diff options
author | Chris Larson <chris_larson@mentor.com> | 2010-08-02 13:42:23 -0700 |
---|---|---|
committer | Richard Purdie <rpurdie@linux.intel.com> | 2010-08-03 14:06:07 +0100 |
commit | 191a2883492841f30bbc21ab7bf4e4a0810d0760 (patch) | |
tree | f91e66f57380a47ea31e95bac28a93dd1e9e6370 /bitbake/lib/ply | |
parent | e6b6767369f6d0caa7a9efe32ccd4ed514bb3148 (diff) | |
download | poky-191a2883492841f30bbc21ab7bf4e4a0810d0760.tar.gz |
Add pysh, ply, and codegen to lib/ to prepare for future work
(Bitbake rev: d0a6e9c5c1887a885e0e73eba264ca66801f5ed0)
Signed-off-by: Chris Larson <chris_larson@mentor.com>
Signed-off-by: Richard Purdie <rpurdie@linux.intel.com>
Diffstat (limited to 'bitbake/lib/ply')
-rw-r--r-- | bitbake/lib/ply/__init__.py | 4 | ||||
-rw-r--r-- | bitbake/lib/ply/lex.py | 1058 | ||||
-rw-r--r-- | bitbake/lib/ply/yacc.py | 3276 |
3 files changed, 4338 insertions, 0 deletions
diff --git a/bitbake/lib/ply/__init__.py b/bitbake/lib/ply/__init__.py new file mode 100644 index 0000000000..853a985542 --- /dev/null +++ b/bitbake/lib/ply/__init__.py | |||
@@ -0,0 +1,4 @@ | |||
1 | # PLY package | ||
2 | # Author: David Beazley (dave@dabeaz.com) | ||
3 | |||
4 | __all__ = ['lex','yacc'] | ||
diff --git a/bitbake/lib/ply/lex.py b/bitbake/lib/ply/lex.py new file mode 100644 index 0000000000..267ec100fc --- /dev/null +++ b/bitbake/lib/ply/lex.py | |||
@@ -0,0 +1,1058 @@ | |||
1 | # ----------------------------------------------------------------------------- | ||
2 | # ply: lex.py | ||
3 | # | ||
4 | # Copyright (C) 2001-2009, | ||
5 | # David M. Beazley (Dabeaz LLC) | ||
6 | # All rights reserved. | ||
7 | # | ||
8 | # Redistribution and use in source and binary forms, with or without | ||
9 | # modification, are permitted provided that the following conditions are | ||
10 | # met: | ||
11 | # | ||
12 | # * Redistributions of source code must retain the above copyright notice, | ||
13 | # this list of conditions and the following disclaimer. | ||
14 | # * Redistributions in binary form must reproduce the above copyright notice, | ||
15 | # this list of conditions and the following disclaimer in the documentation | ||
16 | # and/or other materials provided with the distribution. | ||
17 | # * Neither the name of the David Beazley or Dabeaz LLC may be used to | ||
18 | # endorse or promote products derived from this software without | ||
19 | # specific prior written permission. | ||
20 | # | ||
21 | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
22 | # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
23 | # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
24 | # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
25 | # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
26 | # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
27 | # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
28 | # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
29 | # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
30 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
31 | # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
32 | # ----------------------------------------------------------------------------- | ||
33 | |||
34 | __version__ = "3.3" | ||
35 | __tabversion__ = "3.2" # Version of table file used | ||
36 | |||
37 | import re, sys, types, copy, os | ||
38 | |||
39 | # This tuple contains known string types | ||
40 | try: | ||
41 | # Python 2.6 | ||
42 | StringTypes = (types.StringType, types.UnicodeType) | ||
43 | except AttributeError: | ||
44 | # Python 3.0 | ||
45 | StringTypes = (str, bytes) | ||
46 | |||
47 | # Extract the code attribute of a function. Different implementations | ||
48 | # are for Python 2/3 compatibility. | ||
49 | |||
50 | if sys.version_info[0] < 3: | ||
51 | def func_code(f): | ||
52 | return f.func_code | ||
53 | else: | ||
54 | def func_code(f): | ||
55 | return f.__code__ | ||
56 | |||
57 | # This regular expression is used to match valid token names | ||
58 | _is_identifier = re.compile(r'^[a-zA-Z0-9_]+$') | ||
59 | |||
60 | # Exception thrown when invalid token encountered and no default error | ||
61 | # handler is defined. | ||
62 | |||
63 | class LexError(Exception): | ||
64 | def __init__(self,message,s): | ||
65 | self.args = (message,) | ||
66 | self.text = s | ||
67 | |||
68 | # Token class. This class is used to represent the tokens produced. | ||
69 | class LexToken(object): | ||
70 | def __str__(self): | ||
71 | return "LexToken(%s,%r,%d,%d)" % (self.type,self.value,self.lineno,self.lexpos) | ||
72 | def __repr__(self): | ||
73 | return str(self) | ||
74 | |||
75 | # This object is a stand-in for a logging object created by the | ||
76 | # logging module. | ||
77 | |||
78 | class PlyLogger(object): | ||
79 | def __init__(self,f): | ||
80 | self.f = f | ||
81 | def critical(self,msg,*args,**kwargs): | ||
82 | self.f.write((msg % args) + "\n") | ||
83 | |||
