* CS0 */ ++}; ++ ++ ++struct dfc_context dfc_context = ++{ ++ 0, /* Initialized at function monahans_df_init() */ ++ &dfc_mode, ++ 0, /* data dma channel */ ++ 0, /* cmd dma channel */ ++ NULL, /* &zylonite_flashinfo */ ++}; ++ ++ ++/* ++ * MTD structure for Zylonite board ++ */ ++static struct mtd_info *monahans_mtd = NULL; ++ ++/* ++ * BootRom and XDB will use last 127 block, and they will keep all the status ++ * of the bootloader and image, so skip the first 2M size and last 2M size ++ */ ++static struct mtd_partition partition_info[] = { ++ { ++ name: "Bootloader", ++//#ifdef CONFIG_CPU_MONAHANS_LV ++ size: 0x00060000, ++//#else ++// size: 0x00040000, ++//#endif ++ offset: 0, ++ mask_flags: MTD_WRITEABLE /* force read-only */ ++ },{ ++ name: "Kernel", ++ size: 0x00200000, ++//#ifdef CONFIG_CPU_MONAHANS_LV ++ offset: 0x00060000, ++//#else ++// offset: 0x00040000, ++//#endif ++ mask_flags: MTD_WRITEABLE /* force read-only */ ++ },{ ++ name: "Filesystem", ++ size: 0x05000000, ++//#ifdef CONFIG_CPU_MONAHANS_LV ++ offset: 0x00260000, ++//#else ++// offset: 0x00240000, ++//#endif ++ }, { ++ name: "MassStorage", ++ size: 0x0, /* It will be set at probe function */ ++ offset: MTDPART_OFS_APPEND /* Append after fs section */ ++ }, { ++ name: "BBT", ++ size: 0x0, /* It will be set at probe function */ ++ offset: MTDPART_OFS_APPEND,/* Append after fs section */ ++ mask_flags: MTD_WRITEABLE /* force read-only */ ++ } ++}; ++ ++#define PART_NUM ARRAY_SIZE(partition_info) ++ ++/* MHN_OBM_V2 is related to BBT in MOBM V2 ++ * MHN_OBM_V3 is related to BBT in MOBM V3 ++ */ ++enum { ++ MHN_OBM_NULL = 0, ++ MHN_OBM_V1, ++ MHN_OBM_V2, ++ MHN_OBM_V3, ++ MHN_OBM_INVAL ++} MHN_OBM_TYPE; ++ ++static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; ++static uint8_t scan_main_bbt_pattern[] = { 'p', 'x', 'a', '1' }; ++static uint8_t scan_mirror_bbt_pattern[] = { '0', 'a', 'x', 'p' }; ++ ++static struct nand_bbt_descr monahans_bbt_default = { ++ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE ++ | NAND_BBT_2BIT | NAND_BBT_VERSION, ++ .maxblocks = 2, ++ .len = 2, ++ .offs = 0, ++ .pattern = scan_ff_pattern, ++}; ++ ++static struct nand_bbt_descr monahans_bbt_main = { ++ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE ++ | NAND_BBT_2BIT | NAND_BBT_VERSION, ++ .veroffs = 6, ++ .maxblocks = 2, ++ .offs = 2, ++ .len = 4, ++ .pattern = scan_main_bbt_pattern, ++}; ++ ++static struct nand_bbt_descr monahans_bbt_mirror = { ++ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE ++ | NAND_BBT_2BIT | NAND_BBT_VERSION, ++ .veroffs = 6, ++ .maxblocks = 2, ++ .offs = 2, ++ .len = 4, ++ .pattern = scan_mirror_bbt_pattern, ++}; ++ ++#if 0 ++static struct nand_bbt_descr monahans_bbt_main = { ++ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE ++ | NAND_BBT_2BIT | NAND_BBT_VERSION, ++ .veroffs = 2, ++ .maxblocks = 2, ++ .offs = 0x0, ++ .len = 2, ++ .pattern = scan_ff_pattern ++}; ++static struct nand_bbt_descr monahans_bbt_mirror = { ++ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE ++ | NAND_BBT_2BIT | NAND_BBT_VERSION, ++ .veroffs = 2, ++ .maxblocks = 2, ++ .offs = 0x0, ++ .len = 2, ++ .pattern = scan_ff_pattern ++}; ++#endif ++ ++static struct nand_ecclayout monahans_lb_nand_oob = { ++ .eccbytes = 24, ++ .eccpos = { ++ 40, 41, 42, 43, 44, 45, 46, 47, ++ 48, 49, 50, 51, 52, 53, 54, 55, ++ 56, 57, 58, 59, 60, 61, 62, 63}, ++ .oobfree = { {2, 38} } ++}; ++ ++/* ++ * Monahans OOB size is only 8 bytes, and the rest 8 bytes is controlled by ++ * hardware for ECC. We construct virutal ECC buffer. Acutally, ECC is 6 bytes ++ * and the remain 2 bytes are reserved. ++ */ ++static struct nand_ecclayout monahans_sb_nand_oob = { ++ .eccbytes = 6, ++ .eccpos = {8, 9, 10, 11, 12, 13 }, ++ .oobfree = { {2, 6} } ++}; ++ ++ ++static inline int is_buf_blank(u8 * buf, int size) ++{ ++ int i = 0; ++ while(i < size) { ++ if (*((unsigned long *)(buf + i)) != 0xFFFFFFFF) ++ return 0; ++ i += 4; ++ } ++ if (i > size) { ++ i -= 4; ++ while( i < size) { ++ if(*(buf + i) != 0xFF) ++ return 0; ++ i++; ++ } ++ } ++ return 1; ++} ++ ++static void print_buf(char *buf, int num) ++{ ++ int i = 0; ++ ++ while (i < num) { ++ printk(KERN_ERR "0x%08x: %02x %02x %02x %02x %02x %02x %02x" ++ " %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", ++ (unsigned int) (i), buf[i], buf[i+1], buf[i+2], ++ buf[i+3], buf[i+4], buf[i+5], buf[i+6], buf[i+7], ++ buf[i+8], buf[i+9], buf[i+10],buf[i+11], buf[i+12], ++ buf[i+13], buf[i+14], buf[i+15]); ++ i += 16; ++ } ++} ++ ++static int inline enable_dfc_dma(struct dfc_context *context, int enable) ++{ ++ int ret = dfc_mode.enable_dma; ++ unsigned long ndcr; ++ ++ if (!enable) { ++ ndcr = dfc_read(context, DFC_NDCR); ++ ndcr &= ~NDCR_DMA_EN; ++ dfc_write(context, DFC_NDCR, ndcr); ++ dfc_mode.enable_dma = 0; ++ } else { ++ ndcr = dfc_read(context, DFC_NDCR); ++ ndcr |= NDCR_DMA_EN; ++ dfc_write(context, DFC_NDCR, ndcr); ++ dfc_mode.enable_dma = 1; ++ } ++ return ret; ++} ++ ++ ++static void inline dump_info(struct monahans_dfc_info *info) ++{ ++ if (!info) ++ return; ++ ++ printk(KERN_ERR "cmd:0x%x; addr:0x%x; retcode:%d; state:%d \n", ++ info->cmd, info->addr, info->retcode, info->state); ++} ++ ++static void inline enable_hw_ecc(struct dfc_context* context, int enable) ++{ ++ unsigned long ndcr; ++ ++ if (!enable) { ++ ndcr = dfc_read(context, DFC_NDCR); ++ ndcr &= ~NDCR_ECC_EN; ++ dfc_write(context, DFC_NDCR, ndcr); ++ dfc_mode.enable_ecc = 0; ++ } ++ else { ++ ndcr = dfc_read(context, DFC_NDCR); ++ ndcr |= NDCR_ECC_EN; ++ dfc_write(context, DFC_NDCR, ndcr); ++ dfc_mode.enable_ecc = 1; ++ } ++} ++ ++/* ++ * Now, we are not sure that the NDSR_RDY mean the flash is ready. ++ * Need more test. ++ */ ++static int monahans_df_dev_ready(struct mtd_info *mtd) ++{ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ ++ struct dfc_context* context = info->context; ++ ++ return ((dfc_read(context, DFC_NDSR) & NDSR_RDY)); ++} ++ ++/* each read, we can only read 4bytes from NDDB, we must buffer it */ ++static u_char monahans_df_read_byte(struct mtd_info *mtd) ++{ ++ char retval = 0xFF; ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ ++ if (info->column < info->buf_count) { ++ /* Has just send a new command? */ ++ retval = info->data_buf[info->column++]; ++ } ++ return retval; ++} ++ ++static void monahans_df_write_byte(struct mtd_info *mtd, u8 byte) ++{ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ info->data_buf[info->column++] = byte; ++} ++ ++static u16 monahans_df_read_word(struct mtd_info *mtd) ++{ ++ u16 retval = 0xFFFF; ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ ++ if (!