From 43d07a285181e64c30d98d10ff93ef50391efe59 Mon Sep 17 00:00:00 2001 From: Nicolas Dechesne Date: Mon, 5 Oct 2020 16:30:32 +0200 Subject: sphinx: remove DocBook files The Yocto Project documentation was migrated to Sphinx. Let's remove the deprecated DocBook files. (From yocto-docs rev: 28fb0e63b2fbfd6426b00498bf2682bb53fdd862) Signed-off-by: Nicolas Dechesne Signed-off-by: Richard Purdie --- .../profile-manual/profile-manual-arch.xml | 46 - .../profile-manual-customization.xsl | 29 - .../profile-manual/profile-manual-examples.xml | 40 - .../profile-manual/profile-manual-intro.xml | 107 - .../profile-manual/profile-manual-style.css | 987 ------- .../profile-manual/profile-manual-usage.xml | 2986 -------------------- documentation/profile-manual/profile-manual.xml | 180 -- 7 files changed, 4375 deletions(-) delete mode 100644 documentation/profile-manual/profile-manual-arch.xml delete mode 100644 documentation/profile-manual/profile-manual-customization.xsl delete mode 100644 documentation/profile-manual/profile-manual-examples.xml delete mode 100644 documentation/profile-manual/profile-manual-intro.xml delete mode 100644 documentation/profile-manual/profile-manual-style.css delete mode 100644 documentation/profile-manual/profile-manual-usage.xml delete mode 100755 documentation/profile-manual/profile-manual.xml (limited to 'documentation/profile-manual') diff --git a/documentation/profile-manual/profile-manual-arch.xml b/documentation/profile-manual/profile-manual-arch.xml deleted file mode 100644 index 8eb7bbfabd..0000000000 --- a/documentation/profile-manual/profile-manual-arch.xml +++ /dev/null @@ -1,46 +0,0 @@ - %poky; ] > - - - - -Overall Architecture of the Linux Tracing and Profiling Tools - -
- Architecture of the Tracing and Profiling Tools - - - It may seem surprising to see a section covering an 'overall architecture' - for what seems to be a random collection of tracing tools that together - make up the Linux tracing and profiling space. - The fact is, however, that in recent years this seemingly disparate - set of tools has started to converge on a 'core' set of underlying - mechanisms: - - - - - static tracepoints - dynamic tracepoints - - kprobes - uprobes - - - the perf_events subsystem - debugfs - - - - - Tying it Together: Rather than enumerating here how each tool makes use of - these common mechanisms, textboxes like this will make note of the - specific usages in each tool as they come up in the course - of the text. - -
-
- diff --git a/documentation/profile-manual/profile-manual-customization.xsl b/documentation/profile-manual/profile-manual-customization.xsl deleted file mode 100644 index d995e0b3cb..0000000000 --- a/documentation/profile-manual/profile-manual-customization.xsl +++ /dev/null @@ -1,29 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - diff --git a/documentation/profile-manual/profile-manual-examples.xml b/documentation/profile-manual/profile-manual-examples.xml deleted file mode 100644 index 91e06fcd1c..0000000000 --- a/documentation/profile-manual/profile-manual-examples.xml +++ /dev/null @@ -1,40 +0,0 @@ - %poky; ] > - - - - -Real-World Examples - - - This chapter contains real-world examples. - - -
- Slow Write Speed on Live Images - - - In one of our previous releases (denzil), users noticed that booting - off of a live image and writing to disk was noticeably slower. - This included the boot itself, especially the first one, since first - boots tend to do a significant amount of writing due to certain - post-install scripts. - - - - The problem (and solution) was discovered by using the Yocto tracing - tools, in this case 'perf stat', 'perf script', 'perf record' - and 'perf report'. - - - - See all the unvarnished details of how this bug was diagnosed and - solved here: Yocto Bug #3049 - -
- -
- diff --git a/documentation/profile-manual/profile-manual-intro.xml b/documentation/profile-manual/profile-manual-intro.xml deleted file mode 100644 index a2d2f80ec0..0000000000 --- a/documentation/profile-manual/profile-manual-intro.xml +++ /dev/null @@ -1,107 +0,0 @@ - %poky; ] > - - - - -Yocto Project Profiling and Tracing Manual -
- Introduction - - - Yocto bundles a number of tracing and profiling tools - this 'HOWTO' - describes their basic usage and shows by example how to make use - of them to examine application and system behavior. - - - - The tools presented are for the most part completely open-ended and - have quite good and/or extensive documentation of their own which - can be used to solve just about any problem you might come across - in Linux. - Each section that describes a particular tool has links to that - tool's documentation and website. - - - - The purpose of this 'HOWTO' is to present a set of common and - generally useful tracing and profiling idioms along with their - application (as appropriate) to each tool, in the context of a - general-purpose 'drill-down' methodology that can be applied - to solving a large number (90%?) of problems. - For help with more advanced usages and problems, please see - the documentation and/or websites listed for each tool. - - - - The final section of this 'HOWTO' is a collection of real-world - examples which we'll be continually adding to as we solve more - problems using the tools - feel free to add your own examples - to the list! - -
- -
- General Setup - - - Most of the tools are available only in 'sdk' images or in images - built after adding 'tools-profile' to your local.conf. - So, in order to be able to access all of the tools described here, - please first build and boot an 'sdk' image e.g. - - $ bitbake core-image-sato-sdk - - or alternatively by adding 'tools-profile' to the - EXTRA_IMAGE_FEATURES line in your local.conf: - - EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile" - - If you use the 'tools-profile' method, you don't need to build an - sdk image - the tracing and profiling tools will be included in - non-sdk images as well e.g.: - - $ bitbake core-image-sato - - - By default, the Yocto build system strips symbols from the - binaries it packages, which makes it difficult to use some - of the tools. - You can prevent that by setting the - INHIBIT_PACKAGE_STRIP - variable to "1" in your - local.conf when you build the image: - - - - INHIBIT_PACKAGE_STRIP = "1" - - The above setting will noticeably increase the size of your image. - - - - If you've already built a stripped image, you can generate - debug packages (xxx-dbg) which you can manually install as - needed. - - - - To generate debug info for packages, you can add dbg-pkgs to - EXTRA_IMAGE_FEATURES in local.conf. For example: - - EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs" - - Additionally, in order to generate the right type of - debuginfo, we also need to set - PACKAGE_DEBUG_SPLIT_STYLE - in the local.conf file: - - PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory' - - -
-
- diff --git a/documentation/profile-manual/profile-manual-style.css b/documentation/profile-manual/profile-manual-style.css deleted file mode 100644 index 8502c11090..0000000000 --- a/documentation/profile-manual/profile-manual-style.css +++ /dev/null @@ -1,987 +0,0 @@ -/* - - SPDX-License-Identifier: CC-BY-2.0-UK - - Generic XHTML / DocBook XHTML CSS Stylesheet. - - Browser wrangling and typographic design by - Oyvind Kolas / pippin@gimp.org - - Customised for Poky by - Matthew Allum / mallum@o-hand.com - - Thanks to: - Liam R. E. Quin - William Skaggs - Jakub Steiner - - Structure - --------- - - The stylesheet is divided into the following sections: - - Positioning - Margins, paddings, width, font-size, clearing. - Decorations - Borders, style - Colors - Colors - Graphics - Graphical backgrounds - Nasty IE tweaks - Workarounds needed to make it work in internet explorer, - currently makes the stylesheet non validating, but up until - this point it is validating. - Mozilla extensions - Transparency for footer - Rounded corners on boxes - -*/ - - - /*************** / - / Positioning / -/ ***************/ - -body { - font-family: Verdana, Sans, sans-serif; - - min-width: 640px; - width: 80%; - margin: 0em auto; - padding: 2em 5em 5em 5em; - color: #333; -} - -h1,h2,h3,h4,h5,h6,h7 { - font-family: Arial, Sans; - color: #00557D; - clear: both; -} - -h1 { - font-size: 2em; - text-align: left; - padding: 0em 0em 0em 0em; - margin: 2em 0em 0em 0em; -} - -h2.subtitle { - margin: 0.10em 0em 3.0em 0em; - padding: 0em 0em 0em 0em; - font-size: 1.8em; - padding-left: 20%; - font-weight: normal; - font-style: italic; -} - -h2 { - margin: 2em 0em 0.66em 0em; - padding: 0.5em 0em 0em 0em; - font-size: 1.5em; - font-weight: bold; -} - -h3.subtitle { - margin: 0em 0em 1em 0em; - padding: 0em 0em 0em 0em; - font-size: 142.14%; - text-align: right; -} - -h3 { - margin: 1em 0em 0.5em 0em; - padding: 1em 0em 0em 0em; - font-size: 140%; - font-weight: bold; -} - -h4 { - margin: 1em 0em 0.5em 0em; - padding: 1em 0em 0em 0em; - font-size: 120%; - font-weight: bold; -} - -h5 { - margin: 1em 0em 0.5em 0em; - padding: 1em 0em 0em 0em; - font-size: 110%; - font-weight: bold; -} - -h6 { - margin: 1em 0em 0em 0em; - padding: 1em 0em 0em 0em; - font-size: 110%; - font-weight: bold; -} - -.authorgroup { - background-color: transparent; - background-repeat: no-repeat; - padding-top: 256px; - background-image: url("figures/profile-title.png"); - background-position: left top; - margin-top: -256px; - padding-right: 50px; - margin-left: 0px; - text-align: right; - width: 740px; -} - -h3.author { - margin: 0em 0me 0em 0em; - padding: 0em 0em 0em 0em; - font-weight: normal; - font-size: 100%; - color: #333; - clear: both; -} - -.author tt.email { - font-size: 66%; -} - -.titlepage hr { - width: 0em; - clear: both; -} - -.revhistory { - padding-top: 2em; - clear: both; -} - -.toc, -.list-of-tables, -.list-of-examples, -.list-of-figures { - padding: 1.33em 0em 2.5em 0em; - color: #00557D; -} - -.toc p, -.list-of-tables p, -.list-of-figures p, -.list-of-examples p { - padding: 0em 0em 0em 0em; - padding: 0em 0em 0.3em; - margin: 1.5em 0em 0em 0em; -} - -.toc p b, -.list-of-tables p b, -.list-of-figures p b, -.list-of-examples p b{ - font-size: 100.0%; - font-weight: bold; -} - -.toc dl, -.list-of-tables dl, -.list-of-figures dl, -.list-of-examples dl { - margin: 0em 0em 0.5em 0em; - padding: 0em 0em 0em 0em; -} - -.toc dt { - margin: 0em 0em 0em 0em; - padding: 0em 0em 0em 0em; -} - -.toc dd { - margin: 0em 0em 0em 2.6em; - padding: 0em 0em 0em 0em; -} - -div.glossary dl, -div.variablelist dl { -} - -.glossary dl dt, -.variablelist dl dt, -.variablelist dl dt span.term { - font-weight: normal; - width: 20em; - text-align: right; -} - -.variablelist dl dt { - margin-top: 0.5em; -} - -.glossary dl dd, -.variablelist dl dd { - margin-top: -1em; - margin-left: 25.5em; -} - -.glossary dd p, -.variablelist dd p { - margin-top: 0em; - margin-bottom: 1em; -} - - -div.calloutlist table td { - padding: 0em 0em 0em 0em; - margin: 0em 0em 0em 0em; -} - -div.calloutlist table td p { - margin-top: 0em; - margin-bottom: 1em; -} - -div p.copyright { - text-align: left; -} - -div.legalnotice p.legalnotice-title { - margin-bottom: 0em; -} - -p { - line-height: 1.5em; - margin-top: 0em; - -} - -dl { - padding-top: 0em; -} - -hr { - border: solid 1px; -} - - -.mediaobject, -.mediaobjectco { - text-align: center; -} - -img { - border: none; -} - -ul { - padding: 0em 0em 0em 1.5em; -} - -ul li { - padding: 0em 0em 0em 0em; -} - -ul li p { - text-align: left; -} - -table { - width :100%; -} - -th { - padding: 0.25em; - text-align: left; - font-weight: normal; - vertical-align: top; -} - -td { - padding: 0.25em; - vertical-align: top; -} - -p a[id] { - margin: 0px; - padding: 0px; - display: inline; - background-image: none; -} - -a { - text-decoration: underline; - color: #444; -} - -pre { - overflow: auto; -} - -a:hover { - text-decoration: underline; - /*font-weight: bold;*/ -} - -/* This style defines how the permalink character - appears by itself and when hovered over with - the mouse. */ - -[alt='Permalink'] { color: #eee; } -[alt='Permalink']:hover { color: black; } - - -div.informalfigure, -div.informalexample, -div.informaltable, -div.figure, -div.table, -div.example { - margin: 1em 0em; - padding: 1em; - page-break-inside: avoid; -} - - -div.informalfigure p.title b, -div.informalexample p.title b, -div.informaltable p.title b, -div.figure p.title b, -div.example p.title b, -div.table p.title b{ - padding-top: 0em; - margin-top: 0em; - font-size: 100%; - font-weight: normal; -} - -.mediaobject .caption, -.mediaobject .caption p { - text-align: center; - font-size: 80%; - padding-top: 0.5em; - padding-bottom: 0.5em; -} - -.epigraph { - padding-left: 55%; - margin-bottom: 1em; -} - -.epigraph p { - text-align: left; -} - -.epigraph .quote { - font-style: italic; -} -.epigraph .attribution { - font-style: normal; - text-align: right; -} - -span.application { - font-style: italic; -} - -.programlisting { - font-family: monospace; - font-size: 80%; - white-space: pre; - margin: 1.33em 0em; - padding: 1.33em; -} - -.tip, -.warning, -.caution, -.note { - margin-top: 1em; - margin-bottom: 1em; - -} - -/* force full width of table within div */ -.tip table, -.warning table, -.caution table, -.note table { - border: none; - width: 100%; -} - - -.tip table th, -.warning table th, -.caution table th, -.note table th { - padding: 0.8em 0.0em 0.0em 0.0em; - margin : 0em 0em 0em 0em; -} - -.tip p, -.warning p, -.caution p, -.note p { - margin-top: 0.5em; - margin-bottom: 0.5em; - padding-right: 1em; - text-align: left; -} - -.acronym { - text-transform: uppercase; -} - -b.keycap, -.keycap { - padding: 0.09em 0.3em; - margin: 0em; -} - -.itemizedlist li { - clear: none; -} - -.filename { - font-size: medium; - font-family: Courier, monospace; -} - - -div.navheader, div.heading{ - position: absolute; - left: 0em; - top: 0em; - width: 100%; - background-color: #cdf; - width: 100%; -} - -div.navfooter, div.footing{ - position: fixed; - left: 0em; - bottom: 0em; - background-color: #eee; - width: 100%; -} - - -div.navheader td, -div.navfooter td { - font-size: 66%; -} - -div.navheader table th { - /*font-family: Georgia, Times, serif;*/ - /*font-size: x-large;*/ - font-size: 80%; -} - -div.navheader table { - border-left: 0em; - border-right: 0em; - border-top: 0em; - width: 100%; -} - -div.navfooter table { - border-left: 0em; - border-right: 0em; - border-bottom: 0em; - width: 100%; -} - -div.navheader table td a, -div.navfooter table td a { - color: #777; - text-decoration: none; -} - -/* normal text in the footer */ -div.navfooter table td { - color: black; -} - -div.navheader table td a:visited, -div.navfooter table td a:visited { - color: #444; -} - - -/* links in header and footer */ -div.navheader table td a:hover, -div.navfooter table td a:hover { - text-decoration: underline; - background-color: transparent; - color: #33a; -} - -div.navheader hr, -div.navfooter hr { - display: none; -} - - -.qandaset tr.question td p { - margin: 0em 0em 1em 0em; - padding: 0em 0em 0em 0em; -} - -.qandaset tr.answer td p { - margin: 0em 0em 1em 0em; - padding: 0em 0em 0em 0em; -} -.answer td { - padding-bottom: 1.5em; -} - -.emphasis { - font-weight: bold; -} - - - /************* / - / decorations / -/ *************/ - -.titlepage { -} - -.part .title { -} - -.subtitle { - border: none; -} - -/* -h1 { - border: none; -} - -h2 { - border-top: solid 0.2em; - border-bottom: solid 0.06em; -} - -h3 { - border-top: 0em; - border-bottom: solid 0.06em; -} - -h4 { - border: 0em; - border-bottom: solid 0.06em; -} - -h5 { - border: 0em; -} -*/ - -.programlisting { - border: solid 1px; -} - -div.figure, -div.table, -div.informalfigure, -div.informaltable, -div.informalexample, -div.example { - border: 1px solid; -} - - - -.tip, -.warning, -.caution, -.note { - border: 1px solid; -} - -.tip table th, -.warning table th, -.caution table th, -.note table th { - border-bottom: 1px solid; -} - -.question td { - border-top: 1px solid black; -} - -.answer { -} - - -b.keycap, -.keycap { - border: 1px solid; -} - - -div.navheader, div.heading{ - border-bottom: 1px solid; -} - - -div.navfooter, div.footing{ - border-top: 1px solid; -} - - /********* / - / colors / -/ *********/ - -body { - color: #333; - background: white; -} - -a { - background: transparent; -} - -a:hover { - background-color: #dedede; -} - - -h1, -h2, -h3, -h4, -h5, -h6, -h7, -h8 { - background-color: transparent; -} - -hr { - border-color: #aaa; -} - - -.tip, .warning, .caution, .note { - border-color: #fff; -} - - -.tip table th, -.warning table th, -.caution table th, -.note table th { - border-bottom-color: #fff; -} - - -.warning { - background-color: #f0f0f2; -} - -.caution { - background-color: #f0f0f2; -} - -.tip { - background-color: #f0f0f2; -} - -.note { - background-color: #f0f0f2; -} - -.glossary dl dt, -.variablelist dl dt, -.variablelist dl dt span.term { - color: #044; -} - -div.figure, -div.table, -div.example, -div.informalfigure, -div.informaltable, -div.informalexample { - border-color: #aaa; -} - -pre.programlisting { - color: black; - background-color: #fff; - border-color: #aaa; - border-width: 2px; -} - -.guimenu, -.guilabel, -.guimenuitem { - background-color: #eee; -} - - -b.keycap, -.keycap { - background-color: #eee; - border-color: #999; -} - - -div.navheader { - border-color: black; -} - - -div.navfooter { - border-color: black; -} - - - /*********** / - / graphics / -/ ***********/ - -/* -body { - background-image: url("images/body_bg.jpg"); - background-attachment: fixed; -} - -.navheader, -.note, -.tip { - background-image: url("images/note_bg.jpg"); - background-attachment: fixed; -} - -.warning, -.caution { - background-image: url("images/warning_bg.jpg"); - background-attachment: fixed; -} - -.figure, -.informalfigure, -.example, -.informalexample, -.table, -.informaltable { - background-image: url("images/figure_bg.jpg"); - background-attachment: fixed; -} - -*/ -h1, -h2, -h3, -h4, -h5, -h6, -h7{ -} - -/* -Example of how to stick an image as part of the title. - -div.article .titlepage .title -{ - background-image: url("figures/white-on-black.png"); - background-position: center; - background-repeat: repeat-x; -} -*/ - -div.preface .titlepage .title, -div.colophon .title, -div.chapter .titlepage .title, -div.article .titlepage .title -{ -} - -div.section div.section .titlepage .title, -div.sect2 .titlepage .title { - background: none; -} - - -h1.title { - background-color: transparent; - background-repeat: no-repeat; - height: 256px; - text-indent: -9000px; - overflow:hidden; -} - -h2.subtitle { - background-color: transparent; - text-indent: -9000px; - overflow:hidden; - width: 0px; - display: none; -} - - /*************************************** / - / pippin.gimp.org specific alterations / -/ ***************************************/ - -/* -div.heading, div.navheader { - color: #777; - font-size: 80%; - padding: 0; - margin: 0; - text-align: left; - position: absolute; - top: 0px; - left: 0px; - width: 100%; - height: 50px; - background: url('/gfx/heading_bg.png') transparent; - background-repeat: repeat-x; - background-attachment: fixed; - border: none; -} - -div.heading a { - color: #444; -} - -div.footing, div.navfooter { - border: none; - color: #ddd; - font-size: 80%; - text-align:right; - - width: 100%; - padding-top: 10px; - position: absolute; - bottom: 0px; - left: 0px; - - background: url('/gfx/footing_bg.png') transparent; -} -*/ - - - - /****************** / - / nasty ie tweaks / -/ ******************/ - -/* -div.heading, div.navheader { - width:expression(document.body.clientWidth + "px"); -} - -div.footing, div.navfooter { - width:expression(document.body.clientWidth + "px"); - margin-left:expression("-5em"); -} -body { - padding:expression("4em 5em 0em 5em"); -} -*/ - - /**************************************** / - / mozilla vendor specific css extensions / -/ ****************************************/ -/* -div.navfooter, div.footing{ - -moz-opacity: 0.8em; -} - -div.figure, -div.table, -div.informalfigure, -div.informaltable, -div.informalexample, -div.example, -.tip, -.warning, -.caution, -.note { - -moz-border-radius: 0.5em; -} - -b.keycap, -.keycap { - -moz-border-radius: 0.3em; -} -*/ - -table tr td table tr td { - display: none; -} - - -hr { - display: none; -} - -table { - border: 0em; -} - - .photo { - float: right; - margin-left: 1.5em; - margin-bottom: 1.5em; - margin-top: 0em; - max-width: 17em; - border: 1px solid gray; - padding: 3px; - background: white; -} - .seperator { - padding-top: 2em; - clear: both; - } - - #validators { - margin-top: 5em; - text-align: right; - color: #777; - } - @media print { - body { - font-size: 8pt; - } - .noprint { - display: none; - } - } - - -.tip, -.note { - background: #f0f0f2; - color: #333; - padding: 20px; - margin: 20px; -} - -.tip h3, -.note h3 { - padding: 0em; - margin: 0em; - font-size: 2em; - font-weight: bold; - color: #333; -} - -.tip a, -.note a { - color: #333; - text-decoration: underline; -} - -.footnote { - font-size: small; - color: #333; -} - -/* Changes the announcement text */ -.tip h3, -.warning h3, -.caution h3, -.note h3 { - font-size:large; - color: #00557D; -} diff --git a/documentation/profile-manual/profile-manual-usage.xml b/documentation/profile-manual/profile-manual-usage.xml deleted file mode 100644 index 3a7148cbd3..0000000000 --- a/documentation/profile-manual/profile-manual-usage.xml +++ /dev/null @@ -1,2986 +0,0 @@ - %poky; ] > - - - - -Basic Usage (with examples) for each of the Yocto Tracing Tools - - - This chapter presents basic usage examples for each of the tracing - tools. - - -
- perf - - - The 'perf' tool is the profiling and tracing tool that comes - bundled with the Linux kernel. - - - - Don't let the fact that it's part of the kernel fool you into thinking - that it's only for tracing and profiling the kernel - you can indeed - use it to trace and profile just the kernel, but you can also use it - to profile specific applications separately (with or without kernel - context), and you can also use it to trace and profile the kernel - and all applications on the system simultaneously to gain a system-wide - view of what's going on. - - - - In many ways, perf aims to be a superset of all the tracing and profiling - tools available in Linux today, including all the other tools covered - in this HOWTO. The past couple of years have seen perf subsume a lot - of the functionality of those other tools and, at the same time, those - other tools have removed large portions of their previous functionality - and replaced it with calls to the equivalent functionality now - implemented by the perf subsystem. Extrapolation suggests that at - some point those other tools will simply become completely redundant - and go away; until then, we'll cover those other tools in these pages - and in many cases show how the same things can be accomplished in - perf and the other tools when it seems useful to do so. - - - - The coverage below details some of the most common ways you'll likely - want to apply the tool; full documentation can be found either within - the tool itself or in the man pages at - perf(1). - - -
- Setup - - - For this section, we'll assume you've already performed the basic - setup outlined in the General Setup section. - - - - In particular, you'll get the most mileage out of perf if you - profile an image built with the following in your - local.conf file: - - INHIBIT_PACKAGE_STRIP = "1" - - - - - perf runs on the target system for the most part. You can archive - profile data and copy it to the host for analysis, but for the - rest of this document we assume you've ssh'ed to the host and - will be running the perf commands on the target. - -
- -
- Basic Usage - - - The perf tool is pretty much self-documenting. To remind yourself - of the available commands, simply type 'perf', which will show you - basic usage along with the available perf subcommands: - - root@crownbay:~# perf - - usage: perf [--version] [--help] COMMAND [ARGS] - - The most commonly used perf commands are: - annotate Read perf.data (created by perf record) and display annotated code - archive Create archive with object files with build-ids found in perf.data file - bench General framework for benchmark suites - buildid-cache Manage build-id cache. - buildid-list List the buildids in a perf.data file - diff Read two perf.data files and display the differential profile - evlist List the event names in a perf.data file - inject Filter to augment the events stream with additional information - kmem Tool to trace/measure kernel memory(slab) properties - kvm Tool to trace/measure kvm guest os - list List all symbolic event types - lock Analyze lock events - probe Define new dynamic tracepoints - record Run a command and record its profile into perf.data - report Read perf.data (created by perf record) and display the profile - sched Tool to trace/measure scheduler properties (latencies) - script Read perf.data (created by perf record) and display trace output - stat Run a command and gather performance counter statistics - test Runs sanity tests. - timechart Tool to visualize total system behavior during a workload - top System profiling tool. - - See 'perf help COMMAND' for more information on a specific command. - - - -
- Using perf to do Basic Profiling - - - As a simple test case, we'll profile the 'wget' of a fairly large - file, which is a minimally interesting case because it has both - file and network I/O aspects, and at least in the case of standard - Yocto images, it's implemented as part of busybox, so the methods - we use to analyze it can be used in a very similar way to the whole - host of supported busybox applets in Yocto. - - root@crownbay:~# rm linux-2.6.19.2.tar.bz2; \ - wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - - The quickest and easiest way to get some basic overall data about - what's going on for a particular workload is to profile it using - 'perf stat'. 'perf stat' basically profiles using a few default - counters and displays the summed counts at the end of the run: - - root@crownbay:~# perf stat wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - Connecting to downloads.yoctoproject.org (140.211.169.59:80) - linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA - - Performance counter stats for 'wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2': - - 4597.223902 task-clock # 0.077 CPUs utilized - 23568 context-switches # 0.005 M/sec - 68 CPU-migrations # 0.015 K/sec - 241 page-faults # 0.052 K/sec - 3045817293 cycles # 0.663 GHz - <not supported> stalled-cycles-frontend - <not supported> stalled-cycles-backend - 858909167 instructions # 0.28 insns per cycle - 165441165 branches # 35.987 M/sec - 19550329 branch-misses # 11.82% of all branches - - 59.836627620 seconds time elapsed - - Many times such a simple-minded test doesn't yield much of - interest, but sometimes it does (see Real-world Yocto bug - (slow loop-mounted write speed)). - - - - Also, note that 'perf stat' isn't restricted to a fixed set of - counters - basically any event listed in the output of 'perf list' - can be tallied by 'perf stat'. For example, suppose we wanted to - see a summary of all the events related to kernel memory - allocation/freeing along with cache hits and misses: - - root@crownbay:~# perf stat -e kmem:* -e cache-references -e cache-misses wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - Connecting to downloads.yoctoproject.org (140.211.169.59:80) - linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA - - Performance counter stats for 'wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2': - - 5566 kmem:kmalloc - 125517 kmem:kmem_cache_alloc - 0 kmem:kmalloc_node - 0 kmem:kmem_cache_alloc_node - 34401 kmem:kfree - 69920 kmem:kmem_cache_free - 133 kmem:mm_page_free - 41 kmem:mm_page_free_batched - 11502 kmem:mm_page_alloc - 11375 kmem:mm_page_alloc_zone_locked - 0 kmem:mm_page_pcpu_drain - 0 kmem:mm_page_alloc_extfrag - 66848602 cache-references - 2917740 cache-misses # 4.365 % of all cache refs - - 44.831023415 seconds time elapsed - - So 'perf stat' gives us a nice easy way to get a quick overview of - what might be happening for a set of events, but normally we'd - need a little more detail in order to understand what's going on - in a way that we can act on in a useful way. - - - - To dive down into a next level of detail, we can use 'perf - record'/'perf report' which will collect profiling data and - present it to use using an interactive text-based UI (or - simply as text if we specify --stdio to 'perf report'). - - - - As our first attempt at profiling this workload, we'll simply - run 'perf record', handing it the workload we want to profile - (everything after 'perf record' and any perf options we hand - it - here none - will be executed in a new shell). perf collects - samples until the process exits and records them in a file named - 'perf.data' in the current working directory. - - root@crownbay:~# perf record wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - - Connecting to downloads.yoctoproject.org (140.211.169.59:80) - linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA - [ perf record: Woken up 1 times to write data ] - [ perf record: Captured and wrote 0.176 MB perf.data (~7700 samples) ] - - To see the results in a 'text-based UI' (tui), simply run - 'perf report', which will read the perf.data file in the current - working directory and display the results in an interactive UI: - - root@crownbay:~# perf report - - - - - - - - - The above screenshot displays a 'flat' profile, one entry for - each 'bucket' corresponding to the functions that were profiled - during the profiling run, ordered from the most popular to the - least (perf has options to sort in various orders and keys as - well as display entries only above a certain threshold and so - on - see the perf documentation for details). Note that this - includes both userspace functions (entries containing a [.]) and - kernel functions accounted to the process (entries containing - a [k]). (perf has command-line modifiers that can be used to - restrict the profiling to kernel or userspace, among others). - - - - Notice also that the above report shows an entry for 'busybox', - which is the executable that implements 'wget' in Yocto, but that - instead of a useful function name in that entry, it displays - a not-so-friendly hex value instead. The steps below will show - how to fix that problem. - - - - Before we do that, however, let's try running a different profile, - one which shows something a little more interesting. The only - difference between the new profile and the previous one is that - we'll add the -g option, which will record not just the address - of a sampled function, but the entire callchain to the sampled - function as well: - - root@crownbay:~# perf record -g wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - Connecting to downloads.yoctoproject.org (140.211.169.59:80) - linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA - [ perf record: Woken up 3 times to write data ] - [ perf record: Captured and wrote 0.652 MB perf.data (~28476 samples) ] - - - root@crownbay:~# perf report - - - - - - - - - Using the callgraph view, we can actually see not only which - functions took the most time, but we can also see a summary of - how those functions were called and learn something about how the - program interacts with the kernel in the process. - - - - Notice that each entry in the above screenshot now contains a '+' - on the left-hand side. This means that we can expand the entry and - drill down into the callchains that feed into that entry. - Pressing 'enter' on any one of them will expand the callchain - (you can also press 'E' to expand them all at the same time or 'C' - to collapse them all). - - - - In the screenshot above, we've toggled the __copy_to_user_ll() - entry and several subnodes all the way down. This lets us see - which callchains contributed to the profiled __copy_to_user_ll() - function which contributed 1.77% to the total profile. - - - - As a bit of background explanation for these callchains, think - about what happens at a high level when you run wget to get a file - out on the network. Basically what happens is that the data comes - into the kernel via the network connection (socket) and is passed - to the userspace program 'wget' (which is actually a part of - busybox, but that's not important for now), which takes the buffers - the kernel passes to it and writes it to a disk file to save it. - - - - The part of this process that we're looking at in the above call - stacks is the part where the kernel passes the data it's read from - the socket down to wget i.e. a copy-to-user. - - - - Notice also that here there's also a case where the hex value - is displayed in the callstack, here in the expanded - sys_clock_gettime() function. Later we'll see it resolve to a - userspace function call in busybox. - - - - - - - - The above screenshot shows the other half of the journey for the - data - from the wget program's userspace buffers to disk. To get - the buffers to disk, the wget program issues a write(2), which - does a copy-from-user to the kernel, which then takes care via - some circuitous path (probably also present somewhere in the - profile data), to get it safely to disk. - - - - Now that we've seen the basic layout of the profile data and the - basics of how to extract useful information out of it, let's get - back to the task at hand and see if we can get some basic idea - about where the time is spent in the program we're profiling, - wget. Remember that wget is actually implemented as an applet - in busybox, so while the process name is 'wget', the executable - we're actually interested in is busybox. So let's expand the - first entry containing busybox: - - - - - - - - Again, before we expanded we saw that the function was labeled - with a hex value instead of a symbol as with most of the kernel - entries. Expanding the busybox entry doesn't make it any better. - - - - The problem is that perf can't find the symbol information for the - busybox binary, which is actually stripped out by the Yocto build - system. - - - - One way around that is to put the following in your - local.conf file when you build the image: - - INHIBIT_PACKAGE_STRIP = "1" - - However, we already have an image with the binaries stripped, - so what can we do to get perf to resolve the symbols? Basically - we need to install the debuginfo for the busybox package. - - - - To generate the debug info for the packages in the image, we can - add dbg-pkgs to EXTRA_IMAGE_FEATURES in local.conf. For example: - - EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs" - - Additionally, in order to generate the type of debuginfo that - perf understands, we also need to set - PACKAGE_DEBUG_SPLIT_STYLE - in the local.conf file: - - PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory' - - Once we've done that, we can install the debuginfo for busybox. - The debug packages once built can be found in - build/tmp/deploy/rpm/* on the host system. Find the - busybox-dbg-...rpm file and copy it to the target. For example: - - [trz@empanada core2]$ scp /home/trz/yocto/crownbay-tracing-dbg/build/tmp/deploy/rpm/core2_32/busybox-dbg-1.20.2-r2.core2_32.rpm root@192.168.1.31: - root@192.168.1.31's password: - busybox-dbg-1.20.2-r2.core2_32.rpm 100% 1826KB 1.8MB/s 00:01 - - Now install the debug rpm on the target: - - root@crownbay:~# rpm -i busybox-dbg-1.20.2-r2.core2_32.rpm - - Now that the debuginfo is installed, we see that the busybox - entries now display their functions symbolically: - - - - - - - - If we expand one of the entries and press 'enter' on a leaf node, - we're presented with a menu of actions we can take to get more - information related to that entry: - - - - - - - - One of these actions allows us to show a view that displays a - busybox-centric view of the profiled functions (in this case we've - also expanded all the nodes using the 'E' key): - - - - - - - - Finally, we can see that now that the busybox debuginfo is - installed, the previously unresolved symbol in the - sys_clock_gettime() entry mentioned previously is now resolved, - and shows that the sys_clock_gettime system call that was the - source of 6.75% of the copy-to-user overhead was initiated by - the handle_input() busybox function: - - - - - - - - At the lowest level of detail, we can dive down to the assembly - level and see which instructions caused the most overhead in a - function. Pressing 'enter' on the 'udhcpc_main' function, we're - again presented with a menu: - - - - - - - - Selecting 'Annotate udhcpc_main', we get a detailed listing of - percentages by instruction for the udhcpc_main function. From the - display, we can see that over 50% of the time spent in this - function is taken up by a couple tests and the move of a - constant (1) to a register: - - - - - - - - As a segue into tracing, let's try another profile using a - different counter, something other than the default 'cycles'. - - - - The tracing and profiling infrastructure in Linux has become - unified in a way that allows us to use the same tool with a - completely different set of counters, not just the standard - hardware counters that traditional tools have had to restrict - themselves to (of course the traditional tools can also make use - of the expanded possibilities now available to them, and in some - cases have, as mentioned previously). - - - - We can get a list of the available events that can be used to - profile a workload via 'perf list': - - root@crownbay:~# perf list - - List of pre-defined events (to be used in -e): - cpu-cycles OR cycles [Hardware event] - stalled-cycles-frontend OR idle-cycles-frontend [Hardware event] - stalled-cycles-backend OR idle-cycles-backend [Hardware event] - instructions [Hardware event] - cache-references [Hardware event] - cache-misses [Hardware event] - branch-instructions OR branches [Hardware event] - branch-misses [Hardware event] - bus-cycles [Hardware event] - ref-cycles [Hardware event] - - cpu-clock [Software event] - task-clock [Software event] - page-faults OR faults [Software event] - minor-faults [Software event] - major-faults [Software event] - context-switches OR cs [Software event] - cpu-migrations OR migrations [Software event] - alignment-faults [Software event] - emulation-faults [Software event] - - L1-dcache-loads [Hardware cache event] - L1-dcache-load-misses [Hardware cache event] - L1-dcache-prefetch-misses [Hardware cache event] - L1-icache-loads [Hardware cache event] - L1-icache-load-misses [Hardware cache event] - . - . - . - rNNN [Raw hardware event descriptor] - cpu/t1=v1[,t2=v2,t3 ...]/modifier [Raw hardware event descriptor] - (see 'perf list --help' on how to encode it) - - mem:<addr>[:access] [Hardware breakpoint] - - sunrpc:rpc_call_status [Tracepoint event] - sunrpc:rpc_bind_status [Tracepoint event] - sunrpc:rpc_connect_status [Tracepoint event] - sunrpc:rpc_task_begin [Tracepoint event] - skb:kfree_skb [Tracepoint event] - skb:consume_skb [Tracepoint event] - skb:skb_copy_datagram_iovec [Tracepoint event] - net:net_dev_xmit [Tracepoint event] - net:net_dev_queue [Tracepoint event] - net:netif_receive_skb [Tracepoint event] - net:netif_rx [Tracepoint event] - napi:napi_poll [Tracepoint event] - sock:sock_rcvqueue_full [Tracepoint event] - sock:sock_exceed_buf_limit [Tracepoint event] - udp:udp_fail_queue_rcv_skb [Tracepoint event] - hda:hda_send_cmd [Tracepoint event] - hda:hda_get_response [Tracepoint event] - hda:hda_bus_reset [Tracepoint event] - scsi:scsi_dispatch_cmd_start [Tracepoint event] - scsi:scsi_dispatch_cmd_error [Tracepoint event] - scsi:scsi_eh_wakeup [Tracepoint event] - drm:drm_vblank_event [Tracepoint event] - drm:drm_vblank_event_queued [Tracepoint event] - drm:drm_vblank_event_delivered [Tracepoint event] - random:mix_pool_bytes [Tracepoint event] - random:mix_pool_bytes_nolock [Tracepoint event] - random:credit_entropy_bits [Tracepoint event] - gpio:gpio_direction [Tracepoint event] - gpio:gpio_value [Tracepoint event] - block:block_rq_abort [Tracepoint event] - block:block_rq_requeue [Tracepoint event] - block:block_rq_issue [Tracepoint event] - block:block_bio_bounce [Tracepoint event] - block:block_bio_complete [Tracepoint event] - block:block_bio_backmerge [Tracepoint event] - . - . - writeback:writeback_wake_thread [Tracepoint event] - writeback:writeback_wake_forker_thread [Tracepoint event] - writeback:writeback_bdi_register [Tracepoint event] - . - . - writeback:writeback_single_inode_requeue [Tracepoint event] - writeback:writeback_single_inode [Tracepoint event] - kmem:kmalloc [Tracepoint event] - kmem:kmem_cache_alloc [Tracepoint event] - kmem:mm_page_alloc [Tracepoint event] - kmem:mm_page_alloc_zone_locked [Tracepoint event] - kmem:mm_page_pcpu_drain [Tracepoint event] - kmem:mm_page_alloc_extfrag [Tracepoint event] - vmscan:mm_vmscan_kswapd_sleep [Tracepoint event] - vmscan:mm_vmscan_kswapd_wake [Tracepoint event] - vmscan:mm_vmscan_wakeup_kswapd [Tracepoint event] - vmscan:mm_vmscan_direct_reclaim_begin [Tracepoint event] - . - . - module:module_get [Tracepoint event] - module:module_put [Tracepoint event] - module:module_request [Tracepoint event] - sched:sched_kthread_stop [Tracepoint event] - sched:sched_wakeup [Tracepoint event] - sched:sched_wakeup_new [Tracepoint event] - sched:sched_process_fork [Tracepoint event] - sched:sched_process_exec [Tracepoint event] - sched:sched_stat_runtime [Tracepoint event] - rcu:rcu_utilization [Tracepoint event] - workqueue:workqueue_queue_work [Tracepoint event] - workqueue:workqueue_execute_end [Tracepoint event] - signal:signal_generate [Tracepoint event] - signal:signal_deliver [Tracepoint event] - timer:timer_init [Tracepoint event] - timer:timer_start [Tracepoint event] - timer:hrtimer_cancel [Tracepoint event] - timer:itimer_state [Tracepoint event] - timer:itimer_expire [Tracepoint event] - irq:irq_handler_entry [Tracepoint event] - irq:irq_handler_exit [Tracepoint event] - irq:softirq_entry [Tracepoint event] - irq:softirq_exit [Tracepoint event] - irq:softirq_raise [Tracepoint event] - printk:console [Tracepoint event] - task:task_newtask [Tracepoint event] - task:task_rename [Tracepoint event] - syscalls:sys_enter_socketcall [Tracepoint event] - syscalls:sys_exit_socketcall [Tracepoint event] - . - . - . - syscalls:sys_enter_unshare [Tracepoint event] - syscalls:sys_exit_unshare [Tracepoint event] - raw_syscalls:sys_enter [Tracepoint event] - raw_syscalls:sys_exit [Tracepoint event] - - - - - Tying it Together: These are exactly the same set of events defined - by the trace event subsystem and exposed by - ftrace/tracecmd/kernelshark as files in - /sys/kernel/debug/tracing/events, by SystemTap as - kernel.trace("tracepoint_name") and (partially) accessed by LTTng. - - - - Only a subset of these would be of interest to us when looking at - this workload, so let's choose the most likely subsystems - (identified by the string before the colon in the Tracepoint events) - and do a 'perf stat' run using only those wildcarded subsystems: - - root@crownbay:~# perf stat -e skb:* -e net:* -e napi:* -e sched:* -e workqueue:* -e irq:* -e syscalls:* wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - Performance counter stats for 'wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2': - - 23323 skb:kfree_skb - 0 skb:consume_skb - 49897 skb:skb_copy_datagram_iovec - 6217 net:net_dev_xmit - 6217 net:net_dev_queue - 7962 net:netif_receive_skb - 2 net:netif_rx - 8340 napi:napi_poll - 0 sched:sched_kthread_stop - 0 sched:sched_kthread_stop_ret - 3749 sched:sched_wakeup - 0 sched:sched_wakeup_new - 0 sched:sched_switch - 29 sched:sched_migrate_task - 0 sched:sched_process_free - 1 sched:sched_process_exit - 0 sched:sched_wait_task - 0 sched:sched_process_wait - 0 sched:sched_process_fork - 1 sched:sched_process_exec - 0 sched:sched_stat_wait - 2106519415641 sched:sched_stat_sleep - 0 sched:sched_stat_iowait - 147453613 sched:sched_stat_blocked - 12903026955 sched:sched_stat_runtime - 0 sched:sched_pi_setprio - 3574 workqueue:workqueue_queue_work - 3574 workqueue:workqueue_activate_work - 0 workqueue:workqueue_execute_start - 0 workqueue:workqueue_execute_end - 16631 irq:irq_handler_entry - 16631 irq:irq_handler_exit - 28521 irq:softirq_entry - 28521 irq:softirq_exit - 28728 irq:softirq_raise - 1 syscalls:sys_enter_sendmmsg - 1 syscalls:sys_exit_sendmmsg - 0 syscalls:sys_enter_recvmmsg - 0 syscalls:sys_exit_recvmmsg - 14 syscalls:sys_enter_socketcall - 14 syscalls:sys_exit_socketcall - . - . - . - 16965 syscalls:sys_enter_read - 16965 syscalls:sys_exit_read - 12854 syscalls:sys_enter_write - 12854 syscalls:sys_exit_write - . - . - . - - 58.029710972 seconds time elapsed - - Let's pick one of these tracepoints and tell perf to do a profile - using it as the sampling event: - - root@crownbay:~# perf record -g -e sched:sched_wakeup wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - - - - - - - - - The screenshot above shows the results of running a profile using - sched:sched_switch tracepoint, which shows the relative costs of - various paths to sched_wakeup (note that sched_wakeup is the - name of the tracepoint - it's actually defined just inside - ttwu_do_wakeup(), which accounts for the function name actually - displayed in the profile: - - /* - * Mark the task runnable and perform wakeup-preemption. - */ - static void - ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) - { - trace_sched_wakeup(p, true); - . - . - . - } - - A couple of the more interesting callchains are expanded and - displayed above, basically some network receive paths that - presumably end up waking up wget (busybox) when network data is - ready. - - - - Note that because tracepoints are normally used for tracing, - the default sampling period for tracepoints is 1 i.e. for - tracepoints perf will sample on every event occurrence (this - can be changed using the -c option). This is in contrast to - hardware counters such as for example the default 'cycles' - hardware counter used for normal profiling, where sampling - periods are much higher (in the thousands) because profiling should - have as low an overhead as possible and sampling on every cycle - would be prohibitively expensive. - -
- -
- Using perf to do Basic Tracing - - - Profiling is a great tool for solving many problems or for - getting a high-level view of what's going on with a workload or - across the system. It is however by definition an approximation, - as suggested by the most prominent word associated with it, - 'sampling'. On the one hand, it allows a representative picture of - what's going on in the system to be cheaply taken, but on the other - hand, that cheapness limits its utility when that data suggests a - need to 'dive down' more deeply to discover what's really going - on. In such cases, the only way to see what's really going on is - to be able to look at (or summarize more intelligently) the - individual steps that go into the higher-level behavior exposed - by the coarse-grained profiling data. - - - - As a concrete example, we can trace all the events we think might - be applicable to our workload: - - root@crownbay:~# perf record -g -e skb:* -e net:* -e napi:* -e sched:sched_switch -e sched:sched_wakeup -e irq:* - -e syscalls:sys_enter_read -e syscalls:sys_exit_read -e syscalls:sys_enter_write -e syscalls:sys_exit_write - wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - - We can look at the raw trace output using 'perf script' with no - arguments: - - root@crownbay:~# perf script - - perf 1262 [000] 11624.857082: sys_exit_read: 0x0 - perf 1262 [000] 11624.857193: sched_wakeup: comm=migration/0 pid=6 prio=0 success=1 target_cpu=000 - wget 1262 [001] 11624.858021: softirq_raise: vec=1 [action=TIMER] - wget 1262 [001] 11624.858074: softirq_entry: vec=1 [action=TIMER] - wget 1262 [001] 11624.858081: softirq_exit: vec=1 [action=TIMER] - wget 1262 [001] 11624.858166: sys_enter_read: fd: 0x0003, buf: 0xbf82c940, count: 0x0200 - wget 1262 [001] 11624.858177: sys_exit_read: 0x200 - wget 1262 [001] 11624.858878: kfree_skb: skbaddr=0xeb248d80 protocol=0 location=0xc15a5308 - wget 1262 [001] 11624.858945: kfree_skb: skbaddr=0xeb248000 protocol=0 location=0xc15a5308 - wget 1262 [001] 11624.859020: softirq_raise: vec=1 [action=TIMER] - wget 1262 [001] 11624.859076: softirq_entry: vec=1 [action=TIMER] - wget 1262 [001] 11624.859083: softirq_exit: vec=1 [action=TIMER] - wget 1262 [001] 11624.859167: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400 - wget 1262 [001] 11624.859192: sys_exit_read: 0x1d7 - wget 1262 [001] 11624.859228: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400 - wget 1262 [001] 11624.859233: sys_exit_read: 0x0 - wget 1262 [001] 11624.859573: sys_enter_read: fd: 0x0003, buf: 0xbf82c580, count: 0x0200 - wget 1262 [001] 11624.859584: sys_exit_read: 0x200 - wget 1262 [001] 11624.859864: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400 - wget 1262 [001] 11624.859888: sys_exit_read: 0x400 - wget 1262 [001] 11624.859935: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400 - wget 1262 [001] 11624.859944: sys_exit_read: 0x400 - - This gives us a detailed timestamped sequence of events that - occurred within the workload with respect to those events. - - - - In many ways, profiling can be viewed as a subset of tracing - - theoretically, if you have a set of trace events that's sufficient - to capture all the important aspects of a workload, you can derive - any of the results or views that a profiling run can. - - - - Another aspect of traditional profiling is that while powerful in - many ways, it's limited by the granularity of the underlying data. - Profiling tools offer various ways of sorting and presenting the - sample data, which make it much more useful and amenable to user - experimentation, but