84 | def warning(self,msg,*args,**kwargs): | ||
85 | self.f.write("WARNING: "+ (msg % args) + "\n") | ||
86 | |||
87 | def error(self,msg,*args,**kwargs): | ||
88 | self.f.write("ERROR: " + (msg % args) + "\n") | ||
89 | |||
90 | info = critical | ||
91 | debug = critical | ||
92 | |||
93 | # Null logger is used when no output is generated. Does nothing. | ||
94 | class NullLogger(object): | ||
95 | def __getattribute__(self,name): | ||
96 | return self | ||
97 | def __call__(self,*args,**kwargs): | ||
98 | return self | ||
99 | |||
100 | # ----------------------------------------------------------------------------- | ||
101 | # === Lexing Engine === | ||
102 | # | ||
103 | # The following Lexer class implements the lexer runtime. There are only | ||
104 | # a few public methods and attributes: | ||
105 | # | ||
106 | # input() - Store a new string in the lexer | ||
107 | # token() - Get the next token | ||
108 | # clone() - Clone the lexer | ||
109 | # | ||
110 | # lineno - Current line number | ||
111 | # lexpos - Current position in the input string | ||
112 | # ----------------------------------------------------------------------------- | ||
113 | |||
114 | class Lexer: | ||
115 | def __init__(self): | ||
116 | self.lexre = None # Master regular expression. This is a list of | ||
117 | # tuples (re,findex) where re is a compiled | ||
118 | # regular expression and findex is a list | ||
119 | # mapping regex group numbers to rules | ||
120 | self.lexretext = None # Current regular expression strings | ||
121 | self.lexstatere = {} # Dictionary mapping lexer states to master regexs | ||
122 | self.lexstateretext = {} # Dictionary mapping lexer states to regex strings | ||
123 | self.lexstaterenames = {} # Dictionary mapping lexer states to symbol names | ||
124 | self.lexstate = "INITIAL" # Current lexer state | ||
125 | self.lexstatestack = [] # Stack of lexer states | ||
126 | self.lexstateinfo = None # State information | ||
127 | self.lexstateignore = {} # Dictionary of ignored characters for each state | ||
128 | self.lexstateerrorf = {} # Dictionary of error functions for each state | ||
129 | self.lexreflags = 0 # Optional re compile flags | ||
130 | self.lexdata = None # Actual input data (as a string) | ||
131 | self.lexpos = 0 # Current position in input text | ||
132 | self.lexlen = 0 # Length of the input text | ||
133 | self.lexerrorf = None # Error rule (if any) | ||
134 | self.lextokens = None # List of valid tokens | ||
135 | self.lexignore = "" # Ignored characters | ||
136 | self.lexliterals = "" # Literal characters that can be passed through | ||
137 | self.lexmodule = None # Module | ||
138 | self.lineno = 1 # Current line number | ||
139 | self.lexoptimize = 0 # Optimized mode | ||
140 | |||
141 | def clone(self,object=None): | ||
142 | c = copy.copy(self) | ||
143 | |||
144 | # If the object parameter has been supplied, it means we are attaching the | ||
145 | # lexer to a new object. In this case, we have to rebind all methods in | ||
146 | # the lexstatere and lexstateerrorf tables. | ||
147 | |||
148 | if object: | ||
149 | newtab = { } | ||
150 | for key, ritem in self.lexstatere.items(): | ||
151 | newre = [] | ||
152 | for cre, findex in ritem: | ||
153 | newfindex = [] | ||
154 | for f in findex: | ||
155 | if not f or not f[0]: | ||
156 | newfindex.append(f) | ||
157 | continue | ||
158 | newfindex.append((getattr(object,f[0].__name__),f[1])) | ||
159 | newre.append((cre,newfindex)) | ||
160 | newtab[key] = newre | ||
161 | c.lexstatere = newtab | ||
162 | c.lexstateerrorf = { } | ||
163 | for key, ef in self.lexstateerrorf.items(): | ||
164 | c.lexstateerrorf[key] = getattr(object,ef.__name__) | ||
165 | c.lexmodule = object | ||
166 | return c | ||
167 | |||
168 | # ------------------------------------------------------------ | ||
169 | # writetab() - Write lexer information to a table file | ||
170 | # ------------------------------------------------------------ | ||
171 | def writetab(self,tabfile,outputdir=""): | ||
172 | if isinstance(tabfile,types.ModuleType): | ||
173 | return | ||
174 | basetabfilename = tabfile.split(".")[-1] | ||
175 | filename = os.path.join(outputdir,basetabfilename)+".py" | ||
176 | tf = open(filename,"w") | ||
177 | tf.write("# %s.py. This file automatically created by PLY (version %s). Don't edit!\n" % (tabfile,__version__)) | ||
178 | tf.write("_tabversion = %s\n" % repr(__version__)) | ||
179 | tf.write("_lextokens = %s\n" % repr(self.lextokens)) | ||
180 | tf.write("_lexreflags = %s\n" % repr(self.lexreflags)) | ||
181 | tf.write("_lexliterals = %s\n" % repr(self.lexliterals)) | ||
182 | tf.write("_lexstateinfo = %s\n" % repr(self.lexstateinfo)) | ||
183 | |||
184 | tabre = { } | ||
185 | # Collect all functions in the initial state | ||
186 | initial = self.lexstatere["INITIAL"] | ||
187 | initialfuncs = [] | ||
188 | for part in initial: | ||
189 | for f in part[1]: | ||