(info->column & 0x01) && info->column < info->buf_count) { ++ retval = *((u16 *)(info->data_buf+info->column)); ++ info->column += 2; ++ } ++ return retval; ++} ++ ++static void monahans_df_write_word(struct mtd_info *mtd, u16 word) ++{ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ ++ if (!(info->column & 0x01) && info->column < info->buf_count) { ++ *((u16 *)(info->data_buf+info->column)) = word; ++ info->column += 2; ++ } ++} ++ ++static void monahans_df_read_buf(struct mtd_info *mtd, u_char *buf, int len) ++{ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ int real_len = min((unsigned int)len, info->buf_count - info->column); ++ ++ memcpy(buf, info->data_buf + info->column, real_len); ++ info->column += real_len; ++} ++ ++static void monahans_df_write_buf(struct mtd_info *mtd, ++ const u_char *buf, int len) ++{ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ int real_len = min((unsigned int)len, info->buf_count - info->column); ++ ++ memcpy(info->data_buf + info->column, buf, real_len); ++ info->column += real_len; ++} ++ ++static int monahans_df_verify_buf(struct mtd_info *mtd, ++ const u_char *buf, int len) ++{ ++ return 0; ++} ++ ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++static void monahans_dfc_cmd_dma_irq(int channel, void *data, ++ struct pt_regs *regs) ++{ ++ unsigned int dcsr; ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *)data; ++ struct dfc_context* context = info->context; ++ struct dfc_mode* dfc_mode = context->dfc_mode; ++ unsigned int intm; ++ ++ dcsr = DCSR(channel); ++ DCSR(channel) = dcsr; ++ ++ intm = (dfc_mode->chip_select) ? \ ++ (NDSR_CS1_BBD | NDSR_CS1_CMDD) : (NDSR_CS0_BBD | NDSR_CS0_CMDD); ++ ++ D1(printk("cmd dma interrupt, channel:%d, DCSR:0x%08x\n", \ ++ channel, dcsr)); ++ ++ if (dcsr & DCSR_BUSERR) { ++ info->retcode = ERR_DMABUSERR; ++ complete(&info->cmd_complete); ++ } else { ++ if ((info->cmd == NAND_CMD_READ0) || ++ (info->cmd == NAND_CMD_READOOB)|| \ ++ (info->cmd == NAND_CMD_READID) || \ ++ (info->cmd == NAND_CMD_STATUS)) { ++ dfc_enable_int(context, NDSR_RDDREQ | NDSR_DBERR); ++ } else if (info->cmd == NAND_CMD_PAGEPROG) ++ dfc_enable_int(context, NDSR_WRDREQ); ++ else if (info->cmd == NAND_CMD_ERASE1) ++ dfc_enable_int(context, intm); ++ } ++ ++ return; ++} ++ ++ ++static void monahans_dfc_data_dma_irq(int channel, void *data, ++ struct pt_regs *regs) ++{ ++ unsigned int dcsr, intm; ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *)data; ++ struct dfc_context* context = info->context; ++ struct dfc_mode* dfc_mode = context->dfc_mode; ++ ++ dcsr = DCSR(channel); ++ DCSR(channel) = dcsr; ++ ++ intm = (dfc_mode->chip_select) ? \ ++ (NDSR_CS1_BBD | NDSR_CS1_CMDD) : (NDSR_CS0_BBD | NDSR_CS0_CMDD); ++ ++ D1(printk("data dma interrupt, channel:%d, DCSR:0x%08x\n", ++ channel, dcsr)); ++ if (dcsr & DCSR_BUSERR) { ++ info->retcode = ERR_DMABUSERR; ++ complete(&info->cmd_complete); ++ } ++ ++ if (info->cmd == NAND_CMD_PAGEPROG) { ++ /* DMA interrupt may be interrupted by other IRQs*/ ++ info->state = STATE_DMA_DONE; ++ dfc_enable_int(context, intm); ++ } else { ++ info->state = STATE_READY; ++ complete(&info->cmd_complete); ++ } ++ ++} ++#endif ++ ++static irqreturn_t monahans_dfc_irq(int irq, void *devid) ++{ ++ unsigned int status, event, intm, cmd; ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *)devid; ++ struct dfc_context* context = info->context; ++ struct dfc_mode* dfc_mode = context->dfc_mode; ++ ++ intm = (dfc_mode->chip_select) ? \ ++ (NDSR_CS1_BBD | NDSR_CS1_CMDD) : (NDSR_CS0_BBD | NDSR_CS0_CMDD); ++ event = (dfc_mode->chip_select) ? \ ++ (NDSR_CS1_BBD | NDSR_CS1_CMDD) : (NDSR_CS0_BBD | NDSR_CS0_CMDD); ++ ++ status = dfc_read(context, DFC_NDSR); ++ D1(printk("DFC irq, NDSR:0x%x\n", status)); ++ if (status & (NDSR_RDDREQ | NDSR_DBERR)) { ++ if (status & NDSR_DBERR) { ++ info->retcode = ERR_DBERR; ++ } ++ ++ dfc_disable_int(context, NDSR_RDDREQ | NDSR_DBERR); ++ dfc_clear_int(context, NDSR_RDDREQ | NDSR_DBERR); ++ if (info->cmd == NAND_CMD_READID) ++ cmd = context->flash_info->read_id; ++ else if (info->cmd == NAND_CMD_STATUS) ++ cmd = context->flash_info->read_status; ++ else if (info->cmd == NAND_CMD_READ0 || ++ info->cmd == NAND_CMD_READOOB) ++ cmd = context->flash_info->read1; ++ else { ++ printk(KERN_ERR "No according command:0x%x happens\n", ++ info->cmd); ++ goto out; ++ } ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ info->state = STATE_DMA_TRANSFER; ++ dfc_start_data_dma(context, ++ (struct pxa_dma_desc*)info->data_desc_addr); ++#else ++ info->state = STATE_DATA_TRANSFER; ++ complete(&info->cmd_complete); ++#endif ++ } else if (status & NDSR_WRDREQ) { ++ dfc_disable_int(context, NDSR_WRDREQ); ++ dfc_clear_int(context, NDSR_WRDREQ); ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ info->state = STATE_DMA_TRANSFER; ++ dfc_start_data_dma(context, ++ (struct pxa_dma_desc*)info->data_desc_addr); ++#else ++ info->state = STATE_DATA_TRANSFER; ++ complete(&info->cmd_complete); ++#endif ++ } else if (status & event) { ++ if (status & NDSR_CS0_BBD) { ++ info->retcode = ERR_BBERR; ++ } ++ ++ dfc_disable_int(context, intm); ++ dfc_clear_int(context, event); ++ info->state = STATE_READY; ++ complete(&info->cmd_complete); ++ } ++out: ++ return IRQ_HANDLED; ++} ++ ++static int dfc_send_command(struct mtd_info *mtd, unsigned int cmd, ++ unsigned int addr, unsigned int num_pages, ++ unsigned int event) ++{ ++ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ struct dfc_context* context = info->context; ++ int status; ++ int ret; ++ ++ D1(printk("ready send command, cmd:0x%x, at address:0x%x," ++ " num_pages:%d, wait event:0x%x\n", cmd, addr, num_pages, event)); ++ ++ info->state = STATE_CMD_SEND; ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ status = dfc_setup_cmd_dma(context, cmd, addr, num_pages, ++ (uint32_t *)info->cmd_buf, info->cmd_buf_addr, ++ DDADR_STOP, DCMD_ENDIRQEN, info->cmd_desc); ++#else ++ status = dfc_send_cmd(context, cmd, addr, num_pages); ++#endif ++ if (status) { ++ info->retcode = ERR_SENDCMD; ++ dfc_stop(context); ++ udelay(20); ++ printk(KERN_ERR "fail send command\n"); ++ return info->retcode; ++ } ++ info->state = STATE_CMD_HANDLE; ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ dfc_setup_data_dma(context, cmd, info->data_buf_addr, ++ DDADR_STOP, DCMD_ENDIRQEN, info->data_desc); ++ dfc_start_cmd_dma(context, (struct pxa_dma_desc*)info->cmd_desc_addr); ++#endif ++#ifndef CONFIG_MTD_NAND_MONAHANS_DMA ++ dfc_enable_int(context, event); ++#endif ++ ret = wait_for_completion_timeout(&info->cmd_complete, 2*HZ); ++ if (!ret){ ++ printk(KERN_ERR "Command time out\n"); ++ dump_info(info); ++ } ++ D1(printk("command return, cmd:0x%x, retcode:%d\n", ++ info->cmd, info->retcode)); ++ return 0; ++} ++ ++static void monahans_df_command(struct mtd_info *mtd, unsigned command, ++ int column, int page_addr ) ++{ ++ struct nand_chip *this = (struct nand_chip *)(mtd->priv); ++ struct monahans_dfc_info *info = ++ (struct monahans_dfc_info *)(this->priv); ++ struct dfc_context *context = info->context; ++ struct dfc_flash_info * flash_info = context->flash_info; ++ int ret, pages_shift; ++ int status; ++#ifndef CONFIG_MTD_NAND_MONAHANS_DMA ++ int datasize; ++ int paddingsize; ++#endif ++ unsigned int to; ++ ++ D1(printk("command:0x%x at address:0x%x, column:0x%x\n", ++ command, page_addr, column)); ++ ++ if (info->state != STATE_READY) { ++ printk(KERN_ERR "CHIP is not ready.