in the end it can't be used in an open-ended - way to extract data that just isn't present as a consequence of - the fact that conceptually, most of it has been thrown away. - - - - Full-blown detailed tracing data does however offer the opportunity - to manipulate and present the information collected during a - tracing run in an infinite variety of ways. - - - - Another way to look at it is that there are only so many ways that - the 'primitive' counters can be used on their own to generate - interesting output; to get anything more complicated than simple - counts requires some amount of additional logic, which is typically - very specific to the problem at hand. For example, if we wanted to - make use of a 'counter' that maps to the value of the time - difference between when a process was scheduled to run on a - processor and the time it actually ran, we wouldn't expect such - a counter to exist on its own, but we could derive one called say - 'wakeup_latency' and use it to extract a useful view of that metric - from trace data. Likewise, we really can't figure out from standard - profiling tools how much data every process on the system reads and - writes, along with how many of those reads and writes fail - completely. If we have sufficient trace data, however, we could - with the right tools easily extract and present that information, - but we'd need something other than pre-canned profiling tools to - do that. - - - - Luckily, there is a general-purpose way to handle such needs, - called 'programming languages'. Making programming languages - easily available to apply to such problems given the specific - format of data is called a 'programming language binding' for - that data and language. Perf supports two programming language - bindings, one for Python and one for Perl. - - - - Tying it Together: Language bindings for manipulating and - aggregating trace data are of course not a new - idea. One of the first projects to do this was IBM's DProbes - dpcc compiler, an ANSI C compiler which targeted a low-level - assembly language running on an in-kernel interpreter on the - target system. This is exactly analogous to what Sun's DTrace - did, except that DTrace invented its own language for the purpose. - Systemtap, heavily inspired by DTrace, also created its own - one-off language, but rather than running the product on an - in-kernel interpreter, created an elaborate compiler-based - machinery to translate its language into kernel modules written - in C. - - - - Now that we have the trace data in perf.data, we can use - 'perf script -g' to generate a skeleton script with handlers - for the read/write entry/exit events we recorded: - - root@crownbay:~# perf script -g python - generated Python script: perf-script.py - - The skeleton script simply creates a python function for each - event type in the perf.data file. The body of each function simply - prints the event name along with its parameters. For example: - - def net__netif_rx(event_name, context, common_cpu, - common_secs, common_nsecs, common_pid, common_comm, - skbaddr, len, name): - print_header(event_name, common_cpu, common_secs, common_nsecs, - common_pid, common_comm) - - print "skbaddr=%u, len=%u, name=%s\n" % (skbaddr, len, name), - - We can run that script directly to print all of the events - contained in the perf.data file: - - root@crownbay:~# perf script -s perf-script.py - - in trace_begin - syscalls__sys_exit_read 0 11624.857082795 1262 perf nr=3, ret=0 - sched__sched_wakeup 0 11624.857193498 1262 perf comm=migration/0, pid=6, prio=0, success=1, target_cpu=0 - irq__softirq_raise 1 11624.858021635 1262 wget vec=TIMER - irq__softirq_entry 1 11624.858074075 1262 wget vec=TIMER - irq__softirq_exit 1 11624.858081389 1262 wget vec=TIMER - syscalls__sys_enter_read 1 11624.858166434 1262 wget nr=3, fd=3, buf=3213019456, count=512 - syscalls__sys_exit_read 1 11624.858177924 1262 wget nr=3, ret=512 - skb__kfree_skb 1 11624.858878188 1262 wget skbaddr=3945041280, location=3243922184, protocol=0 - skb__kfree_skb 1 11624.858945608 1262 wget skbaddr=3945037824, location=3243922184, protocol=0 - irq__softirq_raise 1 11624.859020942 1262 wget vec=TIMER - irq__softirq_entry 1 11624.859076935 1262 wget vec=TIMER - irq__softirq_exit 1 11624.859083469 1262 wget vec=TIMER - syscalls__sys_enter_read 1 11624.859167565 1262 wget nr=3, fd=3, buf=3077701632, count=1024 - syscalls__sys_exit_read 1 11624.859192533 1262 wget nr=3, ret=471 - syscalls__sys_enter_read 1 11624.859228072 1262 wget nr=3, fd=3, buf=3077701632, count=1024 - syscalls__sys_exit_read 1 11624.859233707 1262 wget nr=3, ret=0 - syscalls__sys_enter_read 1 11624.859573008 1262 wget nr=3, fd=3, buf=3213018496, count=512 - syscalls__sys_exit_read 1 11624.859584818 1262 wget nr=3, ret=512 - syscalls__sys_enter_read 1 11624.859864562 1262 wget nr=3, fd=3, buf=3077701632, count=1024 - syscalls__sys_exit_read 1 11624.859888770 1262 wget nr=3, ret=1024 - syscalls__sys_enter_read 1 11624.859935140 1262 wget nr=3, fd=3, buf=3077701632, count=1024 - syscalls__sys_exit_read 1 11624.859944032 1262 wget nr=3, ret=1024 - - That in itself isn't very useful; after all, we can accomplish - pretty much the same thing by simply running 'perf script' - without arguments in the same directory as the perf.data file. - - - - We can however replace the print statements in the generated - function bodies with whatever we want, and thereby make it - infinitely more useful. - - - - As a simple example, let's just replace the print statements in - the function bodies with a simple function that does nothing but - increment a per-event count. When the program is run against a - perf.data file, each time a particular event is encountered, - a tally is incremented for that event. For example: - - def net__netif_rx(event_name, context, common_cpu, - common_secs, common_nsecs, common_pid, common_comm, - skbaddr, len, name): - inc_counts(event_name) - - Each event handler function in the generated code is modified - to do this. For convenience, we define a common function called - inc_counts() that each handler calls; inc_counts() simply tallies - a count for each event using the 'counts' hash, which is a - specialized hash function that does Perl-like autovivification, a - capability that's extremely useful for kinds of multi-level - aggregation commonly used in processing traces (see perf's - documentation on the Python language binding for details): - - counts = autodict() - - def inc_counts(event_name): - try: - counts[event_name] += 1 - except TypeError: - counts[event_name] = 1 - - Finally, at the end of the trace processing run, we want to - print the result of all the per-event tallies. For that, we - use the special 'trace_end()' function: - - def trace_end(): - for event_name, count in counts.iteritems(): - print "%-40s %10s\n" % (event_name, count) - - The end result is a summary of all the events recorded in the - trace: - - skb__skb_copy_datagram_iovec 13148 - irq__softirq_entry 4796 - irq__irq_handler_exit 3805 - irq__softirq_exit 4795 - syscalls__sys_enter_write 8990 - net__net_dev_xmit 652 - skb__kfree_skb 4047 - sched__sched_wakeup 1155 - irq__irq_handler_entry 3804 - irq__softirq_raise 4799 - net__net_dev_queue 652 - syscalls__sys_enter_read 17599 - net__netif_receive_skb 1743 - syscalls__sys_exit_read 17598 - net__netif_rx 2 - napi__napi_poll 1877 - syscalls__sys_exit_write 8990 - - Note that this is pretty much exactly the same information we get - from 'perf stat', which goes a little way to support the idea - mentioned previously that given the right kind of trace data, - higher-level profiling-type summaries can be derived from it. - - - - Documentation on using the - 'perf script' python binding. - -
- -
- System-Wide Tracing and Profiling - - - The examples so far have focused on tracing a particular program or - workload - in other words, every profiling run has specified the - program to profile in the command-line e.g. 'perf record wget ...'. - - - - It's also possible, and more interesting in many cases, to run a - system-wide profile or trace while running the workload in a - separate shell. - - - - To do system-wide profiling or tracing, you typically use - the -a flag to 'perf record'. - - - - To demonstrate this, open up one window and start the profile - using the -a flag (press Ctrl-C to stop tracing): - - root@crownbay:~# perf record -g -a - ^C[ perf record: Woken up 6 times to write data ] - [ perf record: Captured and wrote 1.400 MB perf.data (~61172 samples) ] - - In another window, run the wget test: - - root@crownbay:~# wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2 - Connecting to downloads.yoctoproject.org (140.211.169.59:80) - linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA - - Here we see entries not only for our wget load, but for other - processes running on the system as well: - - - - - - - - In the snapshot above, we can see callchains that originate in - libc, and a callchain from Xorg that demonstrates that we're - using a proprietary X driver in userspace (notice the presence - of 'PVR' and some other unresolvable symbols in the expanded - Xorg callchain). - - - - Note also that we have both kernel and userspace entries in the - above snapshot. We can also tell perf to focus on userspace but - providing a modifier, in this case 'u', to the 'cycles' hardware - counter when we record a profile: - - root@crownbay:~# perf record -g -a -e cycles:u - ^C[ perf record: Woken up 2 times to write data ] - [ perf record: Captured and wrote 0.376 MB perf.data (~16443 samples) ] - - - - - - - - - Notice in the screenshot above, we see only userspace entries ([.]) - - - - Finally, we can press 'enter' on a leaf node and select the 'Zoom - into DSO' menu item to show only entries associated with a - specific DSO. In the screenshot below, we've zoomed into the - 'libc' DSO which shows all the entries associated with the - libc-xxx.so DSO. - - - - - - - - We can also use the system-wide -a switch to do system-wide - tracing. Here we'll trace a couple of scheduler events: - - root@crownbay:~# perf record -a -e sched:sched_switch -e sched:sched_wakeup - ^C[ perf record: Woken up 38 times to write data ] - [ perf record: Captured and wrote 9.780 MB perf.data (~427299 samples) ] - - We can look at the raw output using 'perf script' with no - arguments: - - root@crownbay:~# perf script - - perf 1383 [001] 6171.460045: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - perf 1383 [001] 6171.460066: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120 - kworker/1:1 21 [001] 6171.460093: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120 - swapper 0 [000] 6171.468063: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000 - swapper 0 [000] 6171.468107: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120 - kworker/0:3 1209 [000] 6171.468143: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120 - perf 1383 [001] 6171.470039: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - perf 1383 [001] 6171.470058: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120 - kworker/1:1 21 [001] 6171.470082: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120 - perf 1383 [001] 6171.480035: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - - - -
- Filtering - - - Notice that there are a lot of events that don't really have - anything to do with what we're interested in, namely events - that schedule 'perf' itself in and out or that wake perf up. - We can get rid of those by using the '--filter' option - - for each event we specify using -e, we can add a --filter - after that to filter out trace events that contain fields - with specific values: - - root@crownbay:~# perf record -a -e sched:sched_switch --filter 'next_comm != perf && prev_comm != perf' -e sched:sched_wakeup --filter 'comm != perf' - ^C[ perf record: Woken up 38 times to write data ] - [ perf record: Captured and wrote 9.688 MB perf.data (~423279 samples) ] - - - root@crownbay:~# perf script - - swapper 0 [000] 7932.162180: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120 - kworker/0:3 1209 [000] 7932.162236: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120 - perf 1407 [001] 7932.170048: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - perf 1407 [001] 7932.180044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - perf 1407 [001] 7932.190038: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - perf 1407 [001] 7932.200044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - perf 1407 [001] 7932.210044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - perf 1407 [001] 7932.220044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - swapper 0 [001] 7932.230111: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001 - swapper 0 [001] 7932.230146: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/1:1 next_pid=21 next_prio=120 - kworker/1:1 21 [001] 7932.230205: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=swapper/1 next_pid=0 next_prio=120 - swapper 0 [000] 7932.326109: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000 - swapper 0 [000] 7932.326171: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120 - kworker/0:3 1209 [000] 7932.326214: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120 - - In this case, we've filtered out all events that have 'perf' - in their 'comm' or 'comm_prev' or 'comm_next' fields. Notice - that there are still events recorded for perf, but notice - that those events don't have values of 'perf' for the filtered - fields. To completely filter out anything from perf will - require a bit more work, but for the purpose of demonstrating - how to use filters, it's close enough. - - - - Tying it Together: These are exactly the same set of event - filters defined by the trace event subsystem. See the - ftrace/tracecmd/kernelshark section for more discussion about - these event filters. - - - - Tying it Together: These event filters are implemented by a - special-purpose pseudo-interpreter in the kernel and are an - integral and indispensable part of the perf design as it - relates to tracing. kernel-based event filters provide a - mechanism to precisely throttle the event stream that appears - in user space, where it makes sense to provide bindings to real - programming languages for postprocessing the event stream. - This architecture allows for the intelligent and flexible - partitioning of processing between the kernel and user space. - Contrast this with other tools such as SystemTap, which does - all of its processing in the kernel and as such requires a - special project-defined language in order to accommodate that - design, or LTTng, where everything is sent to userspace and - as such requires a super-efficient kernel-to-userspace - transport mechanism in order to function properly. While - perf certainly can benefit from for instance advances in - the design of the transport, it doesn't fundamentally depend - on them. Basically, if you find that your perf tracing - application is causing buffer I/O overruns, it probably - means that you aren't taking enough advantage of the - kernel filtering engine. - -
-
- -