190 | if f and f[0]: | ||
191 | initialfuncs.append(f) | ||
192 | |||
193 | for key, lre in self.lexstatere.items(): | ||
194 | titem = [] | ||
195 | for i in range(len(lre)): | ||
196 | titem.append((self.lexstateretext[key][i],_funcs_to_names(lre[i][1],self.lexstaterenames[key][i]))) | ||
197 | tabre[key] = titem | ||
198 | |||
199 | tf.write("_lexstatere = %s\n" % repr(tabre)) | ||
200 | tf.write("_lexstateignore = %s\n" % repr(self.lexstateignore)) | ||
201 | |||
202 | taberr = { } | ||
203 | for key, ef in self.lexstateerrorf.items(): | ||
204 | if ef: | ||
205 | taberr[key] = ef.__name__ | ||
206 | else: | ||
207 | taberr[key] = None | ||
208 | tf.write("_lexstateerrorf = %s\n" % repr(taberr)) | ||
209 | tf.close() | ||
210 | |||
211 | # ------------------------------------------------------------ | ||
212 | # readtab() - Read lexer information from a tab file | ||
213 | # ------------------------------------------------------------ | ||
214 | def readtab(self,tabfile,fdict): | ||
215 | if isinstance(tabfile,types.ModuleType): | ||
216 | lextab = tabfile | ||
217 | else: | ||
218 | if sys.version_info[0] < 3: | ||
219 | exec("import %s as lextab" % tabfile) | ||
220 | else: | ||
221 | env = { } | ||
222 | exec("import %s as lextab" % tabfile, env,env) | ||
223 | lextab = env['lextab'] | ||
224 | |||
225 | if getattr(lextab,"_tabversion","0.0") != __version__: | ||
226 | raise ImportError("Inconsistent PLY version") | ||
227 | |||
228 | self.lextokens = lextab._lextokens | ||
229 | self.lexreflags = lextab._lexreflags | ||
230 | self.lexliterals = lextab._lexliterals | ||
231 | self.lexstateinfo = lextab._lexstateinfo | ||
232 | self.lexstateignore = lextab._lexstateignore | ||
233 | self.lexstatere = { } | ||
234 | self.lexstateretext = { } | ||
235 | for key,lre in lextab._lexstatere.items(): | ||
236 | titem = [] | ||
237 | txtitem = [] | ||
238 | for i in range(len(lre)): | ||
239 | titem.append((re.compile(lre[i][0],lextab._lexreflags | re.VERBOSE),_names_to_funcs(lre[i][1],fdict))) | ||
240 | txtitem.append(lre[i][0]) | ||
241 | self.lexstatere[key] = titem | ||
242 | self.lexstateretext[key] = txtitem | ||
243 | self.lexstateerrorf = { } | ||
244 | for key,ef in lextab._lexstateerrorf.items(): | ||
245 | self.lexstateerrorf[key] = fdict[ef] | ||
246 | self.begin('INITIAL') | ||
247 | |||
248 | # ------------------------------------------------------------ | ||
249 | # input() - Push a new string into the lexer | ||
250 | # ------------------------------------------------------------ | ||
251 | def input(self,s): | ||
252 | # Pull off the first character to see if s looks like a string | ||
253 | c = s[:1] | ||
254 | if not isinstance(c,StringTypes): | ||
255 | raise ValueError("Expected a string") | ||
256 | self.lexdata = s | ||
257 | self.lexpos = 0 | ||
258 | self.lexlen = len(s) | ||
259 | |||
260 | # ------------------------------------------------------------ | ||
261 | # begin() - Changes the lexing state | ||
262 | # ------------------------------------------------------------ | ||
263 | def begin(self,state): | ||
264 | if not state in self.lexstatere: | ||
265 | raise ValueError("Undefined state") | ||
266 | self.lexre = self.lexstatere[state] | ||
267 | self.lexretext = self.lexstateretext[state] | ||
268 | self.lexignore = self.lexstateignore.get(state,"") | ||
269 | self.lexerrorf = self.lexstateerrorf.get(state,None) | ||
270 | self.lexstate = state | ||
271 | |||
272 | # ------------------------------------------------------------ | ||
273 | # push_state() - Changes the lexing state and saves old on stack | ||
274 | # ------------------------------------------------------------ | ||
275 | def push_state(self,state): | ||
276 | self.lexstatestack.append(self.lexstate) | ||
277 | self.begin(state) | ||
278 | |||
279 | # ------------------------------------------------------------ | ||
280 | # pop_state() - Restores the previous state | ||
281 | # ------------------------------------------------------------ | ||
282 | def pop_state(self): | ||
283 | self.begin(self.lexstatestack.pop()) | ||
284 | |||
285 | # ------------------------------------------------------------ | ||
286 | # current_state() - Returns the current lexing state | ||
287 | # ------------------------------------------------------------ | ||
288 | def current_state(self): | ||
289 | return self.lexstate | ||
290 | |||
291 | # ------------------------------------------------------------ | ||
292 | # skip() - Skip ahead n characters | ||
293 | # ------------------------------------------------------------ | ||
294 | def skip(self,n): | ||
295 | self.lexpos += n | ||
296 | |||
297 | # ------------------------------------------------------------ | ||
298 | # opttoken() - Return the next token from the Lexer | ||
299 | # | ||
300 | # Note: This function has been carefully implemented to be as fast | ||
301 | # as possible. Don't make changes unless you really know what | ||