\n"); ++ dump_info(info); ++ info->retcode = ERR_BUSY; ++ return; ++ } ++ info->retcode = ERR_NONE; ++ pages_shift = this->phys_erase_shift - this->page_shift; ++ if (info->table_init) { ++ to = search_rel_block((page_addr >> pages_shift), mtd); ++ if (to) { ++ page_addr = (to << pages_shift) | (page_addr ++ & ((1 << pages_shift) - 1)); ++ } ++ } ++ ++ switch ( command ) { ++ case NAND_CMD_READOOB: ++ /* ++ * DFC has mark the last 8 bytes OOB data if HARDEARE_ECC is ++ * enabled. We must first disable the HARDWARE_ECC for getting ++ * all the 16 bytes OOB ++ */ ++ enable_hw_ecc(context, 0); ++ info->buf_count = mtd->writesize + mtd->oobsize; ++ info->column = mtd->writesize + column; ++ info->cmd = command; ++ info->addr = page_addr << this->page_shift; ++ ret = dfc_send_command(mtd, flash_info->read1, info->addr, ++ 1, NDSR_RDDREQ | NDSR_DBERR); ++#ifndef CONFIG_MTD_NAND_MONAHANS_DMA ++ dfc_get_pattern(info->context, flash_info->read1, &datasize, ++ &paddingsize); ++ dfc_read_fifo_partial(info->context, info->data_buf, ++ min(info->buf_count, datasize), datasize); ++ info->state = STATE_READY; ++#endif ++ /* We only are OOB, so if the data has error, does not matter */ ++ if (info->retcode == ERR_DBERR) ++ info->retcode = ERR_NONE; ++ enable_hw_ecc(context, 1); ++ break; ++ ++ case NAND_CMD_READ0: ++ enable_hw_ecc(context, 1); ++ info->column = column; ++ info->cmd = command; ++ info->buf_count = mtd->writesize + mtd->oobsize; ++ memset(info->data_buf, 0xFF, info->buf_count); ++ info->addr = page_addr << this->page_shift; ++ ++ ret = dfc_send_command(mtd, flash_info->read1, info->addr, ++ 1, NDSR_RDDREQ | NDSR_DBERR); ++#ifndef CONFIG_MTD_NAND_MONAHANS_DMA ++ dfc_get_pattern(info->context, flash_info->read1, &datasize, ++ &paddingsize); ++ dfc_read_fifo_partial(info->context, info->data_buf, ++ min(info->buf_count, datasize), datasize); ++ info->state = STATE_READY; ++#endif ++ /* When the data buf is blank, the DFC will report DB error */ ++ if (info->retcode == ERR_DBERR && is_buf_blank(info->data_buf, ++ mtd->writesize)) ++ info->retcode = ERR_NONE; ++ ++ if (info->retcode == ERR_DBERR) { ++ printk(KERN_ERR "DB error at address 0x%x\n", ++ info->addr); ++ print_buf(info->data_buf, info->buf_count); ++ } ++ break; ++ case NAND_CMD_SEQIN: ++ /* Write only OOB? */ ++ ++ info->cmd = command; ++ if (column >= mtd->writesize) { ++ info->buf_count = mtd->writesize + mtd->oobsize; ++ enable_hw_ecc(context, 0); ++ } else { ++ info->buf_count = mtd->writesize + mtd->oobsize; ++ enable_hw_ecc(context, 1); ++ } ++ memset(info->data_buf, 0xFF, mtd->writesize + mtd->oobsize); ++ info->column = column; ++ info->addr = page_addr << this->page_shift; ++ break; ++ case NAND_CMD_PAGEPROG: ++ /* prevois command is NAND_CMD_SEIN ?*/ ++ if (info->cmd != NAND_CMD_SEQIN) { ++ info->cmd = command; ++ info->retcode = ERR_SENDCMD; ++ printk(KERN_ERR "Monahans NAND device: " ++ "No NAND_CMD_SEQIN executed before.\n"); ++ enable_hw_ecc(context, 1); ++ break; ++ } ++ info->cmd = command; ++ ret = dfc_send_command(mtd, flash_info->program, info->addr, ++ 1, NDSR_WRDREQ); ++ ++#ifndef CONFIG_MTD_NAND_MONAHANS_DMA ++ if (ret != 0) ++ break; ++ ++ dfc_get_pattern(info->context, flash_info->program, &datasize, ++ &paddingsize); ++ dfc_write_fifo_partial(info->context, info->data_buf, datasize, ++ datasize); ++ ++ if (info->context->dfc_mode->chip_select) ++ dfc_enable_int(info->context, ++ NDSR_CS1_BBD | NDSR_CS1_CMDD); ++ else ++ dfc_enable_int(info->context, ++ NDSR_CS0_BBD | NDSR_CS0_CMDD); ++ ++ ret = wait_for_completion_timeout(&info->cmd_complete, 2*HZ); ++ if (!ret){ ++ printk(KERN_ERR "Programm Command time out\n"); ++ dump_info(info); ++ } ++ ++ if (info->retcode == ERR_BBERR) { ++ mtd->block_markbad(mtd, info->addr); ++ } ++#endif ++ break; ++ case NAND_CMD_ERASE1: ++ info->cmd = command; ++ info->addr = (page_addr >> pages_shift) << this->phys_erase_shift; ++ ++ if (info->context->dfc_mode->chip_select) ++ ret = dfc_send_command(mtd, flash_info->erase, ++ info->addr, 0, NDSR_CS1_BBD | NDSR_CS1_CMDD); ++ else ++ ret = dfc_send_command(mtd, flash_info->erase, ++ info->addr, 0, NDSR_CS0_BBD | NDSR_CS0_CMDD); ++ ++ if (info->retcode == ERR_BBERR) { ++ mtd->block_markbad(mtd, info->addr); ++ } ++ break; ++ case NAND_CMD_ERASE2: ++ break; ++ case NAND_CMD_READID: ++ info->cmd = command; ++ info->buf_count = flash_info->read_id_bytes; ++ info->column = 0; ++ info->addr = 0xFFFFFFFF; ++ ret = dfc_send_command(mtd, flash_info->read_id, info->addr, ++ 0, NDSR_RDDREQ); ++#ifndef CONFIG_MTD_NAND_MONAHANS_DMA ++ dfc_get_pattern(info->context, flash_info->read_id, &datasize, ++ &paddingsize); ++ dfc_read_fifo_partial(info->context, info->data_buf, ++ info->buf_count, datasize); ++ info->state = STATE_READY; ++#endif ++ D1(printk("ReadID, [1]:0x%x, [2]:0x%x\n", ++ info->data_buf[0], info->data_buf[1])); ++ break; ++ case NAND_CMD_STATUS: ++ info->cmd = command; ++ info->buf_count = 1; ++ info->column = 0; ++ info->addr = 0xFFFFFFFF; ++ ret = dfc_send_command(mtd, flash_info->read_status, ++ info->addr, 0, NDSR_RDDREQ); ++#ifndef CONFIG_MTD_NAND_MONAHANS_DMA ++ dfc_get_pattern(info->context, flash_info->read_status, ++ &datasize, &paddingsize); ++ dfc_read_fifo_partial(info->context, info->data_buf, ++ info->buf_count, datasize); ++ info->state = STATE_READY; ++#endif ++ break; ++ ++ case NAND_CMD_RESET: ++ status = dfc_reset_flash(&dfc_context); ++ if (status) { ++ printk(KERN_WARNING "Monahans NAND device:" ++ "NAND_CMD_RESET error\n"); ++ } ++ break; ++ default: ++ printk(KERN_WARNING "Monahans NAND device:" ++ "Non-support the command.\n"); ++ break; ++ } ++ ++ if (info->retcode != ERR_NONE) ++ dfc_stop(info->context); ++} ++ ++static void monahans_df_select_chip(struct mtd_info *mtd, int chip) ++{ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ ++ if (chip <= MAX_CHIP) ++ info->context->dfc_mode->chip_select = chip; ++ else ++ printk(KERN_ERR "Monahans NAND device:" ++ "not select the NAND chips!