- Using Dynamic Tracepoints - - - perf isn't restricted to the fixed set of static tracepoints - listed by 'perf list'. Users can also add their own 'dynamic' - tracepoints anywhere in the kernel. For instance, suppose we - want to define our own tracepoint on do_fork(). We can do that - using the 'perf probe' perf subcommand: - - root@crownbay:~# perf probe do_fork - Added new event: - probe:do_fork (on do_fork) - - You can now use it in all perf tools, such as: - - perf record -e probe:do_fork -aR sleep 1 - - Adding a new tracepoint via 'perf probe' results in an event - with all the expected files and format in - /sys/kernel/debug/tracing/events, just the same as for static - tracepoints (as discussed in more detail in the trace events - subsystem section: - - root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# ls -al - drwxr-xr-x 2 root root 0 Oct 28 11:42 . - drwxr-xr-x 3 root root 0 Oct 28 11:42 .. - -rw-r--r-- 1 root root 0 Oct 28 11:42 enable - -rw-r--r-- 1 root root 0 Oct 28 11:42 filter - -r--r--r-- 1 root root 0 Oct 28 11:42 format - -r--r--r-- 1 root root 0 Oct 28 11:42 id - - root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# cat format - name: do_fork - ID: 944 - format: - field:unsigned short common_type; offset:0; size:2; signed:0; - field:unsigned char common_flags; offset:2; size:1; signed:0; - field:unsigned char common_preempt_count; offset:3; size:1; signed:0; - field:int common_pid; offset:4; size:4; signed:1; - field:int common_padding; offset:8; size:4; signed:1; - - field:unsigned long __probe_ip; offset:12; size:4; signed:0; - - print fmt: "(%lx)", REC->__probe_ip - - We can list all dynamic tracepoints currently in existence: - - root@crownbay:~# perf probe -l - probe:do_fork (on do_fork) - probe:schedule (on schedule) - - Let's record system-wide ('sleep 30' is a trick for recording - system-wide but basically do nothing and then wake up after - 30 seconds): - - root@crownbay:~# perf record -g -a -e probe:do_fork sleep 30 - [ perf record: Woken up 1 times to write data ] - [ perf record: Captured and wrote 0.087 MB perf.data (~3812 samples) ] - - Using 'perf script' we can see each do_fork event that fired: - - root@crownbay:~# perf script - - # ======== - # captured on: Sun Oct 28 11:55:18 2012 - # hostname : crownbay - # os release : 3.4.11-yocto-standard - # perf version : 3.4.11 - # arch : i686 - # nrcpus online : 2 - # nrcpus avail : 2 - # cpudesc : Intel(R) Atom(TM) CPU E660 @ 1.30GHz - # cpuid : GenuineIntel,6,38,1 - # total memory : 1017184 kB - # cmdline : /usr/bin/perf record -g -a -e probe:do_fork sleep 30 - # event : name = probe:do_fork, type = 2, config = 0x3b0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern - = 0, id = { 5, 6 } - # HEADER_CPU_TOPOLOGY info available, use -I to display - # ======== - # - matchbox-deskto 1197 [001] 34211.378318: do_fork: (c1028460) - matchbox-deskto 1295 [001] 34211.380388: do_fork: (c1028460) - pcmanfm 1296 [000] 34211.632350: do_fork: (c1028460) - pcmanfm 1296 [000] 34211.639917: do_fork: (c1028460) - matchbox-deskto 1197 [001] 34217.541603: do_fork: (c1028460) - matchbox-deskto 1299 [001] 34217.543584: do_fork: (c1028460) - gthumb 1300 [001] 34217.697451: do_fork: (c1028460) - gthumb 1300 [001] 34219.085734: do_fork: (c1028460) - gthumb 1300 [000] 34219.121351: do_fork: (c1028460) - gthumb 1300 [001] 34219.264551: do_fork: (c1028460) - pcmanfm 1296 [000] 34219.590380: do_fork: (c1028460) - matchbox-deskto 1197 [001] 34224.955965: do_fork: (c1028460) - matchbox-deskto 1306 [001] 34224.957972: do_fork: (c1028460) - matchbox-termin 1307 [000] 34225.038214: do_fork: (c1028460) - matchbox-termin 1307 [001] 34225.044218: do_fork: (c1028460) - matchbox-termin 1307 [000] 34225.046442: do_fork: (c1028460) - matchbox-deskto 1197 [001] 34237.112138: do_fork: (c1028460) - matchbox-deskto 1311 [001] 34237.114106: do_fork: (c1028460) - gaku 1312 [000] 34237.202388: do_fork: (c1028460) - - And using 'perf report' on the same file, we can see the - callgraphs from starting a few programs during those 30 seconds: - - - - - - - - Tying it Together: The trace events subsystem accommodate static - and dynamic tracepoints in exactly the same way - there's no - difference as far as the infrastructure is concerned. See the - ftrace section for more details on the trace event subsystem. - - - - Tying it Together: Dynamic tracepoints are implemented under the - covers by kprobes and uprobes. kprobes and uprobes are also used - by and in fact are the main focus of SystemTap. - -
-
- -
- Documentation - - - Online versions of the man pages for the commands discussed in this - section can be found here: - - The 'perf stat' manpage. - - The 'perf record' manpage. - - The 'perf report' manpage. - - The 'perf probe' manpage. - - The 'perf script' manpage. - - Documentation on using the - 'perf script' python binding. - - The top-level - perf(1) manpage. - - - - - - Normally, you should be able to invoke the man pages via perf - itself e.g. 'perf help' or 'perf help record'. - - - - However, by default Yocto doesn't install man pages, but perf - invokes the man pages for most help functionality. This is a bug - and is being addressed by a Yocto bug: - Bug 3388 - perf: enable man pages for basic 'help' functionality. - - - - The man pages in text form, along with some other files, such as - a set of examples, can be found in the 'perf' directory of the - kernel tree: - - tools/perf/Documentation - - There's also a nice perf tutorial on the perf wiki that goes - into more detail than we do here in certain areas: - Perf Tutorial - -
-
- -
- ftrace - - - 'ftrace' literally refers to the 'ftrace function tracer' but in - reality this encompasses a number of related tracers along with - the infrastructure that they all make use of. - - -
- Setup - - - For this section, we'll assume you've already performed the basic - setup outlined in the General Setup section. - - - - ftrace, trace-cmd, and kernelshark run on the target system, - and are ready to go out-of-the-box - no additional setup is - necessary. For the rest of this section we assume you've ssh'ed - to the host and will be running ftrace on the target. kernelshark - is a GUI application and if you use the '-X' option to ssh you - can have the kernelshark GUI run on the target but display - remotely on the host if you want. - -
- -
- Basic ftrace usage - - - 'ftrace' essentially refers to everything included in - the /tracing directory of the mounted debugfs filesystem - (Yocto follows the standard convention and mounts it - at /sys/kernel/debug). Here's a listing of all the files - found in /sys/kernel/debug/tracing on a Yocto system: - - root@sugarbay:/sys/kernel/debug/tracing# ls - README kprobe_events trace - available_events kprobe_profile trace_clock - available_filter_functions options trace_marker - available_tracers per_cpu trace_options - buffer_size_kb printk_formats trace_pipe - buffer_total_size_kb saved_cmdlines tracing_cpumask - current_tracer set_event tracing_enabled - dyn_ftrace_total_info set_ftrace_filter tracing_on - enabled_functions set_ftrace_notrace tracing_thresh - events set_ftrace_pid - free_buffer set_graph_function - - The files listed above are used for various purposes - - some relate directly to the tracers themselves, others are - used to set tracing options, and yet others actually contain - the tracing output when a tracer is in effect. Some of the - functions can be guessed from their names, others need - explanation; in any case, we'll cover some of the files we - see here below but for an explanation of the others, please - see the ftrace documentation. - - - - We'll start by looking at some of the available built-in - tracers. - - - - cat'ing the 'available_tracers' file lists the set of - available tracers: - - root@sugarbay:/sys/kernel/debug/tracing# cat available_tracers - blk function_graph function nop - - The 'current_tracer' file contains the tracer currently in - effect: - - root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer - nop - - The above listing of current_tracer shows that - the 'nop' tracer is in effect, which is just another - way of saying that there's actually no tracer - currently in effect. - - - - echo'ing one of the available_tracers into current_tracer - makes the specified tracer the current tracer: - - root@sugarbay:/sys/kernel/debug/tracing# echo function > current_tracer - root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer - function - - The above sets the current tracer to be the - 'function tracer'. This tracer traces every function - call in the kernel and makes it available as the - contents of the 'trace' file. Reading the 'trace' file - lists the currently buffered function calls that have been - traced by the function tracer: - - root@sugarbay:/sys/kernel/debug/tracing# cat trace | less - - # tracer: function - # - # entries-in-buffer/entries-written: 310629/766471 #P:8 - # - # _-----=> irqs-off - # / _----=> need-resched - # | / _---=> hardirq/softirq - # || / _--=> preempt-depth - # ||| / delay - # TASK-PID CPU# |||| TIMESTAMP FUNCTION - # | | | |||| | | - <idle>-0 [004] d..1 470.867169: ktime_get_real <-intel_idle - <idle>-0 [004] d..1 470.867170: getnstimeofday <-ktime_get_real - <idle>-0 [004] d..1 470.867171: ns_to_timeval <-intel_idle - <idle>-0 [004] d..1 470.867171: ns_to_timespec <-ns_to_timeval - <idle>-0 [004] d..1 470.867172: smp_apic_timer_interrupt <-apic_timer_interrupt - <idle>-0 [004] d..1 470.867172: native_apic_mem_write <-smp_apic_timer_interrupt - <idle>-0 [004] d..1 470.867172: irq_enter <-smp_apic_timer_interrupt - <idle>-0 [004] d..1 470.867172: rcu_irq_enter <-irq_enter - <idle>-0 [004] d..1 470.867173: rcu_idle_exit_common.isra.33 <-rcu_irq_enter - <idle>-0 [004] d..1 470.867173: local_bh_disable <-irq_enter - <idle>-0 [004] d..1 470.867173: add_preempt_count <-local_bh_disable - <idle>-0 [004] d.s1 470.867174: tick_check_idle <-irq_enter - <idle>-0 [004] d.s1 470.867174: tick_check_oneshot_broadcast <-tick_check_idle - <idle>-0 [004] d.s1 470.867174: ktime_get <-tick_check_idle - <idle>-0 [004] d.s1 470.867174: tick_nohz_stop_idle <-tick_check_idle - <idle>-0 [004] d.s1 470.867175: update_ts_time_stats <-tick_nohz_stop_idle - <idle>-0 [004] d.s1 470.867175: nr_iowait_cpu <-update_ts_time_stats - <idle>-0 [004] d.s1 470.867175: tick_do_update_jiffies64 <-tick_check_idle - <idle>-0 [004] d.s1 470.867175: _raw_spin_lock <-tick_do_update_jiffies64 - <idle>-0 [004] d.s1 470.867176: add_preempt_count <-_raw_spin_lock - <idle>-0 [004] d.s2 470.867176: do_timer <-tick_do_update_jiffies64 - <idle>-0 [004] d.s2 470.867176: _raw_spin_lock <-do_timer - <idle>-0 [004] d.s2 470.867176: add_preempt_count <-_raw_spin_lock - <idle>-0 [004] d.s3 470.867177: ntp_tick_length <-do_timer - <idle>-0 [004] d.s3 470.867177: _raw_spin_lock_irqsave <-ntp_tick_length - . - . - . - - Each line in the trace above shows what was happening in - the kernel on a given cpu, to the level of detail of - function calls. Each entry shows the function called, - followed by its caller (after the arrow). - - - - The function tracer gives you an extremely detailed idea - of what the kernel was doing at the point in time the trace - was taken, and is a great way to learn about how the kernel - code works in a dynamic sense. - - - - Tying it Together: The ftrace function tracer is also - available from within perf, as the ftrace:function tracepoint. - - - - It is a little more difficult to follow the call chains than - it needs to be - luckily there's a variant of the function - tracer that displays the callchains explicitly, called the - 'function_graph' tracer: - - root@sugarbay:/sys/kernel/debug/tracing# echo function_graph > current_tracer - root@sugarbay:/sys/kernel/debug/tracing# cat trace | less - - tracer: function_graph - - CPU DURATION FUNCTION CALLS - | | | | | | | - 7) 0.046 us | pick_next_task_fair(); - 7) 0.043 us | pick_next_task_stop(); - 7) 0.042 us | pick_next_task_rt(); - 7) 0.032 us | pick_next_task_fair(); - 7) 0.030 us | pick_next_task_idle(); - 7) | _raw_spin_unlock_irq() { - 7) 0.033 us | sub_preempt_count(); - 7) 0.258 us | } - 7) 0.032 us | sub_preempt_count(); - 7) + 13.341 us | } /* __schedule */ - 7) 0.095 us | } /* sub_preempt_count */ - 7) | schedule() { - 7) | __schedule() { - 7) 0.060 us | add_preempt_count(); - 7) 0.044 us | rcu_note_context_switch(); - 7) | _raw_spin_lock_irq() { - 7) 0.033 us | add_preempt_count(); - 7) 0.247 us | } - 7) | idle_balance() { - 7) | _raw_spin_unlock() { - 7) 0.031 us | sub_preempt_count(); - 7) 0.246 us | } - 7) | update_shares() { - 7) 0.030 us | __rcu_read_lock(); - 7) 0.029 us | __rcu_read_unlock(); - 7) 0.484 us | } - 7) 0.030 us | __rcu_read_lock(); - 7) | load_balance() { - 7) | find_busiest_group() { - 7) 0.031 us | idle_cpu(); - 7) 0.029 us | idle_cpu(); - 7) 0.035 us | idle_cpu(); - 7) 0.906 us | } - 7) 1.141 us | } - 7) 0.022 us | msecs_to_jiffies(); - 7) | load_balance() { - 7) | find_busiest_group() { - 7) 0.031 us | idle_cpu(); - . - . - . - 4) 0.062 us | msecs_to_jiffies(); - 4) 0.062 us | __rcu_read_unlock(); - 4) | _raw_spin_lock() { - 4) 0.073 us | add_preempt_count(); - 4) 0.562 us | } - 4) + 17.452 us | } - 4) 0.108 us | put_prev_task_fair(); - 4) 0.102 us | pick_next_task_fair(); - 4) 0.084 us | pick_next_task_stop(); - 4) 0.075 us | pick_next_task_rt(); - 4) 0.062 us | pick_next_task_fair(); - 4) 0.066 us | pick_next_task_idle(); - ------------------------------------------ - 4) kworker-74 => <idle>-0 - ------------------------------------------ - - 4) | finish_task_switch() { - 4) | _raw_spin_unlock_irq() { - 4) 0.100 us | sub_preempt_count(); - 4) 0.582 us | } - 4) 1.105 us | } - 4) 0.088 us | sub_preempt_count(); - 4) ! 100.066 us | } - . - . - . - 3) | sys_ioctl() { - 3) 0.083 us | fget_light(); - 3) | security_file_ioctl() { - 3) 0.066 us | cap_file_ioctl(); - 3) 0.562 us | } - 3) | do_vfs_ioctl() { - 3) | drm_ioctl() { - 3) 0.075 us | drm_ut_debug_printk(); - 3) | i915_gem_pwrite_ioctl() { - 3) | i915_mutex_lock_interruptible() { - 3) 0.070 us | mutex_lock_interruptible(); - 3) 0.570 us | } - 3) | drm_gem_object_lookup() { - 3) | _raw_spin_lock() { - 3) 0.080 us | add_preempt_count(); - 3) 0.620 us | } - 3) | _raw_spin_unlock() { - 3) 0.085 us | sub_preempt_count(); - 3) 0.562 us | } - 3) 2.149 us | } - 3) 0.133 us | i915_gem_object_pin(); - 3) | i915_gem_object_set_to_gtt_domain() { - 3) 0.065 us | i915_gem_object_flush_gpu_write_domain(); - 3) 0.065 us | i915_gem_object_wait_rendering(); - 3) 0.062 us | i915_gem_object_flush_cpu_write_domain(); - 3) 1.612 us | } - 3) | i915_gem_object_put_fence() { - 3) 0.097 us | i915_gem_object_flush_fence.constprop.36(); - 3) 0.645 us | } - 3) 0.070 us | add_preempt_count(); - 3) 0.070 us | sub_preempt_count(); - 3) 0.073 us | i915_gem_object_unpin(); - 3) 0.068 us | mutex_unlock(); - 3) 9.924 us | } - 3) + 11.236 us | } - 3) + 11.770 us | } - 3) + 13.784 us | } - 3) | sys_ioctl() { - - As you can see, the function_graph display is much easier to - follow. Also note that in addition to the function calls and - associated braces, other events such as scheduler events - are displayed in context. In fact, you can freely include - any tracepoint available in the trace events subsystem described - in the next section by simply enabling those events, and they'll - appear in context in the function graph display. Quite a - powerful tool for understanding kernel dynamics. - - - - Also notice that there are various annotations on the left - hand side of the display. For example if the total time it - took for a given function to execute is above a certain - threshold, an exclamation point or plus sign appears on the - left hand side. Please see the ftrace documentation for - details on all these fields. - -
- -