302 | # you are doing | ||
303 | # ------------------------------------------------------------ | ||
304 | def token(self): | ||
305 | # Make local copies of frequently referenced attributes | ||
306 | lexpos = self.lexpos | ||
307 | lexlen = self.lexlen | ||
308 | lexignore = self.lexignore | ||
309 | lexdata = self.lexdata | ||
310 | |||
311 | while lexpos < lexlen: | ||
312 | # This code provides some short-circuit code for whitespace, tabs, and other ignored characters | ||
313 | if lexdata[lexpos] in lexignore: | ||
314 | lexpos += 1 | ||
315 | continue | ||
316 | |||
317 | # Look for a regular expression match | ||
318 | for lexre,lexindexfunc in self.lexre: | ||
319 | m = lexre.match(lexdata,lexpos) | ||
320 | if not m: continue | ||
321 | |||
322 | # Create a token for return | ||
323 | tok = LexToken() | ||
324 | tok.value = m.group() | ||
325 | tok.lineno = self.lineno | ||
326 | tok.lexpos = lexpos | ||
327 | |||
328 | i = m.lastindex | ||
329 | func,tok.type = lexindexfunc[i] | ||
330 | |||
331 | if not func: | ||
332 | # If no token type was set, it's an ignored token | ||
333 | if tok.type: | ||
334 | self.lexpos = m.end() | ||
335 | return tok | ||
336 | else: | ||
337 | lexpos = m.end() | ||
338 | break | ||
339 | |||
340 | lexpos = m.end() | ||
341 | |||
342 | # If token is processed by a function, call it | ||
343 | |||
344 | tok.lexer = self # Set additional attributes useful in token rules | ||
345 | self.lexmatch = m | ||
346 | self.lexpos = lexpos | ||
347 | |||
348 | newtok = func(tok) | ||
349 | |||
350 | # Every function must return a token, if nothing, we just move to next token | ||
351 | if not newtok: | ||
352 | lexpos = self.lexpos # This is here in case user has updated lexpos. | ||
353 | lexignore = self.lexignore # This is here in case there was a state change | ||
354 | break | ||
355 | |||
356 | # Verify type of the token. If not in the token map, raise an error | ||
357 | if not self.lexoptimize: | ||
358 | if not newtok.type in self.lextokens: | ||
359 | raise LexError("%s:%d: Rule '%s' returned an unknown token type '%s'" % ( | ||
360 | func_code(func).co_filename, func_code(func).co_firstlineno, | ||
361 | func.__name__, newtok.type),lexdata[lexpos:]) | ||
362 | |||
363 | return newtok | ||
364 | else: | ||
365 | # No match, see if in literals | ||
366 | if lexdata[lexpos] in self.lexliterals: | ||
367 | tok = LexToken() | ||
368 | tok.value = lexdata[lexpos] | ||
369 | tok.lineno = self.lineno | ||
370 | tok.type = tok.value | ||
371 | tok.lexpos = lexpos | ||
372 | self.lexpos = lexpos + 1 | ||
373 | return tok | ||
374 | |||
375 | # No match. Call t_error() if defined. | ||
376 | if self.lexerrorf: | ||
377 | tok = LexToken() | ||
378 | tok.value = self.lexdata[lexpos:] | ||
379 | tok.lineno = self.lineno | ||
380 | tok.type = "error" | ||
381 | tok.lexer = self | ||
382 | tok.lexpos = lexpos | ||
383 | self.lexpos = lexpos | ||
384 | newtok = self.lexerrorf(tok) | ||
385 | if lexpos == self.lexpos: | ||
386 | # Error method didn't change text position at all. This is an error. | ||
387 | raise LexError("Scanning error. Illegal character '%s'" % (lexdata[lexpos]), lexdata[lexpos:]) | ||
388 | lexpos = self.lexpos | ||
389 | if not newtok: continue | ||
390 | return newtok | ||
391 | |||
392 | self.lexpos = lexpos | ||
393 | raise LexError("Illegal character '%s' at index %d" % (lexdata[lexpos],lexpos), lexdata[lexpos:]) | ||
394 | |||
395 | self.lexpos = lexpos + 1 | ||
396 | if self.lexdata is None: | ||
397 | raise RuntimeError("No input string given with input()") | ||
398 | return None | ||
399 | |||
400 | # Iterator interface | ||
401 | def __iter__(self): | ||
402 | return self | ||
403 | |||
404 | def next(self): | ||
405 | t = self.token() | ||
406 | if t is None: | ||
407 | raise StopIteration | ||
408 | return t | ||
409 | |||
410 | __next__ = next | ||
411 | |||
412 | # ----------------------------------------------------------------------------- | ||
413 | # ==== Lex Builder === | ||
414 | # | ||
415 | # The functions and classes below are used to collect lexing information | ||
416 | # and build a Lexer object from it. | ||
417 | # ----------------------------------------------------------------------------- | ||
418 | |||
419 | # ----------------------------------------------------------------------------- | ||
420 | # get_caller_module_dict() | ||
421 | # | ||
422 | # This function returns a dictionary containing all of the symbols defined within | ||
423 | # a caller further down the call stack. This is used to get the environment | ||
424 | # associated with the yacc() call if none was provided. | ||
425 | # ----------------------------------------------------------------------------- | ||
426 | |||
427 | def get_caller_module_dict(levels): | ||
428 | try: | ||
429 | raise RuntimeError | ||
430 | except RuntimeError: | ||