\n"); ++} ++ ++static int monahans_df_waitfunc(struct mtd_info *mtd, ++ struct nand_chip *this) ++{ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ ++ /* monahans_df_send_command has waited for command complete */ ++ if (this->state == FL_WRITING || this->state == FL_ERASING) { ++ if (info->retcode == ERR_NONE) ++ return 0; ++ else { ++ /* ++ * any error make it return 0x01 which will tell ++ * the caller the erase and write fail ++ */ ++ return 0x01; ++ } ++ } ++ ++ return 0; ++} ++ ++static int monahans_df_calculate_ecc(struct mtd_info *mtd, ++ const u_char *dat, u_char *ecc_code) ++{ ++ return 0; ++} ++ ++static int monahans_df_correct_data(struct mtd_info *mtd, ++ u_char *dat, u_char *read_ecc, u_char *calc_ecc) ++{ ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ ++ /* ++ * Any error include ERR_SEND_CMD, ERR_DBERR, ERR_BUSERR, we ++ * consider it as a ecc error which will tell the caller the ++ * read fail We have distinguish all the errors, but the ++ * nand_read_ecc only check this function return value ++ */ ++ if (info->retcode != ERR_NONE) ++ return -1; ++ ++ return 0; ++} ++ ++static void monahans_df_enable_hwecc(struct mtd_info *mtd, int mode) ++{ ++ return; ++} ++ ++/* ++ * The relocation table management is different between MOBM V2 and V3. ++ * ++ * MOBM V2 is applied on chips taped out before MhnLV A0. ++ * MOBM V3 is applied on chips taped out after MhnLV A0. It's also applied ++ * on MhnLV A0. ++ */ ++static int calc_obm_ver(void) ++{ ++ unsigned int cpuid; ++ /* read CPU ID */ ++ __asm__ ( ++ "mrc p15, 0, %0, c0, c0, 0\n" ++ : "=r" (cpuid) ++ ); ++ /* It's not xscale chip. */ ++ if ((cpuid & 0xFFFF0000) != 0x69050000) ++ return MHN_OBM_INVAL; ++ /* It's MhnP Ax */ ++ if ((cpuid & 0x0000FFF0) == 0x00006420) ++ return MHN_OBM_V2; ++ /* It's MhnP Bx */ ++ if ((cpuid & 0x0000FFF0) == 0x00006820) { ++ if ((cpuid & 0x0F) <= 5) ++ return MHN_OBM_V2; ++ else ++ return MHN_OBM_V3; ++ } ++ /* It's MhnL Ax */ ++ if ((cpuid & 0x0000FFF0) == 0x00006880) { ++ if ((cpuid & 0x0F) == 0) ++ return MHN_OBM_V2; ++ else ++ return MHN_OBM_V3; ++ } ++ /* It's MhnLV Ax */ ++ if ((cpuid & 0x0000FFF0) == 0x00006890) ++ return MHN_OBM_V3; ++ return MHN_OBM_INVAL; ++} ++ ++ ++/* ++ * MOBM maintains a relocation table. It's used to replace bad blocks. ++ * If block A is bad, it will use block B instead. ++ * There're 127 relocated blocks. All of them reside in the bottom of NAND ++ * flash. So they're reserved and can't be calculated in mtd size and chip ++ * size. ++ */ ++static int read_reloc_table(struct mtd_info *mtd) ++{ ++ struct nand_chip *this = NULL; ++ struct monahans_dfc_info *info = NULL; ++ struct dfc_context *context = NULL; ++ struct reloc_table *table = NULL; ++ int page, maxslot; ++ int obm, valid; ++ ++ obm = calc_obm_ver(); ++ this = (struct nand_chip *)(mtd->priv); ++ info = (struct monahans_dfc_info *)(this->priv); ++ context = info->context; ++ ++ mtd->size -= (NAND_RELOC_MAX * mtd->erasesize); ++ this->chipsize -= (NAND_RELOC_MAX << this->phys_erase_shift); ++ page = (1 << (this->phys_erase_shift - this->page_shift)) - 1; ++ ++ this->select_chip(mtd, 0); ++ valid = 0; ++ if (obm == MHN_OBM_V2) { ++ /* On MOBM V2, the relocation table resides in the last page ++ * of the first block. ++ */ ++ memset(info->data_buf, 0, BUFLEN); ++ monahans_df_command(mtd, NAND_CMD_READ0, 0, page); ++ memcpy(((unsigned char *)&(info->table)), info->data_buf, ++ sizeof(struct reloc_table)); ++ if (info->table.header == NAND_RELOC_HEADER) ++ valid = 1; ++ } else if (obm == MHN_OBM_V3) { ++ /* On MOBM V3, there're several relocation tables in the first ++ * block. ++ * When new bad blocks are found, a new relocation table will ++ * be generated and written back to the first block. But the ++ * original relocation table won't be erased. Even if the new ++ * relocation table is written wrong, system can still find an ++ * old one. ++ * One page contains one slot. ++ */ ++ maxslot = 1 << (this->phys_erase_shift - this->page_shift); ++ page = maxslot - MAX_BBT_SLOTS; ++ for (; page < maxslot; page++) { ++ monahans_df_command(mtd, NAND_CMD_READ0, 0, page); ++ table = (struct reloc_table *)info->data_buf; ++ if (info->retcode == ERR_NONE) { ++ if (table->header != NAND_RELOC_HEADER) { ++ continue; ++ } else { ++ memcpy(((unsigned char *)&(info->table)), ++ table, sizeof(struct reloc_table)); ++ valid = 1; ++ break; ++ } ++ } ++ } ++ ++ } else { ++ printk(KERN_ERR "The version of MOBM isn't supported\n"); ++ } ++ if (valid) { ++ memcpy(((unsigned char *)&(info->table)), info->data_buf, ++ sizeof(struct reloc_table)); ++ printk(KERN_DEBUG "relocation table at page:%d\n", page); ++ PRINT_BUF((unsigned char *)&(info->table), ++ sizeof(struct reloc_table)); ++ info->table_init = 1; ++ } else { ++ /* There should be a valid relocation table slot at least. */ ++ printk(KERN_ERR "NO VALID relocation table can be \ ++ recognized\n"); ++ printk(KERN_ERR "CAUTION: It may cause unpredicated error\n"); ++ printk(KERN_ERR "Please re-initialize the NAND flash.\n"); ++ memset((unsigned char *)&(info->table), 0, ++ sizeof(struct reloc_table)); ++ info->table_init = 0; ++ return -EINVAL; ++ } ++ return 0; ++} ++ ++/* add the relocation entry into the relocation table ++ * It's valid on MOBM V3. ++ * If the relocated block is bad, an new entry will be added into the ++ * bottom of the relocation table. ++ */ ++static int update_rel_table(struct mtd_info *mtd, int block) ++{ ++ struct nand_chip *this = NULL; ++ struct monahans_dfc_info *info = NULL; ++ struct reloc_table *table = NULL; ++ int obm, reloc_block; ++ ++ this = (struct nand_chip *)(mtd->priv); ++ info = (struct monahans_dfc_info *)(this->priv); ++ obm = calc_obm_ver(); ++ if (obm == MHN_OBM_V3) { ++ table = &info->table; ++ if (info->table_init == 0) { ++ printk(KERN_ERR "Error: the initial relocation \ ++ table can't be read\n"); ++ memset(table, 0, sizeof(struct reloc_table)); ++ table->header = NAND_RELOC_HEADER; ++ info->table_init = 1; ++ } ++ if (table->total == 0) { ++ /* Point to the first relocated block. ++ * It resides in the last block of flash. ++ * the relocation entry has calculated in ++ * chipsize ++ */ ++ reloc_block = (this->chipsize ++ >> this->phys_erase_shift) ++ + NAND_RELOC_MAX - 1; ++ } else if (table->total < NAND_RELOC_MAX) { ++ reloc_block = table->reloc[table->total - 1].to - 1; ++ } else { ++ printk(KERN_ERR "Relocation table exceed max number, \ ++ cannot mark block 0x%x as bad block\n", block); ++ return -ENOSPC; ++ } ++ /* Make sure that reloc_block is pointing to a valid block */ ++ for (; ; reloc_block--) { ++ /* The relocate table is full */ ++ if (reloc_block < (this->chipsize ++ >> this->phys_erase_shift)) ++ return -ENOSPC; ++ this->cmdfunc(mtd, NAND_CMD_ERASE1, 0, reloc_block ++ << (this->phys_erase_shift ++ - this->page_shift)); ++ if (info->retcode == ERR_NONE) ++ break; ++ } ++ /* Create the relocated block information in the table */ ++ table->reloc[table->total].from = block; ++ table->reloc[table->total].to = reloc_block; ++ table->total++; ++ } ++ return 0; ++} ++ ++/* Write the relocation table back to device, if there's room. */ ++static int sync_rel_table(struct mtd_info *mtd, int *idx) ++{ ++ struct nand_chip *this = NULL; ++ struct monahans_dfc_info *info = NULL; ++ int obm, start_page, len; ++ ++ if (*idx >= MAX_BBT_SLOTS) { ++ printk(KERN_ERR "Can't write relocation table to device \ ++ any more.