- The 'trace events' Subsystem - - - One especially important directory contained within - the /sys/kernel/debug/tracing directory is the 'events' - subdirectory, which contains representations of every - tracepoint in the system. Listing out the contents of - the 'events' subdirectory, we see mainly another set of - subdirectories: - - root@sugarbay:/sys/kernel/debug/tracing# cd events - root@sugarbay:/sys/kernel/debug/tracing/events# ls -al - drwxr-xr-x 38 root root 0 Nov 14 23:19 . - drwxr-xr-x 5 root root 0 Nov 14 23:19 .. - drwxr-xr-x 19 root root 0 Nov 14 23:19 block - drwxr-xr-x 32 root root 0 Nov 14 23:19 btrfs - drwxr-xr-x 5 root root 0 Nov 14 23:19 drm - -rw-r--r-- 1 root root 0 Nov 14 23:19 enable - drwxr-xr-x 40 root root 0 Nov 14 23:19 ext3 - drwxr-xr-x 79 root root 0 Nov 14 23:19 ext4 - drwxr-xr-x 14 root root 0 Nov 14 23:19 ftrace - drwxr-xr-x 8 root root 0 Nov 14 23:19 hda - -r--r--r-- 1 root root 0 Nov 14 23:19 header_event - -r--r--r-- 1 root root 0 Nov 14 23:19 header_page - drwxr-xr-x 25 root root 0 Nov 14 23:19 i915 - drwxr-xr-x 7 root root 0 Nov 14 23:19 irq - drwxr-xr-x 12 root root 0 Nov 14 23:19 jbd - drwxr-xr-x 14 root root 0 Nov 14 23:19 jbd2 - drwxr-xr-x 14 root root 0 Nov 14 23:19 kmem - drwxr-xr-x 7 root root 0 Nov 14 23:19 module - drwxr-xr-x 3 root root 0 Nov 14 23:19 napi - drwxr-xr-x 6 root root 0 Nov 14 23:19 net - drwxr-xr-x 3 root root 0 Nov 14 23:19 oom - drwxr-xr-x 12 root root 0 Nov 14 23:19 power - drwxr-xr-x 3 root root 0 Nov 14 23:19 printk - drwxr-xr-x 8 root root 0 Nov 14 23:19 random - drwxr-xr-x 4 root root 0 Nov 14 23:19 raw_syscalls - drwxr-xr-x 3 root root 0 Nov 14 23:19 rcu - drwxr-xr-x 6 root root 0 Nov 14 23:19 rpm - drwxr-xr-x 20 root root 0 Nov 14 23:19 sched - drwxr-xr-x 7 root root 0 Nov 14 23:19 scsi - drwxr-xr-x 4 root root 0 Nov 14 23:19 signal - drwxr-xr-x 5 root root 0 Nov 14 23:19 skb - drwxr-xr-x 4 root root 0 Nov 14 23:19 sock - drwxr-xr-x 10 root root 0 Nov 14 23:19 sunrpc - drwxr-xr-x 538 root root 0 Nov 14 23:19 syscalls - drwxr-xr-x 4 root root 0 Nov 14 23:19 task - drwxr-xr-x 14 root root 0 Nov 14 23:19 timer - drwxr-xr-x 3 root root 0 Nov 14 23:19 udp - drwxr-xr-x 21 root root 0 Nov 14 23:19 vmscan - drwxr-xr-x 3 root root 0 Nov 14 23:19 vsyscall - drwxr-xr-x 6 root root 0 Nov 14 23:19 workqueue - drwxr-xr-x 26 root root 0 Nov 14 23:19 writeback - - Each one of these subdirectories corresponds to a - 'subsystem' and contains yet again more subdirectories, - each one of those finally corresponding to a tracepoint. - For example, here are the contents of the 'kmem' subsystem: - - root@sugarbay:/sys/kernel/debug/tracing/events# cd kmem - root@sugarbay:/sys/kernel/debug/tracing/events/kmem# ls -al - drwxr-xr-x 14 root root 0 Nov 14 23:19 . - drwxr-xr-x 38 root root 0 Nov 14 23:19 .. - -rw-r--r-- 1 root root 0 Nov 14 23:19 enable - -rw-r--r-- 1 root root 0 Nov 14 23:19 filter - drwxr-xr-x 2 root root 0 Nov 14 23:19 kfree - drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc - drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc_node - drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc - drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc_node - drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_free - drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc - drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_extfrag - drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_zone_locked - drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free - drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free_batched - drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_pcpu_drain - - Let's see what's inside the subdirectory for a specific - tracepoint, in this case the one for kmalloc: - - root@sugarbay:/sys/kernel/debug/tracing/events/kmem# cd kmalloc - root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# ls -al - drwxr-xr-x 2 root root 0 Nov 14 23:19 . - drwxr-xr-x 14 root root 0 Nov 14 23:19 .. - -rw-r--r-- 1 root root 0 Nov 14 23:19 enable - -rw-r--r-- 1 root root 0 Nov 14 23:19 filter - -r--r--r-- 1 root root 0 Nov 14 23:19 format - -r--r--r-- 1 root root 0 Nov 14 23:19 id - - The 'format' file for the tracepoint describes the event - in memory, which is used by the various tracing tools - that now make use of these tracepoint to parse the event - and make sense of it, along with a 'print fmt' field that - allows tools like ftrace to display the event as text. - Here's what the format of the kmalloc event looks like: - - root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# cat format - name: kmalloc - ID: 313 - format: - field:unsigned short common_type; offset:0; size:2; signed:0; - field:unsigned char common_flags; offset:2; size:1; signed:0; - field:unsigned char common_preempt_count; offset:3; size:1; signed:0; - field:int common_pid; offset:4; size:4; signed:1; - field:int common_padding; offset:8; size:4; signed:1; - - field:unsigned long call_site; offset:16; size:8; signed:0; - field:const void * ptr; offset:24; size:8; signed:0; - field:size_t bytes_req; offset:32; size:8; signed:0; - field:size_t bytes_alloc; offset:40; size:8; signed:0; - field:gfp_t gfp_flags; offset:48; size:4; signed:0; - - print fmt: "call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", REC->call_site, REC->ptr, REC->bytes_req, REC->bytes_alloc, - (REC->gfp_flags) ? __print_flags(REC->gfp_flags, "|", {(unsigned long)(((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( - gfp_t)0x20000u) | (( gfp_t)0x02u) | (( gfp_t)0x08u)) | (( gfp_t)0x4000u) | (( gfp_t)0x10000u) | (( gfp_t)0x1000u) | (( gfp_t)0x200u) | (( - gfp_t)0x400000u)), "GFP_TRANSHUGE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x20000u) | (( - gfp_t)0x02u) | (( gfp_t)0x08u)), "GFP_HIGHUSER_MOVABLE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( - gfp_t)0x20000u) | (( gfp_t)0x02u)), "GFP_HIGHUSER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( - gfp_t)0x20000u)), "GFP_USER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x80000u)), GFP_TEMPORARY"}, - {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u)), "GFP_KERNEL"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u)), - "GFP_NOFS"}, {(unsigned long)((( gfp_t)0x20u)), "GFP_ATOMIC"}, {(unsigned long)((( gfp_t)0x10u)), "GFP_NOIO"}, {(unsigned long)(( - gfp_t)0x20u), "GFP_HIGH"}, {(unsigned long)(( gfp_t)0x10u), "GFP_WAIT"}, {(unsigned long)(( gfp_t)0x40u), "GFP_IO"}, {(unsigned long)(( - gfp_t)0x100u), "GFP_COLD"}, {(unsigned long)(( gfp_t)0x200u), "GFP_NOWARN"}, {(unsigned long)(( gfp_t)0x400u), "GFP_REPEAT"}, {(unsigned - long)(( gfp_t)0x800u), "GFP_NOFAIL"}, {(unsigned long)(( gfp_t)0x1000u), "GFP_NORETRY"}, {(unsigned long)(( gfp_t)0x4000u), "GFP_COMP"}, - {(unsigned long)(( gfp_t)0x8000u), "GFP_ZERO"}, {(unsigned long)(( gfp_t)0x10000u), "GFP_NOMEMALLOC"}, {(unsigned long)(( gfp_t)0x20000u), - "GFP_HARDWALL"}, {(unsigned long)(( gfp_t)0x40000u), "GFP_THISNODE"}, {(unsigned long)(( gfp_t)0x80000u), "GFP_RECLAIMABLE"}, {(unsigned - long)(( gfp_t)0x08u), "GFP_MOVABLE"}, {(unsigned long)(( gfp_t)0), "GFP_NOTRACK"}, {(unsigned long)(( gfp_t)0x400000u), "GFP_NO_KSWAPD"}, - {(unsigned long)(( gfp_t)0x800000u), "GFP_OTHER_NODE"} ) : "GFP_NOWAIT" - - The 'enable' file in the tracepoint directory is what allows - the user (or tools such as trace-cmd) to actually turn the - tracepoint on and off. When enabled, the corresponding - tracepoint will start appearing in the ftrace 'trace' - file described previously. For example, this turns on the - kmalloc tracepoint: - - root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 1 > enable - - At the moment, we're not interested in the function tracer or - some other tracer that might be in effect, so we first turn - it off, but if we do that, we still need to turn tracing on in - order to see the events in the output buffer: - - root@sugarbay:/sys/kernel/debug/tracing# echo nop > current_tracer - root@sugarbay:/sys/kernel/debug/tracing# echo 1 > tracing_on - - Now, if we look at the the 'trace' file, we see nothing - but the kmalloc events we just turned on: - - root@sugarbay:/sys/kernel/debug/tracing# cat trace | less - # tracer: nop - # - # entries-in-buffer/entries-written: 1897/1897 #P:8 - # - # _-----=> irqs-off - # / _----=> need-resched - # | / _---=> hardirq/softirq - # || / _--=> preempt-depth - # ||| / delay - # TASK-PID CPU# |||| TIMESTAMP FUNCTION - # | | | |||| | | - dropbear-1465 [000] ...1 18154.620753: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL - <idle>-0 [000] ..s3 18154.621640: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - <idle>-0 [000] ..s3 18154.621656: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - matchbox-termin-1361 [001] ...1 18154.755472: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f0e00 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT - Xorg-1264 [002] ...1 18154.755581: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY - Xorg-1264 [002] ...1 18154.755583: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO - Xorg-1264 [002] ...1 18154.755589: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO - matchbox-termin-1361 [001] ...1 18155.354594: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db35400 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT - Xorg-1264 [002] ...1 18155.354703: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY - Xorg-1264 [002] ...1 18155.354705: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO - Xorg-1264 [002] ...1 18155.354711: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO - <idle>-0 [000] ..s3 18155.673319: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - dropbear-1465 [000] ...1 18155.673525: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL - <idle>-0 [000] ..s3 18155.674821: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - <idle>-0 [000] ..s3 18155.793014: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - dropbear-1465 [000] ...1 18155.793219: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL - <idle>-0 [000] ..s3 18155.794147: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - <idle>-0 [000] ..s3 18155.936705: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - dropbear-1465 [000] ...1 18155.936910: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL - <idle>-0 [000] ..s3 18155.937869: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - matchbox-termin-1361 [001] ...1 18155.953667: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f2000 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT - Xorg-1264 [002] ...1 18155.953775: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY - Xorg-1264 [002] ...1 18155.953777: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO - Xorg-1264 [002] ...1 18155.953783: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO - <idle>-0 [000] ..s3 18156.176053: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - dropbear-1465 [000] ...1 18156.176257: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL - <idle>-0 [000] ..s3 18156.177717: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - <idle>-0 [000] ..s3 18156.399229: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - dropbear-1465 [000] ...1 18156.399434: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_http://rostedt.homelinux.com/kernelshark/req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL - <idle>-0 [000] ..s3 18156.400660: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC - matchbox-termin-1361 [001] ...1 18156.552800: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db34800 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT - - To again disable the kmalloc event, we need to send 0 to the - enable file: - - root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 0 > enable - - You can enable any number of events or complete subsystems - (by using the 'enable' file in the subsystem directory) and - get an arbitrarily fine-grained idea of what's going on in the - system by enabling as many of the appropriate tracepoints - as applicable. - - - - A number of the tools described in this HOWTO do just that, - including trace-cmd and kernelshark in the next section. - - - - Tying it Together: These tracepoints and their representation - are used not only by ftrace, but by many of the other tools - covered in this document and they form a central point of - integration for the various tracers available in Linux. - They form a central part of the instrumentation for the - following tools: perf, lttng, ftrace, blktrace and SystemTap - - - - Tying it Together: Eventually all the special-purpose tracers - currently available in /sys/kernel/debug/tracing will be - removed and replaced with equivalent tracers based on the - 'trace events' subsystem. - -
- -
- trace-cmd/kernelshark - - - trace-cmd is essentially an extensive command-line 'wrapper' - interface that hides the details of all the individual files - in /sys/kernel/debug/tracing, allowing users to specify - specific particular events within the - /sys/kernel/debug/tracing/events/ subdirectory and to collect - traces and avoid having to deal with those details directly. - - - - As yet another layer on top of that, kernelshark provides a GUI - that allows users to start and stop traces and specify sets - of events using an intuitive interface, and view the - output as both trace events and as a per-CPU graphical - display. It directly uses 'trace-cmd' as the plumbing - that accomplishes all that underneath the covers (and - actually displays the trace-cmd command it uses, as we'll see). - - - - To start a trace using kernelshark, first start kernelshark: - - root@sugarbay:~# kernelshark - - Then bring up the 'Capture' dialog by choosing from the - kernelshark menu: - - Capture | Record - - That will display the following dialog, which allows you to - choose one or more events (or even one or more complete - subsystems) to trace: - - - - - - - - Note that these are exactly the same sets of events described - in the previous trace events subsystem section, and in fact - is where trace-cmd gets them for kernelshark. - - - - In the above screenshot, we've decided to explore the - graphics subsystem a bit and so have chosen to trace all - the tracepoints contained within the 'i915' and 'drm' - subsystems. - - - - After doing that, we can start and stop the trace using - the 'Run' and 'Stop' button on the lower right corner of - the dialog (the same button will turn into the 'Stop' - button after the trace has started): - - - - - - - - Notice that the right-hand pane shows the exact trace-cmd - command-line that's used to run the trace, along with the - results of the trace-cmd run. - - - - Once the 'Stop' button is pressed, the graphical view magically - fills up with a colorful per-cpu display of the trace data, - along with the detailed event listing below that: - - - - - - - - Here's another example, this time a display resulting - from tracing 'all events': - - - - - - - - The tool is pretty self-explanatory, but for more detailed - information on navigating through the data, see the - kernelshark website. - -
- -
- Documentation - - - The documentation for ftrace can be found in the kernel - Documentation directory: - - Documentation/trace/ftrace.txt - - The documentation for the trace event subsystem can also - be found in the kernel Documentation directory: - - Documentation/trace/events.txt - - There is a nice series of articles on using - ftrace and trace-cmd at LWN: - - Debugging the kernel using Ftrace - part 1 - - Debugging the kernel using Ftrace - part 2 - - Secrets of the Ftrace function tracer - - trace-cmd: A front-end for Ftrace - - - - - - There's more detailed documentation kernelshark usage here: - KernelShark - - - - An amusing yet useful README (a tracing mini-HOWTO) can be - found in /sys/kernel/debug/tracing/README. - -
-
- -
- systemtap - - - SystemTap is a system-wide script-based tracing and profiling tool. - - - - SystemTap scripts are C-like programs that are executed in the - kernel to gather/print/aggregate data extracted from the context - they end up being invoked under. - - - - For example, this probe from the - SystemTap tutorial - simply prints a line every time any process on the system open()s - a file. For each line, it prints the executable name of the - program that opened the file, along with its PID, and the name - of the file it opened (or tried to open), which it extracts - from the open syscall's argstr. - - probe syscall.open - { - printf ("%s(%d) open (%s)\n", execname(), pid(), argstr) - } - - probe timer.ms(4000) # after 4 seconds - { - exit () - } - - Normally, to execute this probe, you'd simply install - systemtap on the system you want to probe, and directly run - the probe on that system e.g. assuming the name of the file - containing the above text is trace_open.stp: - - # stap trace_open.stp - - What systemtap does under the covers to run this probe is 1) - parse and convert the probe to an equivalent 'C' form, 2) - compile the 'C' form into a kernel module, 3) insert the - module into the kernel, which arms it, and 4) collect the data - generated by the probe and display it to the user. - - - - In order to accomplish steps 1 and 2, the 'stap' program needs - access to the kernel build system that produced the kernel - that the probed system is running. In the case of a typical - embedded system (the 'target'), the kernel build system - unfortunately isn't typically part of the image running on - the target. It is normally available on the 'host' system - that produced the target image however; in such cases, - steps 1 and 2 are executed on the host system, and steps - 3 and 4 are executed on the target system, using only the - systemtap 'runtime'. - - - - The systemtap support in Yocto assumes that only steps - 3 and 4 are run on the target; it is possible to do - everything on the target, but this section assumes only - the typical embedded use-case. - - - - So basically what you need to do in order to run a systemtap - script on the target is to 1) on the host system, compile the - probe into a kernel module that makes sense to the target, 2) - copy the module onto the target system and 3) insert the - module into the target kernel, which arms it, and 4) collect - the data generated by the probe and display it to the user. - - -