431 | e,b,t = sys.exc_info() | ||
432 | f = t.tb_frame | ||
433 | while levels > 0: | ||
434 | f = f.f_back | ||
435 | levels -= 1 | ||
436 | ldict = f.f_globals.copy() | ||
437 | if f.f_globals != f.f_locals: | ||
438 | ldict.update(f.f_locals) | ||
439 | |||
440 | return ldict | ||
441 | |||
442 | # ----------------------------------------------------------------------------- | ||
443 | # _funcs_to_names() | ||
444 | # | ||
445 | # Given a list of regular expression functions, this converts it to a list | ||
446 | # suitable for output to a table file | ||
447 | # ----------------------------------------------------------------------------- | ||
448 | |||
449 | def _funcs_to_names(funclist,namelist): | ||
450 | result = [] | ||
451 | for f,name in zip(funclist,namelist): | ||
452 | if f and f[0]: | ||
453 | result.append((name, f[1])) | ||
454 | else: | ||
455 | result.append(f) | ||
456 | return result | ||
457 | |||
458 | # ----------------------------------------------------------------------------- | ||
459 | # _names_to_funcs() | ||
460 | # | ||
461 | # Given a list of regular expression function names, this converts it back to | ||
462 | # functions. | ||
463 | # ----------------------------------------------------------------------------- | ||
464 | |||
465 | def _names_to_funcs(namelist,fdict): | ||
466 | result = [] | ||
467 | for n in namelist: | ||
468 | if n and n[0]: | ||
469 | result.append((fdict[n[0]],n[1])) | ||
470 | else: | ||
471 | result.append(n) | ||
472 | return result | ||
473 | |||
474 | # ----------------------------------------------------------------------------- | ||
475 | # _form_master_re() | ||
476 | # | ||
477 | # This function takes a list of all of the regex components and attempts to | ||
478 | # form the master regular expression. Given limitations in the Python re | ||
479 | # module, it may be necessary to break the master regex into separate expressions. | ||
480 | # ----------------------------------------------------------------------------- | ||
481 | |||
482 | def _form_master_re(relist,reflags,ldict,toknames): | ||
483 | if not relist: return [] | ||
484 | regex = "|".join(relist) | ||
485 | try: | ||
486 | lexre = re.compile(regex,re.VERBOSE | reflags) | ||
487 | |||
488 | # Build the index to function map for the matching engine | ||
489 | lexindexfunc = [ None ] * (max(lexre.groupindex.values())+1) | ||
490 | lexindexnames = lexindexfunc[:] | ||
491 | |||
492 | for f,i in lexre.groupindex.items(): | ||
493 | handle = ldict.get(f,None) | ||
494 | if type(handle) in (types.FunctionType, types.MethodType): | ||
495 | lexindexfunc[i] = (handle,toknames[f]) | ||
496 | lexindexnames[i] = f | ||
497 | elif handle is not None: | ||
498 | lexindexnames[i] = f | ||
499 | if f.find("ignore_") > 0: | ||
500 | lexindexfunc[i] = (None,None) | ||
501 | else: | ||
502 | lexindexfunc[i] = (None, toknames[f]) | ||
503 | |||
504 | return [(lexre,lexindexfunc)],[regex],[lexindexnames] | ||
505 | except Exception: | ||
506 | m = int(len(relist)/2) | ||
507 | if m == 0: m = 1 | ||
508 | llist, lre, lnames = _form_master_re(relist[:m],reflags,ldict,toknames) | ||
509 | rlist, rre, rnames = _form_master_re(relist[m:],reflags,ldict,toknames) | ||
510 | return llist+rlist, lre+rre, lnames+rnames | ||
511 | |||
512 | # ----------------------------------------------------------------------------- | ||
513 | # def _statetoken(s,names) | ||
514 | # | ||
515 | # Given a declaration name s of the form "t_" and a dictionary whose keys are | ||
516 | # state names, this function returns a tuple (states,tokenname) where states | ||
517 | # is a tuple of state names and tokenname is the name of the token. For example, | ||
518 | # calling this with s = "t_foo_bar_SPAM" might return (('foo','bar'),'SPAM') | ||
519 | # ----------------------------------------------------------------------------- | ||
520 | |||
521 | def _statetoken(s,names): | ||
522 | nonstate = 1 | ||
523 | parts = s.split("_") | ||
524 | for i in range(1,len(parts)): | ||
525 | if not parts[i] in names and parts[i] != 'ANY': break | ||
526 | if i > 1: | ||
527 | states = tuple(parts[1:i]) | ||
528 | else: | ||
529 | states = ('INITIAL',) | ||
530 | |||
531 | if 'ANY' in states: | ||
532 | states = tuple(names) | ||
533 | |||
534 | tokenname = "_".join(parts[i:]) | ||
535 | return (states,tokenname) | ||
536 | |||
537 | |||
538 | # ----------------------------------------------------------------------------- | ||
539 | # LexerReflect() | ||
540 | # | ||
541 | # This class represents information needed to build a lexer as extracted from a | ||
542 | # user's input file. | ||
543 | # ----------------------------------------------------------------------------- | ||
544 | class LexerReflect(object): | ||
545 | def __init__(self,ldict,log=None,reflags=0): | ||
546 | self.ldict = ldict | ||
547 | self.error_func = None | ||
548 | self.tokens = [] | ||