\n"); ++ return -1; ++ } ++ if (*idx < 0) { ++ printk(KERN_ERR "Wrong Slot is specified.\n"); ++ return -1; ++ } ++ this = (struct nand_chip *)(mtd->priv); ++ info = (struct monahans_dfc_info *)(this->priv); ++ len = 4; ++ len += info->table.total << 2; ++ obm = calc_obm_ver(); ++ if (obm == MHN_OBM_V3) { ++ /* write to device */ ++ start_page = 1 << (this->phys_erase_shift - this->page_shift); ++ start_page = start_page - 1 - *idx; ++ memset(&(info->data_buf), 0xFF, BUFLEN); ++ memcpy(&(info->data_buf), &(info->table), len); ++ ++ printk(KERN_DEBUG "DUMP relocation table before write. \ ++ page:0x%x\n", start_page); ++ monahans_df_command(mtd, NAND_CMD_SEQIN, 0, start_page); ++ monahans_df_command(mtd, NAND_CMD_PAGEPROG, 0, start_page); ++ /* write to idx */ ++ (*idx)++; ++ /* dump it */ ++ memset(&(info->data_buf), 0, BUFLEN); ++ monahans_df_command(mtd, NAND_CMD_READOOB, 0, start_page); ++ PRINT_BUF(info->data_buf, len); ++ } ++ return 0; ++} ++ ++ ++/* Find the relocated block of the bad one. ++ * If it's a good block, return 0. Otherwise, return a relocated one. ++ * idx points to the next relocation entry ++ * If the relocated block is bad, an new entry will be added into the ++ * bottom of the relocation table. ++ */ ++static unsigned short search_rel_block(int block, struct mtd_info *mtd) ++{ ++ struct nand_chip *this = NULL; ++ struct monahans_dfc_info *info = NULL; ++ struct reloc_table *table = NULL; ++ int i, max, reloc_block = 0; ++ ++ this = (struct nand_chip *)(mtd->priv); ++ info = (struct monahans_dfc_info *)(this->priv); ++ table = &(info->table); ++ if ((block <= 0) || (block > this->chipsize) ++ || (info->table_init == 0) || (table->total == 0)) ++ return 0; ++ if (table->total > NAND_RELOC_MAX) ++ table->total = NAND_RELOC_MAX; ++ max = table->total; ++ for (i = 0; i < max; i++) { ++ if (block == table->reloc[i].from) ++ reloc_block = table->reloc[i].to; ++ } ++ return reloc_block; ++} ++ ++/* ++ * Check whether the block is a bad one. ++ * At first, it will search the relocation table. ++ * If necessary, it will search the BBT. Because relocation table can only ++ * maintain limited record. If there're more bad blocks, they can't be ++ * recorded in relocation table. They can only be recorded in BBT. ++ */ ++static int monahans_df_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) ++{ ++ struct nand_chip *this = NULL; ++ int page, block, reloc_block, chipnr, res = 0; ++ u16 bad; ++ ++ /* At here, we only support one flash chip */ ++ this = (struct nand_chip *)mtd->priv; ++ block = (int)(ofs >> this->phys_erase_shift); ++ /* search the block in the relocation table */ ++ reloc_block = search_rel_block(block, mtd); ++ if (reloc_block) { ++ ofs = ((reloc_block << this->phys_erase_shift) | ++ (ofs & ((1 << this->phys_erase_shift) - 1))); ++ } ++ ++ /* search BBT ++ * Maybe the relocation table is full, but some bad blocks aren't ++ * recordered in it. ++ * The below code are copied from nand_block_bad(). ++ */ ++ if (getchip) { ++ page = (int)(ofs >> this->page_shift); ++ chipnr = (int)(ofs >> this->chip_shift); ++ ++ /* Select the NAND chips */ ++ this->select_chip(mtd, chipnr); ++ } else ++ page = (int)ofs; ++ ++ if (this->options & NAND_BUSWIDTH_16) { ++ this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, ++ page & this->pagemask); ++ bad = cpu_to_le16(this->read_word(mtd)); ++ if (this->badblockpos & 0x1) ++ bad >>= 1; ++ if ((bad & 0xFF) != 0xFF) ++ res = 1; ++ } else { ++ this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos, ++ page & this->pagemask); ++ if (this->read_byte(mtd) != 0xFF) ++ res = 1; ++ } ++ ++ return res; ++} ++ ++static int monahans_df_block_markbad(struct mtd_info *mtd, loff_t ofs) ++{ ++ struct nand_chip *this = NULL; ++ struct monahans_dfc_info *info = NULL; ++ unsigned char buf[2] = {0, 0}; ++ int block, reloc_block, page, ret; ++ ++ this = (struct nand_chip *)mtd->priv; ++ info = (struct monahans_dfc_info *)(this->priv); ++ /* Get block number */ ++ block = ((int)ofs) >> this->bbt_erase_shift; ++ ret = update_rel_table(mtd, block); ++ if (!ret) { ++ sync_rel_table(mtd, &(info->current_slot)); ++ return 0; ++ } else { ++ reloc_block = search_rel_block(block, mtd); ++ if (reloc_block) ++ block = reloc_block; ++ if (this->bbt) ++ this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); ++ } ++ ++ /* Do we have a flash based bad block table ? */ ++ if (this->options & NAND_USE_FLASH_BBT) ++ return nand_update_bbt(mtd, ofs); ++ ++ /* mark the bad block flag at the first two pages */ ++ page = block << (this->phys_erase_shift - this->page_shift); ++ ofs = mtd->writesize + this->badblockpos; ++ this->cmdfunc(mtd, NAND_CMD_SEQIN, ofs, page); ++ this->write_buf(mtd, buf, 2); ++ this->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); ++ page++; ++ this->cmdfunc(mtd, NAND_CMD_SEQIN, ofs, page); ++ this->write_buf(mtd, buf, 2); ++ this->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); ++ return 0; ++} ++ ++static int dump_bbt_flash(struct mtd_info *mtd) ++{ ++ struct nand_chip *this = NULL; ++ struct monahans_dfc_info *info = NULL; ++ int block, page, totlen; ++ ++ this = (struct nand_chip *)mtd->priv; ++ info = (struct monahans_dfc_info *)this->priv; ++ block = (this->chipsize >> this->phys_erase_shift) - 1; ++ totlen = (this->chipsize >> this->phys_erase_shift) >> 2; ++ printk(KERN_ERR "totlen:0x%x\n", totlen); ++ this->select_chip(mtd, 0); ++ if (this->bbt_td) { ++ printk(KERN_ERR "BBT page:0x%x\n", this->bbt_td->pages[0]); ++ page = this->bbt_td->pages[0]; ++ if (this->bbt_td->pages[0] <= 0) { ++ page = block << (this->phys_erase_shift ++ - this->page_shift); ++ } ++ while (totlen > 0) { ++ printk(KERN_ERR "page:0x%x\n", page); ++ monahans_df_command(mtd, NAND_CMD_READ0, 0, page); ++ printk(KERN_ERR "read result:0x%x\n", info->retcode); ++ PRINT_BUF(info->data_buf, BUFLEN); ++ totlen -= (1 << this->page_shift); ++ page++; ++ } ++ } ++ if (this->bbt_md) { ++ printk(KERN_ERR "BBT page:0x%x\n", this->bbt_md->pages[0]); ++ page = this->bbt_md->pages[0]; ++ if (this->bbt_td->pages[0] <= 0) { ++ page = block << (this->phys_erase_shift ++ - this->page_shift); ++ } ++ while (totlen > 0) { ++ printk(KERN_ERR "page:0x%x\n", page); ++ monahans_df_command(mtd, NAND_CMD_READ0, 0, page); ++ printk(KERN_ERR "read result:0x%x\n", info->retcode); ++ PRINT_BUF(info->data_buf, BUFLEN); ++ totlen -= (1 << this->page_shift); ++ page++; ++ } ++ ++ } ++ return 0; ++} ++ ++static int dump_bbt_mem(struct mtd_info *mtd) ++{ ++ struct nand_chip *this = NULL; ++ ++ this = (struct nand_chip *)mtd->priv; ++ PRINT_BUF(this->bbt, 225); ++ return 0; ++} ++ ++static int monahans_df_scan_bbt(struct mtd_info *mtd) ++{ ++ struct nand_chip *this = NULL; ++ int ret; ++ ++ this = (struct nand_chip *)mtd->priv; ++ ret = read_reloc_table(mtd); ++ if (ret) { ++ printk(KERN_ERR "Failed to get relocation table\n"); ++ printk(KERN_ERR "Try to build a new BBT. It may result \ ++ unpredicated error.