- Setup - - - Those are a lot of steps and a lot of details, but - fortunately Yocto includes a script called 'crosstap' - that will take care of those details, allowing you to - simply execute a systemtap script on the remote target, - with arguments if necessary. - - - - In order to do this from a remote host, however, you - need to have access to the build for the image you - booted. The 'crosstap' script provides details on how - to do this if you run the script on the host without having - done a build: - - SystemTap, which uses 'crosstap', assumes you can establish an - ssh connection to the remote target. - Please refer to the crosstap wiki page for details on verifying - ssh connections at - . - Also, the ability to ssh into the target system is not enabled - by default in *-minimal images. - - - $ crosstap root@192.168.1.88 trace_open.stp - - Error: No target kernel build found. - Did you forget to create a local build of your image? - - 'crosstap' requires a local sdk build of the target system - (or a build that includes 'tools-profile') in order to build - kernel modules that can probe the target system. - - Practically speaking, that means you need to do the following: - - If you're running a pre-built image, download the release - and/or BSP tarballs used to build the image. - - If you're working from git sources, just clone the metadata - and BSP layers needed to build the image you'll be booting. - - Make sure you're properly set up to build a new image (see - the BSP README and/or the widely available basic documentation - that discusses how to build images). - - Build an -sdk version of the image e.g.: - $ bitbake core-image-sato-sdk - OR - - Build a non-sdk image but include the profiling tools: - [ edit local.conf and add 'tools-profile' to the end of - the EXTRA_IMAGE_FEATURES variable ] - $ bitbake core-image-sato - - Once you've build the image on the host system, you're ready to - boot it (or the equivalent pre-built image) and use 'crosstap' - to probe it (you need to source the environment as usual first): - - $ source oe-init-build-env - $ cd ~/my/systemtap/scripts - $ crosstap root@192.168.1.xxx myscript.stp - - So essentially what you need to do is build an SDK image or - image with 'tools-profile' as detailed in the - "General Setup" - section of this manual, and boot the resulting target image. - - - - If you have a build directory containing multiple machines, - you need to have the MACHINE you're connecting to selected - in local.conf, and the kernel in that machine's build - directory must match the kernel on the booted system exactly, - or you'll get the above 'crosstap' message when you try to - invoke a script. - -
- -
- Running a Script on a Target - - - Once you've done that, you should be able to run a systemtap - script on the target: - - $ cd /path/to/yocto - $ source oe-init-build-env - - ### Shell environment set up for builds. ### - - You can now run 'bitbake <target>' - - Common targets are: - core-image-minimal - core-image-sato - meta-toolchain - meta-ide-support - - You can also run generated qemu images with a command like 'runqemu qemux86-64' - - - Once you've done that, you can cd to whatever directory - contains your scripts and use 'crosstap' to run the script: - - $ cd /path/to/my/systemap/script - $ crosstap root@192.168.7.2 trace_open.stp - - If you get an error connecting to the target e.g.: - - $ crosstap root@192.168.7.2 trace_open.stp - error establishing ssh connection on remote 'root@192.168.7.2' - - Try ssh'ing to the target and see what happens: - - $ ssh root@192.168.7.2 - - A lot of the time, connection problems are due specifying a - wrong IP address or having a 'host key verification error'. - - - - If everything worked as planned, you should see something - like this (enter the password when prompted, or press enter - if it's set up to use no password): - - $ crosstap root@192.168.7.2 trace_open.stp - root@192.168.7.2's password: - matchbox-termin(1036) open ("/tmp/vte3FS2LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600) - matchbox-termin(1036) open ("/tmp/vteJMC7LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600) - - -
- -
- Documentation - - - The SystemTap language reference can be found here: - SystemTap Language Reference - - - - Links to other SystemTap documents, tutorials, and examples can be - found here: - SystemTap documentation page - -
-
- -
- Sysprof - - - Sysprof is a very easy to use system-wide profiler that consists - of a single window with three panes and a few buttons which allow - you to start, stop, and view the profile from one place. - - -
- Setup - - - For this section, we'll assume you've already performed the - basic setup outlined in the General Setup section. - - - - Sysprof is a GUI-based application that runs on the target - system. For the rest of this document we assume you've - ssh'ed to the host and will be running Sysprof on the - target (you can use the '-X' option to ssh and have the - Sysprof GUI run on the target but display remotely on the - host if you want). - -
- -
- Basic Usage - - - To start profiling the system, you simply press the 'Start' - button. To stop profiling and to start viewing the profile data - in one easy step, press the 'Profile' button. - - - - Once you've pressed the profile button, the three panes will - fill up with profiling data: - - - - - - - - The left pane shows a list of functions and processes. - Selecting one of those expands that function in the right - pane, showing all its callees. Note that this caller-oriented - display is essentially the inverse of perf's default - callee-oriented callchain display. - - - - In the screenshot above, we're focusing on __copy_to_user_ll() - and looking up the callchain we can see that one of the callers - of __copy_to_user_ll is sys_read() and the complete callpath - between them. Notice that this is essentially a portion of the - same information we saw in the perf display shown in the perf - section of this page. - - - - - - - - Similarly, the above is a snapshot of the Sysprof display of a - copy-from-user callchain. - - - - Finally, looking at the third Sysprof pane in the lower left, - we can see a list of all the callers of a particular function - selected in the top left pane. In this case, the lower pane is - showing all the callers of __mark_inode_dirty: - - - - - - - - Double-clicking on one of those functions will in turn change the - focus to the selected function, and so on. - - - - Tying it Together: If you like sysprof's 'caller-oriented' - display, you may be able to approximate it in other tools as - well. For example, 'perf report' has the -g (--call-graph) - option that you can experiment with; one of the options is - 'caller' for an inverted caller-based callgraph display. - -
- -
- Documentation - - - There doesn't seem to be any documentation for Sysprof, but - maybe that's because it's pretty self-explanatory. - The Sysprof website, however, is here: - Sysprof, System-wide Performance Profiler for Linux - -
-
- -
- LTTng (Linux Trace Toolkit, next generation) - -
- Setup - - - For this section, we'll assume you've already performed the - basic setup outlined in the General Setup section. - LTTng is run on the target system by ssh'ing to it. - -
- -
- Collecting and Viewing Traces - - - Once you've applied the above commits and built and booted your - image (you need to build the core-image-sato-sdk image or use one of the - other methods described in the General Setup section), you're - ready to start tracing. - - -
- Collecting and viewing a trace on the target (inside a shell) - - - First, from the host, ssh to the target: - - $ ssh -l root 192.168.1.47 - The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established. - RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e. - Are you sure you want to continue connecting (yes/no)? yes - Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts. - root@192.168.1.47's password: - - Once on the target, use these steps to create a trace: - - root@crownbay:~# lttng create - Spawning a session daemon - Session auto-20121015-232120 created. - Traces will be written in /home/root/lttng-traces/auto-20121015-232120 - - Enable the events you want to trace (in this case all - kernel events): - - root@crownbay:~# lttng enable-event --kernel --all - All kernel events are enabled in channel channel0 - - Start the trace: - - root@crownbay:~# lttng start - Tracing started for session auto-20121015-232120 - - And then stop the trace after awhile or after running - a particular workload that you want to trace: - - root@crownbay:~# lttng stop - Tracing stopped for session auto-20121015-232120 - - You can now view the trace in text form on the target: - - root@crownbay:~# lttng view - [23:21:56.989270399] (+?.?????????) sys_geteuid: { 1 }, { } - [23:21:56.989278081] (+0.000007682) exit_syscall: { 1 }, { ret = 0 } - [23:21:56.989286043] (+0.000007962) sys_pipe: { 1 }, { fildes = 0xB77B9E8C } - [23:21:56.989321802] (+0.000035759) exit_syscall: { 1 }, { ret = 0 } - [23:21:56.989329345] (+0.000007543) sys_mmap_pgoff: { 1 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362, fd = 4294967295, pgoff = 0 } - [23:21:56.989351694] (+0.000022349) exit_syscall: { 1 }, { ret = -1247805440 } - [23:21:56.989432989] (+0.000081295) sys_clone: { 1 }, { clone_flags = 0x411, newsp = 0xB5EFFFE4, parent_tid = 0xFFFFFFFF, child_tid = 0x0 } - [23:21:56.989477129] (+0.000044140) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 681660, vruntime = 43367983388 } - [23:21:56.989486697] (+0.000009568) sched_migrate_task: { 1 }, { comm = "lttng-consumerd", tid = 1193, prio = 20, orig_cpu = 1, dest_cpu = 1 } - [23:21:56.989508418] (+0.000021721) hrtimer_init: { 1 }, { hrtimer = 3970832076, clockid = 1, mode = 1 } - [23:21:56.989770462] (+0.000262044) hrtimer_cancel: { 1 }, { hrtimer = 3993865440 } - [23:21:56.989771580] (+0.000001118) hrtimer_cancel: { 0 }, { hrtimer = 3993812192 } - [23:21:56.989776957] (+0.000005377) hrtimer_expire_entry: { 1 }, { hrtimer = 3993865440, now = 79815980007057, function = 3238465232 } - [23:21:56.989778145] (+0.000001188) hrtimer_expire_entry: { 0 }, { hrtimer = 3993812192, now = 79815980008174, function = 3238465232 } - [23:21:56.989791695] (+0.000013550) softirq_raise: { 1 }, { vec = 1 } - [23:21:56.989795396] (+0.000003701) softirq_raise: { 0 }, { vec = 1 } - [23:21:56.989800635] (+0.000005239) softirq_raise: { 0 }, { vec = 9 } - [23:21:56.989807130] (+0.000006495) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 330710, vruntime = 43368314098 } - [23:21:56.989809993] (+0.000002863) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 1015313, vruntime = 36976733240 } - [23:21:56.989818514] (+0.000008521) hrtimer_expire_exit: { 0 }, { hrtimer = 3993812192 } - [23:21:56.989819631] (+0.000001117) hrtimer_expire_exit: { 1 }, { hrtimer = 3993865440 } - [23:21:56.989821866] (+0.000002235) hrtimer_start: { 0 }, { hrtimer = 3993812192, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 } - [23:21:56.989822984] (+0.000001118) hrtimer_start: { 1 }, { hrtimer = 3993865440, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 } - [23:21:56.989832762] (+0.000009778) softirq_entry: { 1 }, { vec = 1 } - [23:21:56.989833879] (+0.000001117) softirq_entry: { 0 }, { vec = 1 } - [23:21:56.989838069] (+0.000004190) timer_cancel: { 1 }, { timer = 3993871956 } - [23:21:56.989839187] (+0.000001118) timer_cancel: { 0 }, { timer = 3993818708 } - [23:21:56.989841492] (+0.000002305) timer_expire_entry: { 1 }, { timer = 3993871956, now = 79515980, function = 3238277552 } - [23:21:56.989842819] (+0.000001327) timer_expire_entry: { 0 }, { timer = 3993818708, now = 79515980, function = 3238277552 } - [23:21:56.989854831] (+0.000012012) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 49237, vruntime = 43368363335 } - [23:21:56.989855949] (+0.000001118) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 45121, vruntime = 36976778361 } - [23:21:56.989861257] (+0.000005308) sched_stat_sleep: { 1 }, { comm = "kworker/1:1", tid = 21, delay = 9451318 } - [23:21:56.989862374] (+0.000001117) sched_stat_sleep: { 0 }, { comm = "kworker/0:0", tid = 4, delay = 9958820 } - [23:21:56.989868241] (+0.000005867) sched_wakeup: { 0 }, { comm = "kworker/0:0", tid = 4, prio = 120, success = 1, target_cpu = 0 } - [23:21:56.989869358] (+0.000001117) sched_wakeup: { 1 }, { comm = "kworker/1:1", tid = 21, prio = 120, success = 1, target_cpu = 1 } - [23:21:56.989877460] (+0.000008102) timer_expire_exit: { 1 }, { timer = 3993871956 } - [23:21:56.989878577] (+0.000001117) timer_expire_exit: { 0 }, { timer = 3993818708 } - . - . - . - - You can now safely destroy the trace session (note that - this doesn't delete the trace - it's still there - in ~/lttng-traces): - - root@crownbay:~# lttng destroy - Session auto-20121015-232120 destroyed at /home/root - - Note that the trace is saved in a directory of the same - name as returned by 'lttng create', under the ~/lttng-traces - directory (note that you can change this by supplying your - own name to 'lttng create'): - - root@crownbay:~# ls -al ~/lttng-traces - drwxrwx--- 3 root root 1024 Oct 15 23:21 . - drwxr-xr-x 5 root root 1024 Oct 15 23:57 .. - drwxrwx--- 3 root root 1024 Oct 15 23:21 auto-20121015-232120 - - -
- -
- Collecting and viewing a userspace trace on the target (inside a shell) - - - For LTTng userspace tracing, you need to have a properly - instrumented userspace program. For this example, we'll use - the 'hello' test program generated by the lttng-ust build. - - - - The 'hello' test program isn't installed on the rootfs by - the lttng-ust build, so we need to copy it over manually. - First cd into the build directory that contains the hello - executable: - - $ cd build/tmp/work/core2_32-poky-linux/lttng-ust/2.0.5-r0/git/tests/hello/.libs - - Copy that over to the target machine: - - $ scp hello root@192.168.1.20: - - You now have the instrumented lttng 'hello world' test - program on the target, ready to test. - - - - First, from the host, ssh to the target: - - $ ssh -l root 192.168.1.47 - The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established. - RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e. - Are you sure you want to continue connecting (yes/no)? yes - Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts. - root@192.168.1.47's password: - - Once on the target, use these steps to create a trace: - - root@crownbay:~# lttng create - Session auto-20190303-021943 created. - Traces will be written in /home/root/lttng-traces/auto-20190303-021943 - - Enable the events you want to trace (in this case all - userspace events): - - root@crownbay:~# lttng enable-event --userspace --all - All UST events are enabled in channel channel0 - - Start the trace: - - root@crownbay:~# lttng start - Tracing started for session auto-20190303-021943 - - Run the instrumented hello world program: - - root@crownbay:~# ./hello - Hello, World! - Tracing... done. - - And then stop the trace after awhile or after running a - particular workload that you want to trace: - - root@crownbay:~# lttng stop - Tracing stopped for session auto-20190303-021943 - - You can now view the trace in text form on the target: - - root@crownbay:~# lttng view - [02:31:14.906146544] (+?.?????????) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 0, intfield2 = 0x0, longfield = 0, netintfield = 0, netintfieldhex = 0x0, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 } - [02:31:14.906170360] (+0.000023816) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 1, intfield2 = 0x1, longfield = 1, netintfield = 1, netintfieldhex = 0x1, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 } - [02:31:14.906183140] (+0.000012780) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 2, intfield2 = 0x2, longfield = 2, netintfield = 2, netintfieldhex = 0x2, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 } - [02:31:14.906194385] (+0.000011245) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 3, intfield2 = 0x3, longfield = 3, netintfield = 3, netintfieldhex = 0x3, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 } - . - . - . - - You can now safely destroy the trace session (note that - this doesn't delete the trace - it's still - there in ~/lttng-traces): - - root@crownbay:~# lttng destroy - Session auto-20190303-021943 destroyed at /home/root - - -
- -
- -
- Documentation - - - You can find the primary LTTng Documentation on the - LTTng Documentation - site. - The documentation on this site is appropriate for intermediate to - advanced software developers who are working in a Linux environment - and are interested in efficient software tracing. - - - - For information on LTTng in general, visit the - LTTng Project - site. - You can find a "Getting Started" link on this site that takes - you to an LTTng Quick Start. - -
-
- -
- blktrace - - - blktrace is a tool for tracing and reporting low-level disk I/O. - blktrace provides the tracing half of the equation; its output can - be piped into the blkparse program, which renders the data in a - human-readable form and does some basic analysis: - - -