549 | self.reflags = reflags | ||
550 | self.stateinfo = { 'INITIAL' : 'inclusive'} | ||
551 | self.files = {} | ||
552 | self.error = 0 | ||
553 | |||
554 | if log is None: | ||
555 | self.log = PlyLogger(sys.stderr) | ||
556 | else: | ||
557 | self.log = log | ||
558 | |||
559 | # Get all of the basic information | ||
560 | def get_all(self): | ||
561 | self.get_tokens() | ||
562 | self.get_literals() | ||
563 | self.get_states() | ||
564 | self.get_rules() | ||
565 | |||
566 | # Validate all of the information | ||
567 | def validate_all(self): | ||
568 | self.validate_tokens() | ||
569 | self.validate_literals() | ||
570 | self.validate_rules() | ||
571 | return self.error | ||
572 | |||
573 | # Get the tokens map | ||
574 | def get_tokens(self): | ||
575 | tokens = self.ldict.get("tokens",None) | ||
576 | if not tokens: | ||
577 | self.log.error("No token list is defined") | ||
578 | self.error = 1 | ||
579 | return | ||
580 | |||
581 | if not isinstance(tokens,(list, tuple)): | ||
582 | self.log.error("tokens must be a list or tuple") | ||
583 | self.error = 1 | ||
584 | return | ||
585 | |||
586 | if not tokens: | ||
587 | self.log.error("tokens is empty") | ||
588 | self.error = 1 | ||
589 | return | ||
590 | |||
591 | self.tokens = tokens | ||
592 | |||
593 | # Validate the tokens | ||
594 | def validate_tokens(self): | ||
595 | terminals = {} | ||
596 | for n in self.tokens: | ||
597 | if not _is_identifier.match(n): | ||
598 | self.log.error("Bad token name '%s'",n) | ||
599 | self.error = 1 | ||
600 | if n in terminals: | ||
601 | self.log.warning("Token '%s' multiply defined", n) | ||
602 | terminals[n] = 1 | ||
603 | |||
604 | # Get the literals specifier | ||
605 | def get_literals(self): | ||
606 | self.literals = self.ldict.get("literals","") | ||
607 | |||
608 | # Validate literals | ||
609 | def validate_literals(self): | ||
610 | try: | ||
611 | for c in self.literals: | ||
612 | if not isinstance(c,StringTypes) or len(c) > 1: | ||
613 | self.log.error("Invalid literal %s. Must be a single character", repr(c)) | ||
614 | self.error = 1 | ||
615 | continue | ||
616 | |||
617 | except TypeError: | ||
618 | self.log.error("Invalid literals specification. literals must be a sequence of characters") | ||
619 | self.error = 1 | ||
620 | |||
621 | def get_states(self): | ||
622 | self.states = self.ldict.get("states",None) | ||
623 | # Build statemap | ||
624 | if self.states: | ||
625 | if not isinstance(self.states,(tuple,list)): | ||
626 | self.log.error("states must be defined as a tuple or list") | ||
627 | self.error = 1 | ||
628 | else: | ||
629 | for s in self.states: | ||
630 | if not isinstance(s,tuple) or len(s) != 2: | ||
631 | self.log.error("Invalid state specifier %s. Must be a tuple (statename,'exclusive|inclusive')",repr(s)) | ||
632 | self.error = 1 | ||
633 | continue | ||
634 | name, statetype = s | ||
635 | if not isinstance(name,StringTypes): | ||
636 | self.log.error("State name %s must be a string", repr(name)) | ||
637 | self.error = 1 | ||
638 | continue | ||
639 | if not (statetype == 'inclusive' or statetype == 'exclusive'): | ||
640 | self.log.error("State type for state %s must be 'inclusive' or 'exclusive'",name) | ||
641 | self.error = 1 | ||
642 | continue | ||
643 | if name in self.stateinfo: | ||
644 | self.log.error("State '%s' already defined",name) | ||
645 | self.error = 1 | ||
646 | continue | ||
647 | self.stateinfo[name] = statetype | ||
648 | |||
649 | # Get all of the symbols with a t_ prefix and sort them into various | ||
650 | # categories (functions, strings, error functions, and ignore characters) | ||
651 | |||
652 | def get_rules(self): | ||
653 | tsymbols = [f for f in self.ldict if f[:2] == 't_' ] | ||
654 | |||
655 | # Now build up a list of functions and a list of strings | ||
656 | |||
657 | self.toknames = { } # Mapping of symbols to token names | ||
658 | self.funcsym = { } # Symbols defined as functions | ||
659 | self.strsym = { } # Symbols defined as strings | ||
660 | self.ignore = { } # Ignore strings by state | ||
661 | self.errorf = { } # Error functions by state | ||
662 | |||
663 | for s in self.stateinfo: | ||
664 | self.funcsym[s] = [] | ||
665 | self.strsym[s] = [] | ||
666 | |||
667 | if len(tsymbols) == 0: | ||
668 | self.log.error("No rules of the form t_rulename are defined") | ||
669 | self.error = 1 | ||
670 | return | ||
671 | |||
672 | for f in tsymbols: | ||
673 | t = self.ldict[f] | ||
674 | states, tokname = _statetoken(f,self.stateinfo) | ||
675 | self.toknames[f] = tokname | ||
676 | |||
677 | if hasattr(t,"__call__"): | ||
678 | if tokname == 'error': | ||
679 | for s in states: | ||
680 | self.errorf[s] = t | ||
681 | elif tokname == 'ignore': | ||
682 | line = func_code(t).co_firstlineno | ||
683 | file = func_code(t).co_filename | ||
684 | self.log.error("%s:%d: Rule '%s' must be defined as a string",file,line,t.__name__) | ||
685 | self.error = 1 | ||