\n"); ++ /* Create new memory based and flash based BBT */ ++ } ++ nand_scan_bbt(mtd, &monahans_bbt_default); ++ //dump_bbt_flash(mtd); ++ dump_bbt_mem(mtd); ++ return 0; ++#if 0 ++ /* Read flashed based BBT from device */ ++ return (nand_scan_bbt(mtd, &monahans_bbt_main)); ++#endif ++} ++ ++ ++static int monahans_df_probe(struct platform_device *pdev) ++{ ++ struct nand_chip *this; ++ struct monahans_dfc_info *info; ++ int status = -1; ++ unsigned int data_buf_len; ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ unsigned int buf_len; ++#endif ++ int i, ret = 0; ++ ++ printk(KERN_ERR "Nand driver probe\n"); ++ ++ dfc_context.membase = ioremap_nocache(0x43100000, 0x100000); ++ if (!dfc_context.membase) ++ printk(KERN_ERR "Couldn't ioremap\n"); ++ ++ pxa_set_cken(CKEN_NAND, 1); ++ ++ for (i = DFC_FLASH_NULL + 1; i < DFC_FLASH_END; i++) ++ { ++ uint32_t id; ++ ++ status = dfc_init(&dfc_context, i); ++ if (status) ++ continue; ++ status = dfc_readid(&dfc_context, &id); ++ if (status) ++ continue; ++ printk(KERN_DEBUG "id:0x%x, chipid:0x%x\n", ++ id, dfc_context.flash_info->chip_id); ++ if (id == dfc_context.flash_info->chip_id) ++ break; ++ } ++ ++ if(i == DFC_FLASH_END) { ++ printk(KERN_ALERT "Monahans NAND device:" ++ "Nand Flash initialize failure!\n"); ++ ret = -ENXIO; ++ goto out; ++ } ++ flash_config = i; ++ ++ monahans_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip) + ++ sizeof(struct monahans_dfc_info) , GFP_KERNEL); ++ if (!monahans_mtd) { ++ printk (KERN_ERR "Monahans NAND device:" ++ "Unable to allocate NAND MTD device structure.\n"); ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ /* Get pointer to private data */ ++ this = (struct nand_chip *)((void *)monahans_mtd + sizeof(struct mtd_info)); ++ info = (struct monahans_dfc_info *)((void *)this + sizeof(struct nand_chip)); ++ dfc_context.mtd = monahans_mtd; ++ ++ monahans_mtd->priv = this; ++ this->priv = info; ++ data_buf_len = dfc_context.flash_info->page_size + ++ dfc_context.flash_info->oob_size; ++ info->state = STATE_READY; ++ init_completion(&info->cmd_complete); ++ info->table_init = 0; ++ memset(&info->table, 0x0, sizeof(struct reloc_table)); ++ printk(KERN_DEBUG "%s: this->controller: 0x%x, &this->controller: 0x%x\n",__func__, (unsigned int)this->controller, (unsigned int)&(this->controller)); ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ info->dma_mask = 0xffffffffUL; ++ ++ dev->dma_mask = &info->dma_mask; ++ dev->coherent_dma_mask = 0xffffffffUL; ++ ++ /* alloc dma data buffer for data ++ * buffer + 2*descriptor + command buffer ++ */ ++ buf_len = ALIGN(2*sizeof(struct pxa_dma_desc), 32) + ++ ALIGN(data_buf_len, 32) + ALIGN(NAND_CMD_DMA_LEN, 32); ++ ++ printk(KERN_INFO "Try to allocate dma buffer(len:%d)" ++ "for data buffer + 2*descriptor + command buffer\n", buf_len); ++ info->data_desc = (struct pxa_dma_desc*)dma_alloc_writecombine(dev, ++ buf_len, &info->data_desc_addr, GFP_KERNEL); ++ if (!info->data_desc) { ++ printk(KERN_ERR "Monahans NAND device:" ++ "Unable to alloc dma buffer\n"); ++ ret = -ENOMEM; ++ goto free_mtd; ++ } ++ ++ info->cmd_desc = (struct pxa_dma_desc*)((char *)info->data_desc + ++ sizeof(struct pxa_dma_desc)); ++ info->cmd_desc_addr = (dma_addr_t)((char *)info->data_desc_addr + ++ sizeof(struct pxa_dma_desc)); ++ info->data_buf = (char *)info->data_desc + ++ ALIGN(2*sizeof(struct pxa_dma_desc), 32); ++ info->data_buf_addr = (dma_addr_t)((char *)info->data_desc_addr + ++ ALIGN(2*sizeof(struct pxa_dma_desc), 32)); ++ info->cmd_buf = (char *)info->data_buf + ALIGN(data_buf_len, 32); ++ info->cmd_buf_addr = (dma_addr_t)((char *)info->data_buf_addr + ++ ALIGN(data_buf_len, 32)); ++ ++ D1(printk("Get dma buffer for data dma descriptor, virt:0x%x, phys0x:%x\n", ++ (unsigned int)info->data_desc, info->data_desc_addr)); ++ D1(printk("Get dma buffer for command dma descriptors, virt:0x%x," ++ "phys0x:%x\n", (unsigned int)info->cmd_desc, info->cmd_desc_addr)); ++ D1(printk("Get dma buffer for data, virt:0x%x, phys0x:%x\n", ++ (unsigned int)info->data_buf, info->data_buf_addr)); ++ D1(printk("Get dma buffer for command, virt:0x%x, phys0x:%x\n", ++ (unsigned int)info->cmd_buf, info->cmd_buf_addr)); ++ ++ D1(printk("Try to allocate dma channel for data\n")); ++ ++ info->data_dma = pxa_request_dma("NAND DATA", DMA_PRIO_LOW, ++ monahans_dfc_data_dma_irq, info); ++ if (info->data_dma < 0) { ++ printk(KERN_ERR "Monahans NAND device:" ++ "Unable to alloc dma channel for data\n"); ++ ret = info->data_dma; ++ goto free_buf; ++ } ++ D1(printk("Get dma channel:%d for data\n", info->data_dma)); ++ ++ D1(printk("Try to allocate dma channel for command\n")); ++ info->cmd_dma = pxa_request_dma("NAND CMD", DMA_PRIO_LOW, ++ monahans_dfc_cmd_dma_irq, info); ++ if (info->cmd_dma < 0) { ++ printk(KERN_ERR "Monahans NAND device:" ++ "Unable to alloc dma channel for command\n"); ++ ret = info->cmd_dma; ++ goto free_data_dma; ++ } ++ D1(printk("Get dma channel:%d for command\n", info->cmd_dma)); ++ ++ dfc_context.cmd_dma_ch = info->cmd_dma; ++ dfc_context.data_dma_ch = info->data_dma; ++#else ++ printk(KERN_DEBUG "Try to allocate data buffer(len:%d)\n", data_buf_len); ++ info->data_buf = kmalloc(data_buf_len, GFP_KERNEL); ++ if (!info->data_buf) { ++ printk(KERN_ERR "Monahans NAND device:" ++ "Unable to alloc data buffer\n"); ++ ret = -ENOMEM; ++ goto free_mtd; ++ } ++#endif ++ ++ D1(printk("Try to request irq:%d\n", IRQ_NAND)); ++ ret = request_irq(IRQ_NAND, monahans_dfc_irq, 0, pdev->name, info); ++ if (ret < 0) { ++ printk(KERN_ERR "Monahans NAND device: Unable to request irq\n"); ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ goto free_cmd_dma; ++#else ++ goto free_buf; ++#endif ++ } ++ ++ D1(printk("Success request irq\n")); ++ ++ /* set address of NAND IO lines */ ++ this->options = (dfc_context.flash_info->flash_width == 16)? \ ++ NAND_BUSWIDTH_16: 0 | NAND_USE_FLASH_BBT; ++ ++ /* this->IO_ADDR_R = this->IO_ADDR_W = NDDB */ ++ this->waitfunc = monahans_df_waitfunc; ++ this->select_chip = monahans_df_select_chip; ++ this->dev_ready = monahans_df_dev_ready; ++ this->cmdfunc = monahans_df_command; ++ this->read_word= monahans_df_read_word; ++ /*this->write_word= monahans_df_write_word;*/ ++ this->read_byte = monahans_df_read_byte; ++ this->read_buf = monahans_df_read_buf; ++ this->write_buf = monahans_df_write_buf; ++ this->verify_buf = monahans_df_verify_buf; ++ this->ecc.hwctl = monahans_df_enable_hwecc; ++ this->ecc.calculate = monahans_df_calculate_ecc; ++ this->ecc.correct = monahans_df_correct_data; ++ this->block_bad = monahans_df_block_bad; ++ this->block_markbad = monahans_df_block_markbad; ++ this->scan_bbt = monahans_df_scan_bbt; ++ this->chip_delay= 25; ++ this->bbt_td = &monahans_bbt_main; ++ this->bbt_md = &monahans_bbt_mirror; ++ ++ /* If the NAND flash is small block flash, only 512-byte pagesize ++ * is supported. ++ * Adjust parameters of BBT what is depended on large block nand ++ * flash or small block nand flash. ++ */ ++ if (dfc_context.flash_info->oob_size > 16) { ++ this->ecc.layout = &monahans_lb_nand_oob; ++ this->ecc.mode = NAND_ECC_HW; ++ this->ecc.size = 2048; ++ this->ecc.bytes = 24; ++ this->bbt_td->offs = 2; ++ this->bbt_td->veroffs = 6; ++ this->bbt_md->offs = 2; ++ this->bbt_md->veroffs = 6; ++ this->badblockpos = NAND_LARGE_BADBLOCK_POS; ++ monahans_bbt_default.offs = NAND_LARGE_BADBLOCK_POS; ++ monahans_bbt_default.len = 2; ++ /* when scan_bbt() is executed, bbt version can get */ ++ monahans_bbt_default.veroffs = 2; ++ } else { ++ this->ecc.layout = &monahans_sb_nand_oob; ++ this->ecc.mode = NAND_ECC_HW; ++ this->ecc.size = 512; ++ this->ecc.bytes = 6; ++ this->bbt_td->offs = 8; ++ this->bbt_td->veroffs = 12; ++ this->bbt_md->offs = 8; ++ this->bbt_md->veroffs = 12; ++ this->badblockpos = NAND_SMALL_BADBLOCK_POS; ++ monahans_bbt_default.offs = NAND_SMALL_BADBLOCK_POS; ++ monahans_bbt_default.len = 1; ++ monahans_bbt_default.veroffs = 8; ++ } ++ ++ info->context = &dfc_context; ++ /* TODO: allocate dma buffer and channel */ ++ ++ platform_set_drvdata(pdev, monahans_mtd); ++ ++ if (nand_scan(monahans_mtd, 1)) { ++ printk(KERN_ERR "Nand scan failed\n"); ++ ret = -ENXIO; ++ goto free_irq; ++ } ++ ++ /* There is a potential limitation that no more partition can be ++ * added between MassStorage and BBT(last block). ++ * ++ * The last 127 blocks is reserved for relocation table, they aren't ++ * statistical data of mtd size and chip size. ++ * ++ * BBT partitions contains 4 blocks. Two blocks are used to store ++ * main descriptor, the other two are used to store mirror descriptor. ++ */ ++ partition_info[PART_NUM - 1].size = (monahans_bbt_main.maxblocks ++ + monahans_bbt_mirror.maxblocks) ++ << this->phys_erase_shift; ++ partition_info[PART_NUM - 1].offset = this->chipsize ++ - partition_info[PART_NUM - 1].size; ++ partition_info[PART_NUM - 2].offset = partition_info[PART_NUM - 3].offset ++ + partition_info[PART_NUM - 3].size; ++ partition_info[PART_NUM - 2].size = this->chipsize ++ - partition_info[PART_NUM - 2].offset ++ - partition_info[PART_NUM - 1].size; ++ add_mtd_partitions(monahans_mtd, partition_info, PART_NUM); ++ ++#ifdef CONFIG_DVFM ++ dvfm_notifier.client_data = info; ++ mhn_fv_register_notifier(&dvfm_notifier); ++#endif ++ ++ return 0; ++ ++free_irq: ++ free_irq(IRQ_NAND, info); ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++free_cmd_dma: ++ pxa_free_dma(info->cmd_dma); ++free_data_dma: ++ pxa_free_dma(info->data_dma); ++free_buf: ++ dma_free_writecombine(dev, buf_len, info->data_desc, info->data_desc_addr); ++#else ++free_buf: ++ kfree(info->data_buf); ++#endif ++free_mtd: ++ kfree(monahans_mtd); ++out: ++ return ret; ++ ++} ++ ++static int __devexit monahans_df_remove(struct platform_device *dev) ++{ ++ struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(dev); ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ unsigned int data_buf_len = dfc_context.flash_info->page_size + ++ dfc_context.flash_info->oob_size; ++ unsigned int buf_len = ALIGN(2*sizeof(struct pxa_dma_desc), 32) + ++ ALIGN(data_buf_len, 32) + ALIGN(NAND_CMD_DMA_LEN, 32); ++#endif ++ ++#ifdef CONFIG_DVFM ++ mhn_fv_unregister_notifier(&dvfm_notifier); ++#endif ++ ++ platform_set_drvdata(dev, NULL); ++ ++ del_mtd_device(mtd); ++ del_mtd_partitions(mtd); ++ free_irq(IRQ_NAND, info); ++#ifdef CONFIG_MTD_NAND_MONAHANS_DMA ++ pxa_free_dma(info->cmd_dma); ++ pxa_free_dma(info->data_dma); ++ dma_free_writecombine(dev, buf_len, info->data_desc, ++ info->data_desc_addr); ++#else ++ kfree(info->data_buf); ++#endif ++ kfree(mtd); ++ ++ return 0; ++} ++ ++#ifdef CONFIG_PM ++static int monahans_df_suspend(struct platform_device *dev, pm_message_t state, u32 level) ++{ ++ struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(dev); ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ ++ if( SUSPEND_DISABLE == level){ /*SUSPEND_NOTIFY*/ ++ if (info->state != STATE_READY) { ++ printk(KERN_ERR "current state is %d\n", info->state); ++ return -EAGAIN; ++ } ++ info->state = STATE_SUSPENDED; ++ /* ++ * The PM code need read the mobm from NAND. ++ * So the NAND clock can't be stop here. ++ * The PM code will cover this. ++ */ ++ /* pxa_set_cken(CKEN_NAND, 0); */ ++ } ++ return 0; ++} ++ ++static int monahans_df_resume(struct platform_device *dev, u32 level) ++{ ++ struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(dev); ++ struct monahans_dfc_info *info = (struct monahans_dfc_info *) ++ (((struct nand_chip *)(mtd->priv))->priv); ++ int status; ++ ++ if(RESUME_ENABLE == level){ ++ if (info->state != STATE_SUSPENDED) ++ printk(KERN_WARNING "Error State after resume back\n"); ++ ++ info->state = STATE_READY; ++ ++ pxa_set_cken(CKEN_NAND, 1); ++ ++ status = dfc_init(&dfc_context, flash_config); ++ if (status) { ++ printk(KERN_ALERT "Monahans NAND device:" ++ "Nand Flash initialize failure!