- Setup - - - For this section, we'll assume you've already performed the - basic setup outlined in the - "General Setup" - section. - - - - blktrace is an application that runs on the target system. - You can run the entire blktrace and blkparse pipeline on the - target, or you can run blktrace in 'listen' mode on the target - and have blktrace and blkparse collect and analyze the data on - the host (see the - "Using blktrace Remotely" - section below). - For the rest of this section we assume you've ssh'ed to the - host and will be running blkrace on the target. - -
- -
- Basic Usage - - - To record a trace, simply run the 'blktrace' command, giving it - the name of the block device you want to trace activity on: - - root@crownbay:~# blktrace /dev/sdc - - In another shell, execute a workload you want to trace. - - root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2; sync - Connecting to downloads.yoctoproject.org (140.211.169.59:80) - linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA - - Press Ctrl-C in the blktrace shell to stop the trace. It will - display how many events were logged, along with the per-cpu file - sizes (blktrace records traces in per-cpu kernel buffers and - simply dumps them to userspace for blkparse to merge and sort - later). - - ^C=== sdc === - CPU 0: 7082 events, 332 KiB data - CPU 1: 1578 events, 74 KiB data - Total: 8660 events (dropped 0), 406 KiB data - - If you examine the files saved to disk, you see multiple files, - one per CPU and with the device name as the first part of the - filename: - - root@crownbay:~# ls -al - drwxr-xr-x 6 root root 1024 Oct 27 22:39 . - drwxr-sr-x 4 root root 1024 Oct 26 18:24 .. - -rw-r--r-- 1 root root 339938 Oct 27 22:40 sdc.blktrace.0 - -rw-r--r-- 1 root root 75753 Oct 27 22:40 sdc.blktrace.1 - - To view the trace events, simply invoke 'blkparse' in the - directory containing the trace files, giving it the device name - that forms the first part of the filenames: - - root@crownbay:~# blkparse sdc - - 8,32 1 1 0.000000000 1225 Q WS 3417048 + 8 [jbd2/sdc-8] - 8,32 1 2 0.000025213 1225 G WS 3417048 + 8 [jbd2/sdc-8] - 8,32 1 3 0.000033384 1225 P N [jbd2/sdc-8] - 8,32 1 4 0.000043301 1225 I WS 3417048 + 8 [jbd2/sdc-8] - 8,32 1 0 0.000057270 0 m N cfq1225 insert_request - 8,32 1 0 0.000064813 0 m N cfq1225 add_to_rr - 8,32 1 5 0.000076336 1225 U N [jbd2/sdc-8] 1 - 8,32 1 0 0.000088559 0 m N cfq workload slice:150 - 8,32 1 0 0.000097359 0 m N cfq1225 set_active wl_prio:0 wl_type:1 - 8,32 1 0 0.000104063 0 m N cfq1225 Not idling. st->count:1 - 8,32 1 0 0.000112584 0 m N cfq1225 fifo= (null) - 8,32 1 0 0.000118730 0 m N cfq1225 dispatch_insert - 8,32 1 0 0.000127390 0 m N cfq1225 dispatched a request - 8,32 1 0 0.000133536 0 m N cfq1225 activate rq, drv=1 - 8,32 1 6 0.000136889 1225 D WS 3417048 + 8 [jbd2/sdc-8] - 8,32 1 7 0.000360381 1225 Q WS 3417056 + 8 [jbd2/sdc-8] - 8,32 1 8 0.000377422 1225 G WS 3417056 + 8 [jbd2/sdc-8] - 8,32 1 9 0.000388876 1225 P N [jbd2/sdc-8] - 8,32 1 10 0.000397886 1225 Q WS 3417064 + 8 [jbd2/sdc-8] - 8,32 1 11 0.000404800 1225 M WS 3417064 + 8 [jbd2/sdc-8] - 8,32 1 12 0.000412343 1225 Q WS 3417072 + 8 [jbd2/sdc-8] - 8,32 1 13 0.000416533 1225 M WS 3417072 + 8 [jbd2/sdc-8] - 8,32 1 14 0.000422121 1225 Q WS 3417080 + 8 [jbd2/sdc-8] - 8,32 1 15 0.000425194 1225 M WS 3417080 + 8 [jbd2/sdc-8] - 8,32 1 16 0.000431968 1225 Q WS 3417088 + 8 [jbd2/sdc-8] - 8,32 1 17 0.000435251 1225 M WS 3417088 + 8 [jbd2/sdc-8] - 8,32 1 18 0.000440279 1225 Q WS 3417096 + 8 [jbd2/sdc-8] - 8,32 1 19 0.000443911 1225 M WS 3417096 + 8 [jbd2/sdc-8] - 8,32 1 20 0.000450336 1225 Q WS 3417104 + 8 [jbd2/sdc-8] - 8,32 1 21 0.000454038 1225 M WS 3417104 + 8 [jbd2/sdc-8] - 8,32 1 22 0.000462070 1225 Q WS 3417112 + 8 [jbd2/sdc-8] - 8,32 1 23 0.000465422 1225 M WS 3417112 + 8 [jbd2/sdc-8] - 8,32 1 24 0.000474222 1225 I WS 3417056 + 64 [jbd2/sdc-8] - 8,32 1 0 0.000483022 0 m N cfq1225 insert_request - 8,32 1 25 0.000489727 1225 U N [jbd2/sdc-8] 1 - 8,32 1 0 0.000498457 0 m N cfq1225 Not idling. st->count:1 - 8,32 1 0 0.000503765 0 m N cfq1225 dispatch_insert - 8,32 1 0 0.000512914 0 m N cfq1225 dispatched a request - 8,32 1 0 0.000518851 0 m N cfq1225 activate rq, drv=2 - . - . - . - 8,32 0 0 58.515006138 0 m N cfq3551 complete rqnoidle 1 - 8,32 0 2024 58.516603269 3 C WS 3156992 + 16 [0] - 8,32 0 0 58.516626736 0 m N cfq3551 complete rqnoidle 1 - 8,32 0 0 58.516634558 0 m N cfq3551 arm_idle: 8 group_idle: 0 - 8,32 0 0 58.516636933 0 m N cfq schedule dispatch - 8,32 1 0 58.516971613 0 m N cfq3551 slice expired t=0 - 8,32 1 0 58.516982089 0 m N cfq3551 sl_used=13 disp=6 charge=13 iops=0 sect=80 - 8,32 1 0 58.516985511 0 m N cfq3551 del_from_rr - 8,32 1 0 58.516990819 0 m N cfq3551 put_queue - - CPU0 (sdc): - Reads Queued: 0, 0KiB Writes Queued: 331, 26,284KiB - Read Dispatches: 0, 0KiB Write Dispatches: 485, 40,484KiB - Reads Requeued: 0 Writes Requeued: 0 - Reads Completed: 0, 0KiB Writes Completed: 511, 41,000KiB - Read Merges: 0, 0KiB Write Merges: 13, 160KiB - Read depth: 0 Write depth: 2 - IO unplugs: 23 Timer unplugs: 0 - CPU1 (sdc): - Reads Queued: 0, 0KiB Writes Queued: 249, 15,800KiB - Read Dispatches: 0, 0KiB Write Dispatches: 42, 1,600KiB - Reads Requeued: 0 Writes Requeued: 0 - Reads Completed: 0, 0KiB Writes Completed: 16, 1,084KiB - Read Merges: 0, 0KiB Write Merges: 40, 276KiB - Read depth: 0 Write depth: 2 - IO unplugs: 30 Timer unplugs: 1 - - Total (sdc): - Reads Queued: 0, 0KiB Writes Queued: 580, 42,084KiB - Read Dispatches: 0, 0KiB Write Dispatches: 527, 42,084KiB - Reads Requeued: 0 Writes Requeued: 0 - Reads Completed: 0, 0KiB Writes Completed: 527, 42,084KiB - Read Merges: 0, 0KiB Write Merges: 53, 436KiB - IO unplugs: 53 Timer unplugs: 1 - - Throughput (R/W): 0KiB/s / 719KiB/s - Events (sdc): 6,592 entries - Skips: 0 forward (0 - 0.0%) - Input file sdc.blktrace.0 added - Input file sdc.blktrace.1 added - - The report shows each event that was found in the blktrace data, - along with a summary of the overall block I/O traffic during - the run. You can look at the - blkparse - manpage to learn the - meaning of each field displayed in the trace listing. - - -
- Live Mode - - - blktrace and blkparse are designed from the ground up to - be able to operate together in a 'pipe mode' where the - stdout of blktrace can be fed directly into the stdin of - blkparse: - - root@crownbay:~# blktrace /dev/sdc -o - | blkparse -i - - - This enables long-lived tracing sessions to run without - writing anything to disk, and allows the user to look for - certain conditions in the trace data in 'real-time' by - viewing the trace output as it scrolls by on the screen or - by passing it along to yet another program in the pipeline - such as grep which can be used to identify and capture - conditions of interest. - - - - There's actually another blktrace command that implements - the above pipeline as a single command, so the user doesn't - have to bother typing in the above command sequence: - - root@crownbay:~# btrace /dev/sdc - - -
- -
- Using blktrace Remotely - - - Because blktrace traces block I/O and at the same time - normally writes its trace data to a block device, and - in general because it's not really a great idea to make - the device being traced the same as the device the tracer - writes to, blktrace provides a way to trace without - perturbing the traced device at all by providing native - support for sending all trace data over the network. - - - - To have blktrace operate in this mode, start blktrace on - the target system being traced with the -l option, along with - the device to trace: - - root@crownbay:~# blktrace -l /dev/sdc - server: waiting for connections... - - On the host system, use the -h option to connect to the - target system, also passing it the device to trace: - - $ blktrace -d /dev/sdc -h 192.168.1.43 - blktrace: connecting to 192.168.1.43 - blktrace: connected! - - On the target system, you should see this: - - server: connection from 192.168.1.43 - - In another shell, execute a workload you want to trace. - - root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2; sync - Connecting to downloads.yoctoproject.org (140.211.169.59:80) - linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA - - When it's done, do a Ctrl-C on the host system to - stop the trace: - - ^C=== sdc === - CPU 0: 7691 events, 361 KiB data - CPU 1: 4109 events, 193 KiB data - Total: 11800 events (dropped 0), 554 KiB data - - On the target system, you should also see a trace - summary for the trace just ended: - - server: end of run for 192.168.1.43:sdc - === sdc === - CPU 0: 7691 events, 361 KiB data - CPU 1: 4109 events, 193 KiB data - Total: 11800 events (dropped 0), 554 KiB data - - The blktrace instance on the host will save the target - output inside a hostname-timestamp directory: - - $ ls -al - drwxr-xr-x 10 root root 1024 Oct 28 02:40 . - drwxr-sr-x 4 root root 1024 Oct 26 18:24 .. - drwxr-xr-x 2 root root 1024 Oct 28 02:40 192.168.1.43-2012-10-28-02:40:56 - - cd into that directory to see the output files: - - $ ls -l - -rw-r--r-- 1 root root 369193 Oct 28 02:44 sdc.blktrace.0 - -rw-r--r-- 1 root root 197278 Oct 28 02:44 sdc.blktrace.1 - - And run blkparse on the host system using the device name: - - $ blkparse sdc - - 8,32 1 1 0.000000000 1263 Q RM 6016 + 8 [ls] - 8,32 1 0 0.000036038 0 m N cfq1263 alloced - 8,32 1 2 0.000039390 1263 G RM 6016 + 8 [ls] - 8,32 1 3 0.000049168 1263 I RM 6016 + 8 [ls] - 8,32 1 0 0.000056152 0 m N cfq1263 insert_request - 8,32 1 0 0.000061600 0 m N cfq1263 add_to_rr - 8,32 1 0 0.000075498 0 m N cfq workload slice:300 - . - . - . - 8,32 0 0 177.266385696 0 m N cfq1267 arm_idle: 8 group_idle: 0 - 8,32 0 0 177.266388140 0 m N cfq schedule dispatch - 8,32 1 0 177.266679239 0 m N cfq1267 slice expired t=0 - 8,32 1 0 177.266689297 0 m N cfq1267 sl_used=9 disp=6 charge=9 iops=0 sect=56 - 8,32 1 0 177.266692649 0 m N cfq1267 del_from_rr - 8,32 1 0 177.266696560 0 m N cfq1267 put_queue - - CPU0 (sdc): - Reads Queued: 0, 0KiB Writes Queued: 270, 21,708KiB - Read Dispatches: 59, 2,628KiB Write Dispatches: 495, 39,964KiB - Reads Requeued: 0 Writes Requeued: 0 - Reads Completed: 90, 2,752KiB Writes Completed: 543, 41,596KiB - Read Merges: 0, 0KiB Write Merges: 9, 344KiB - Read depth: 2 Write depth: 2 - IO unplugs: 20 Timer unplugs: 1 - CPU1 (sdc): - Reads Queued: 688, 2,752KiB Writes Queued: 381, 20,652KiB - Read Dispatches: 31, 124KiB Write Dispatches: 59, 2,396KiB - Reads Requeued: 0 Writes Requeued: 0 - Reads Completed: 0, 0KiB Writes Completed: 11, 764KiB - Read Merges: 598, 2,392KiB Write Merges: 88, 448KiB - Read depth: 2 Write depth: 2 - IO unplugs: 52 Timer unplugs: 0 - - Total (sdc): - Reads Queued: 688, 2,752KiB Writes Queued: 651, 42,360KiB - Read Dispatches: 90, 2,752KiB Write Dispatches: 554, 42,360KiB - Reads Requeued: 0 Writes Requeued: 0 - Reads Completed: 90, 2,752KiB Writes Completed: 554, 42,360KiB - Read Merges: 598, 2,392KiB Write Merges: 97, 792KiB - IO unplugs: 72 Timer unplugs: 1 - - Throughput (R/W): 15KiB/s / 238KiB/s - Events (sdc): 9,301 entries - Skips: 0 forward (0 - 0.0%) - - You should see the trace events and summary just as - you would have if you'd run the same command on the target. - -
- -
- Tracing Block I/O via 'ftrace' - - - It's also possible to trace block I/O using only - trace events subsystem, - which can be useful for casual tracing - if you don't want to bother dealing with the userspace tools. - - - - To enable tracing for a given device, use - /sys/block/xxx/trace/enable, where xxx is the device name. - This for example enables tracing for /dev/sdc: - - root@crownbay:/sys/kernel/debug/tracing# echo 1 > /sys/block/sdc/trace/enable - - Once you've selected the device(s) you want to trace, - selecting the 'blk' tracer will turn the blk tracer on: - - root@crownbay:/sys/kernel/debug/tracing# cat available_tracers - blk function_graph function nop - - root@crownbay:/sys/kernel/debug/tracing# echo blk > current_tracer - - Execute the workload you're interested in: - - root@crownbay:/sys/kernel/debug/tracing# cat /media/sdc/testfile.txt - - And look at the output (note here that we're using - 'trace_pipe' instead of trace to capture this trace - - this allows us to wait around on the pipe for data to - appear): - - root@crownbay:/sys/kernel/debug/tracing# cat trace_pipe - cat-3587 [001] d..1 3023.276361: 8,32 Q R 1699848 + 8 [cat] - cat-3587 [001] d..1 3023.276410: 8,32 m N cfq3587 alloced - cat-3587 [001] d..1 3023.276415: 8,32 G R 1699848 + 8 [cat] - cat-3587 [001] d..1 3023.276424: 8,32 P N [cat] - cat-3587 [001] d..2 3023.276432: 8,32 I R 1699848 + 8 [cat] - cat-3587 [001] d..1 3023.276439: 8,32 m N cfq3587 insert_request - cat-3587 [001] d..1 3023.276445: 8,32 m N cfq3587 add_to_rr - cat-3587 [001] d..2 3023.276454: 8,32 U N [cat] 1 - cat-3587 [001] d..1 3023.276464: 8,32 m N cfq workload slice:150 - cat-3587 [001] d..1 3023.276471: 8,32 m N cfq3587 set_active wl_prio:0 wl_type:2 - cat-3587 [001] d..1 3023.276478: 8,32 m N cfq3587 fifo= (null) - cat-3587 [001] d..1 3023.276483: 8,32 m N cfq3587 dispatch_insert - cat-3587 [001] d..1 3023.276490: 8,32 m N cfq3587 dispatched a request - cat-3587 [001] d..1 3023.276497: 8,32 m N cfq3587 activate rq, drv=1 - cat-3587 [001] d..2 3023.276500: 8,32 D R 1699848 + 8 [cat] - - And this turns off tracing for the specified device: - - root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable - - -
-
- -
- Documentation - - - Online versions of the man pages for the commands discussed - in this section can be found here: - - http://linux.die.net/man/8/blktrace - - http://linux.die.net/man/1/blkparse - - http://linux.die.net/man/8/btrace - - - - - - The above manpages, along with manpages for the other - blktrace utilities (btt, blkiomon, etc) can be found in the - /doc directory of the blktrace tools git repo: - - $ git clone git://git.kernel.dk/blktrace.git - - -
-
-
- diff --git a/documentation/profile-manual/profile-manual.xml b/documentation/profile-manual/profile-manual.xml deleted file mode 100755 index 48bfba5b8f..0000000000 --- a/documentation/profile-manual/profile-manual.xml +++ /dev/null @@ -1,180 +0,0 @@ - %poky; ] > - - - - - - - - - - - - - Yocto Project Profiling and Tracing Manual - - - - - - &ORGNAME; - - &ORGEMAIL; - - - - - - 1.4 - April 2013 - The initial document released with the Yocto Project 1.4 Release. - - - 1.5 - October 2013 - Released with the Yocto Project 1.5 Release. - - - 1.6 - April 2014 - Released with the Yocto Project 1.6 Release. - - - 1.7 - October 2014 - Released with the Yocto Project 1.7 Release. - - - 1.8 - April 2015 - Released with the Yocto Project 1.8 Release. - - - 2.0 - October 2015 - Released with the Yocto Project 2.0 Release. - - - 2.1 - April 2016 - Released with the Yocto Project 2.1 Release. - - - 2.2 - October 2016 - Released with the Yocto Project 2.2 Release. - - - 2.3 - May 2017 - Released with the Yocto Project 2.3 Release. - - - 2.4 - October 2017 - Released with the Yocto Project 2.4 Release. - - - 2.5 - May 2018 - Released with the Yocto Project 2.5 Release. - - - 2.6 - November 2018 - Released with the Yocto Project 2.6 Release. - - - 2.7 - May 2019 - Released with the Yocto Project 2.7 Release. - - - 3.0 - October 2019 - Released with the Yocto Project 3.0 Release. - - - 3.1 - &REL_MONTH_YEAR; - Released with the Yocto Project 3.1 Release. - - - - - ©RIGHT_YEAR; - Linux Foundation - - - - - Permission is granted to copy, distribute and/or modify this document under - the terms of the - Creative Commons Attribution-Share Alike 2.0 UK: England & Wales as published by - Creative Commons. - - Manual Notes - - - This version of the - Yocto Project Profiling and Tracing Manual - is for the &YOCTO_DOC_VERSION; release of the - Yocto Project. - To be sure you have the latest version of the manual - for this release, go to the - Yocto Project documentation page - and select the manual from that site. - Manuals from the site are more up-to-date than manuals - derived from the Yocto Project released TAR files. - - - If you located this manual through a web search, the - version of the manual might not be the one you want - (e.g. the search might have returned a manual much - older than the Yocto Project version with which you - are working). - You can see all Yocto Project major releases by - visiting the - Releases - page. - If you need a version of this manual for a different - Yocto Project release, visit the - Yocto Project documentation page - and select the manual set by using the - "ACTIVE RELEASES DOCUMENTATION" or "DOCUMENTS ARCHIVE" - pull-down menus. - - - - To report any inaccuracies or problems with this - (or any other Yocto Project) manual, send an email to - the Yocto Project documentation mailing list at - docs@lists.yoctoproject.org or - log into the freenode #yocto channel. - - - - - - - - - - - - - - - - - - -- cgit v1.2.3-54-g00ecf