686 | else: | ||
687 | for s in states: | ||
688 | self.funcsym[s].append((f,t)) | ||
689 | elif isinstance(t, StringTypes): | ||
690 | if tokname == 'ignore': | ||
691 | for s in states: | ||
692 | self.ignore[s] = t | ||
693 | if "\\" in t: | ||
694 | self.log.warning("%s contains a literal backslash '\\'",f) | ||
695 | |||
696 | elif tokname == 'error': | ||
697 | self.log.error("Rule '%s' must be defined as a function", f) | ||
698 | self.error = 1 | ||
699 | else: | ||
700 | for s in states: | ||
701 | self.strsym[s].append((f,t)) | ||
702 | else: | ||
703 | self.log.error("%s not defined as a function or string", f) | ||
704 | self.error = 1 | ||
705 | |||
706 | # Sort the functions by line number | ||
707 | for f in self.funcsym.values(): | ||
708 | if sys.version_info[0] < 3: | ||
709 | f.sort(lambda x,y: cmp(func_code(x[1]).co_firstlineno,func_code(y[1]).co_firstlineno)) | ||
710 | else: | ||
711 | # Python 3.0 | ||
712 | f.sort(key=lambda x: func_code(x[1]).co_firstlineno) | ||
713 | |||
714 | # Sort the strings by regular expression length | ||
715 | for s in self.strsym.values(): | ||
716 | if sys.version_info[0] < 3: | ||
717 | s.sort(lambda x,y: (len(x[1]) < len(y[1])) - (len(x[1]) > len(y[1]))) | ||
718 | else: | ||
719 | # Python 3.0 | ||
720 | s.sort(key=lambda x: len(x[1]),reverse=True) | ||
721 | |||
722 | # Validate all of the t_rules collected | ||
723 | def validate_rules(self): | ||
724 | for state in self.stateinfo: | ||
725 | # Validate all rules defined by functions | ||
726 | |||
727 | |||
728 | |||
729 | for fname, f in self.funcsym[state]: | ||
730 | line = func_code(f).co_firstlineno | ||
731 | file = func_code(f).co_filename | ||
732 | self.files[file] = 1 | ||
733 | |||
734 | tokname = self.toknames[fname] | ||
735 | if isinstance(f, types.MethodType): | ||
736 | reqargs = 2 | ||
737 | else: | ||
738 | reqargs = 1 | ||
739 | nargs = func_code(f).co_argcount | ||
740 | if nargs > reqargs: | ||
741 | self.log.error("%s:%d: Rule '%s' has too many arguments",file,line,f.__name__) | ||
742 | self.error = 1 | ||
743 | continue | ||
744 | |||
745 | if nargs < reqargs: | ||
746 | self.log.error("%s:%d: Rule '%s' requires an argument", file,line,f.__name__) | ||
747 | self.error = 1 | ||
748 | continue | ||
749 | |||
750 | if not f.__doc__: | ||
751 | self.log.error("%s:%d: No regular expression defined for rule '%s'",file,line,f.__name__) | ||
752 | self.error = 1 | ||
753 | continue | ||
754 | |||
755 | try: | ||
756 | c = re.compile("(?P<%s>%s)" % (fname,f.__doc__), re.VERBOSE | self.reflags) | ||
757 | if c.match(""): | ||
758 | self.log.error("%s:%d: Regular expression for rule '%s' matches empty string", file,line,f.__name__) | ||
759 | self.error = 1 | ||
760 | except re.error: | ||
761 | _etype, e, _etrace = sys.exc_info() | ||
762 | self.log.error("%s:%d: Invalid regular expression for rule '%s'. %s", file,line,f.__name__,e) | ||
763 | if '#' in f.__doc__: | ||
764 | self.log.error("%s:%d. Make sure '#' in rule '%s' is escaped with '\\#'",file,line, f.__name__) | ||
765 | self.error = 1 | ||
766 | |||
767 | # Validate all rules defined by strings | ||
768 | for name,r in self.strsym[state]: | ||
769 | tokname = self.toknames[name] | ||
770 | if tokname == 'error': | ||
771 | self.log.error("Rule '%s' must be defined as a function", name) | ||
772 | self.error = 1 | ||
773 | continue | ||
774 | |||
775 | if not tokname in self.tokens and tokname.find("ignore_") < 0: | ||
776 | self.log.error("Rule '%s' defined for an unspecified token %s",name,tokname) | ||
777 | self.error = 1 | ||
778 | continue | ||
779 | |||
780 | try: | ||
781 | c = re.compile("(?P<%s>%s)" % (name,r),re.VERBOSE | self.reflags) | ||
782 | if (c.match("")): | ||
783 | self.log.error("Regular expression for rule '%s' matches empty string",name) | ||
784 | self.error = 1 | ||
785 | except re.error: | ||
786 | _etype, e, _etrace = sys.exc_info() | ||
787 | self.log.error("Invalid regular expression for rule '%s'. %s",name,e) | ||
788 | if '#' in r: | ||
789 | self.log.error("Make sure '#' in rule '%s' is escaped with '\\#'",name) | ||
790 | self.error = 1 | ||
791 | |||
792 | if not self.funcsym[state] and not self.strsym[state]: | ||
793 | self.log.error("No rules defined for state '%s'",state) | ||
794 | self.error = 1 | ||
795 | |||
796 | # Validate the error function | ||
797 | efunc = self.errorf.get(state,None) | ||
798 | if efunc: | ||
799 | f = efunc | ||
800 | line = func_code(f).co_firstlineno | ||
801 | file = func_code(f).co_filename | ||
802 | self.files[file] = 1 | ||
803 | |||
804 | if isinstance(f, types.MethodType): | ||
805 | reqargs = 2 | ||
806 | else: | ||
807 | reqargs = 1 | ||
808 | nargs = func_code(f).co_argcount | ||
809 | if nargs > reqargs: | ||
810 | self.log.error("%s:%d: Rule '%s' has too many arguments",file,line,f.__name__) | ||
811 | self.error = 1 | ||
812 | |||
813 | if nargs < reqargs: | ||