\n"); ++ return -ENXIO; ++ } ++ } ++ return 0; ++} ++#endif ++ ++#ifdef CONFIG_DVFM ++static int mhn_nand_dvfm_notifier(unsigned cmd, void *client_data, void *info) ++{ ++ struct monahans_dfc_info *dfc_info = ++ (struct monahans_dfc_info *)client_data; ++ ++ switch (cmd) { ++ case FV_NOTIFIER_QUERY_SET : ++ if (dfc_info->state != STATE_READY) ++ return -1; ++ break; ++ ++ case FV_NOTIFIER_PRE_SET : ++ break; ++ ++ case FV_NOTIFIER_POST_SET : ++ break; ++ } ++ ++ return 0; ++} ++#endif ++ ++static struct platform_driver monahans_df_driver = { ++ .probe = monahans_df_probe, ++ .remove = __devexit_p(monahans_df_remove), ++#ifdef CONFIG_PM ++ .suspend = monahans_df_suspend, ++ .resume = monahans_df_resume, ++#endif ++ .driver = { ++ .name = "monahans-nand-flash", ++ } ++}; ++ ++static void __exit monahans_df_cleanup(void) ++{ ++ printk(KERN_ERR "Nand driver registered\n"); ++ platform_driver_unregister(&monahans_df_driver); ++} ++ ++static int __init monahans_df_init(void) ++{ ++ return platform_driver_register(&monahans_df_driver); ++} ++ ++module_init(monahans_df_init); ++module_exit(monahans_df_cleanup); ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Jingqing.xu (jingqing.xu@intel.com)"); ++MODULE_DESCRIPTION("Glue logic layer for NAND flash on monahans DFC"); ++ ++ +Index: linux-2.6.23/arch/arm/mach-pxa/zylonite.c +=================================================================== +--- linux-2.6.23.orig/arch/arm/mach-pxa/zylonite.c 2008-02-12 21:12:29.000000000 +0000 ++++ linux-2.6.23/arch/arm/mach-pxa/zylonite.c 2008-02-13 00:50:30.000000000 +0000 +@@ -29,6 +29,8 @@ + #include "generic.h" + + int gpio_backlight; ++int gpio_vsync; ++int gpio_vsync1; + int gpio_eth_irq; + + int lcd_id; +@@ -54,6 +56,11 @@ + .resource = smc91x_resources, + }; + ++static struct platform_device nand_device = { ++ .name = "monahans-nand-flash", ++ .id = -1, ++}; ++ + #if defined(CONFIG_FB_PXA) || (CONFIG_FB_PXA_MODULES) + static void zylonite_backlight_power(int on) + { +@@ -96,7 +103,7 @@ + }; + + static struct pxafb_mode_info sharp_ls037_modes[] = { +- [0] = { ++ [1] = { + .pixclock = 158000, + .xres = 240, + .yres = 320, +@@ -109,8 +116,8 @@ + .lower_margin = 3, + .sync = 0, + }, +- [1] = { +- .pixclock = 39700, ++ [0] = { ++ .pixclock = 45000, + .xres = 480, + .yres = 640, + .bpp = 16, +@@ -137,6 +144,11 @@ + /* backlight GPIO: output, default on */ + gpio_direction_output(gpio_backlight, 1); + ++ gpio_direction_output(gpio_vsync, 0); ++ gpio_direction_output(gpio_vsync1, 0); ++ ++ printk(KERN_ERR "LCD ID is %x\n", lcd_id); ++ + if (lcd_id & 0x20) { + set_pxa_fb_info(&zylonite_sharp_lcd_info); + return; +@@ -169,6 +181,8 @@ + smc91x_resources[1].start = gpio_to_irq(gpio_eth_irq); + smc91x_resources[1].end = gpio_to_irq(gpio_eth_irq); + platform_device_register(&smc91x_device); ++ platform_device_register(&nand_device); ++ printk(KERN_ERR "Nand device registered\n"); + + zylonite_init_lcd(); + } +Index: linux-2.6.23/arch/arm/mach-pxa/zylonite_pxa300.c +=================================================================== +--- linux-2.6.23.orig/arch/arm/mach-pxa/zylonite_pxa300.c 2008-02-12 20:52:26.000000000 +0000 ++++ linux-2.6.23/arch/arm/mach-pxa/zylonite_pxa300.c 2008-02-13 00:26:37.000000000 +0000 +@@ -104,6 +104,30 @@ + /* Ethernet */ + GPIO2_nCS3, + GPIO99_GPIO, ++ ++ /* NAND */ ++ MFP_CFG_X(DF_INT_RnB, AF0, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nRE_nOE, AF1, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nWE, AF1, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_CLE_nOE, AF0, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nADV1_ALE, AF1, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nCS0, AF1, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_nCS1, AF0, DS10X, PULL_LOW), ++ MFP_CFG_X(DF_IO0, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO1, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO2, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO3, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO4, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO5, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO6, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO7, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO8, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO9, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO10, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO11, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO12, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO13, AF1, DS08X, PULL_LOW), ++ MFP_CFG_X(DF_IO14, AF1, DS08X, PULL_LOW), + }; + + static mfp_cfg_t pxa310_mfp_cfg[] __initdata = { +@@ -163,6 +187,9 @@ + pxa3xx_mfp_write(lcd_detect_pins[i], mfpr_save[i]); + } + ++extern int gpio_vsync; ++extern int gpio_vsync1; ++ + void __init zylonite_pxa300_init(void) + { + if (cpu_is_pxa300() || cpu_is_pxa310()) { +@@ -174,6 +201,8 @@ + + /* GPIO pin assignment */ + gpio_backlight = mfp_to_gpio(MFP_PIN_GPIO20); ++ gpio_vsync = mfp_to_gpio(GPIO76_LCD_VSYNC); ++ gpio_vsync1 = mfp_to_gpio(GPIO71_LCD_LDD_17); + } + + if (cpu_is_pxa300()) { +Index: linux-2.6.23/drivers/video/pxafb.c +=================================================================== +--- linux-2.6.23.orig/drivers/video/pxafb.c 2008-02-13 00:05:42.000000000 +0000 ++++ linux-2.6.23/drivers/video/pxafb.c 2008-02-13 00:06:02.000000000 +0000 +@@ -1543,9 +1543,9 @@ + if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) + dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n", + inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); +- if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) +- dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n", +- inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); ++ //if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) ++ // dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n", ++ // inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); + if (inf->lccr0 & LCCR0_DPD && + ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || + (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || +Index: linux-2.6.23/include/asm-arm/arch-pxa/mfp-pxa300.h +=================================================================== +--- linux-2.6.23.orig/include/asm-arm/arch-pxa/mfp-pxa300.h 2008-02-13 00:44:38.000000000 +0000 ++++ linux-2.6.23/include/asm-arm/arch-pxa/mfp-pxa300.h 2008-02-13 00:49:38.000000000 +0000 +@@ -175,13 +175,13 @@ + #define GPIO68_LCD_LDD_14 MFP_CFG_DRV(GPIO68, AF1, DS01X) + #define GPIO69_LCD_LDD_15 MFP_CFG_DRV(GPIO69, AF1, DS01X) + #define GPIO70_LCD_LDD_16 MFP_CFG_DRV(GPIO70, AF1, DS01X) +-#define GPIO71_LCD_LDD_17 MFP_CFG_DRV(GPIO71, AF1, DS01X) ++#define GPIO71_LCD_LDD_17 MFP_CFG_DRV(GPIO71, AF0, DS01X) + #define GPIO62_LCD_CS_N MFP_CFG_DRV(GPIO62, AF2, DS01X) + #define GPIO72_LCD_FCLK MFP_CFG_DRV(GPIO72, AF1, DS01X) + #define GPIO73_LCD_LCLK MFP_CFG_DRV(GPIO73, AF1, DS01X) + #define GPIO74_LCD_PCLK MFP_CFG_DRV(GPIO74, AF1, DS01X) + #define GPIO75_LCD_BIAS MFP_CFG_DRV(GPIO75, AF1, DS01X) +-#define GPIO76_LCD_VSYNC MFP_CFG_DRV(GPIO76, AF2, DS01X) ++#define GPIO76_LCD_VSYNC MFP_CFG_DRV(GPIO76, AF0, DS01X) + + #define GPIO15_LCD_CS_N MFP_CFG_DRV(GPIO15, AF2, DS01X) + #define GPIO127_LCD_CS_N MFP_CFG_DRV(GPIO127, AF1, DS01X) -- cgit v1.2.3-54-g00ecf