814 | self.log.error("%s:%d: Rule '%s' requires an argument", file,line,f.__name__) | ||
815 | self.error = 1 | ||
816 | |||
817 | for f in self.files: | ||
818 | self.validate_file(f) | ||
819 | |||
820 | |||
821 | # ----------------------------------------------------------------------------- | ||
822 | # validate_file() | ||
823 | # | ||
824 | # This checks to see if there are duplicated t_rulename() functions or strings | ||
825 | # in the parser input file. This is done using a simple regular expression | ||
826 | # match on each line in the given file. | ||
827 | # ----------------------------------------------------------------------------- | ||
828 | |||
829 | def validate_file(self,filename): | ||
830 | import os.path | ||
831 | base,ext = os.path.splitext(filename) | ||
832 | if ext != '.py': return # No idea what the file is. Return OK | ||
833 | |||
834 | try: | ||
835 | f = open(filename) | ||
836 | lines = f.readlines() | ||
837 | f.close() | ||
838 | except IOError: | ||
839 | return # Couldn't find the file. Don't worry about it | ||
840 | |||
841 | fre = re.compile(r'\s*def\s+(t_[a-zA-Z_0-9]*)\(') | ||
842 | sre = re.compile(r'\s*(t_[a-zA-Z_0-9]*)\s*=') | ||
843 | |||
844 | counthash = { } | ||
845 | linen = 1 | ||
846 | for l in lines: | ||
847 | m = fre.match(l) | ||
848 | if not m: | ||
849 | m = sre.match(l) | ||
850 | if m: | ||
851 | name = m.group(1) | ||
852 | prev = counthash.get(name) | ||
853 | if not prev: | ||
854 | counthash[name] = linen | ||
855 | else: | ||
856 | self.log.error("%s:%d: Rule %s redefined. Previously defined on line %d",filename,linen,name,prev) | ||
857 | self.error = 1 | ||
858 | linen += 1 | ||
859 | |||
860 | # ----------------------------------------------------------------------------- | ||
861 | # lex(module) | ||
862 | # | ||
863 | # Build all of the regular expression rules from definitions in the supplied module | ||
864 | # ----------------------------------------------------------------------------- | ||
865 | def lex(module=None,object=None,debug=0,optimize=0,lextab="lextab",reflags=0,nowarn=0,outputdir="", debuglog=None, errorlog=None): | ||
866 | global lexer | ||
867 | ldict = None | ||
868 | stateinfo = { 'INITIAL' : 'inclusive'} | ||
869 | lexobj = Lexer() | ||
870 | lexobj.lexoptimize = optimize | ||
871 | global token,input | ||
872 | |||
873 | if errorlog is None: | ||
874 | errorlog = PlyLogger(sys.stderr) | ||
875 | |||
876 | if debug: | ||
877 | if debuglog is None: | ||
878 | debuglog = PlyLogger(sys.stderr) | ||
879 | |||
880 | # Get the module dictionary used for the lexer | ||
881 | if object: module = object | ||
882 | |||
883 | if module: | ||
884 | _items = [(k,getattr(module,k)) for k in dir(module)] | ||
885 | ldict = dict(_items) | ||
886 | else: | ||
887 | ldict = get_caller_module_dict(2) | ||
888 | |||
889 | # Collect parser information from the dictionary | ||
890 | linfo = LexerReflect(ldict,log=errorlog,reflags=reflags) | ||
891 | linfo.get_all() | ||
892 | if not optimize: | ||
893 | if linfo.validate_all(): | ||
894 | raise SyntaxError("Can't build lexer") | ||
895 | |||
896 | if optimize and lextab: | ||
897 | try: | ||
898 | lexobj.readtab(lextab,ldict) | ||
899 | token = lexobj.token | ||
900 | input = lexobj.input | ||
901 | lexer = lexobj | ||
902 | return lexobj | ||
903 | |||
904 | except ImportError: | ||
905 | pass | ||
906 | |||
907 | # Dump some basic debugging information | ||
908 | if debug: | ||
909 | debuglog.info("lex: tokens = %r", linfo.tokens) | ||
910 | debuglog.info("lex: literals = %r", linfo.literals) | ||
911 | debuglog.info("lex: states = %r", linfo.stateinfo) | ||
912 | |||
913 | # Build a dictionary of valid token names | ||
914 | lexobj.lextokens = { } | ||
915 | for n in linfo.tokens: | ||
916 | lexobj.lextokens[n] = 1 | ||
917 | |||
918 | # Get literals specification | ||
919 | if isinstance(linfo.literals,(list,tuple)): | ||
920 | lexobj.lexliterals = type(linfo.literals[0])().join(linfo.literals) | ||
921 | else: | ||
922 | lexobj.lexliterals = linfo.literals | ||
923 | |||
924 | # Get the stateinfo dictionary | ||
925 | stateinfo = linfo.stateinfo | ||
926 | |||
927 | regexs = { } | ||
928 | # Build the master regular expressions | ||
929 | for state in stateinfo: | ||
930 | regex_list = [] | ||
931 | |||
932 | # Add rules defined by functions first | ||
933 | for fname, f in linfo.funcsym[state]: | ||
934 | line = func_code(f).co_firstlineno | ||
935 | file = func_code(f).co_filename | ||
936 | regex_list.append("(?P<%s>%s)" % (fname,f.__doc__)) | ||
937 | if debug: | ||
938 | debuglog.info("lex: Adding rule %s -> '%s' (state '%s')",fname,f.__doc__, state) | ||
939 | |||
940 | # Now add all of the simple rules | ||
941 | for name,r in linfo.strsym[state]: | ||
942 | regex_list.append("(?P<%s>%s)" % (name,r)) | ||
943 | if debug: | ||
944 | debuglog.info("lex: Adding rule %s -> '%s' (state '%s')",name,r, state) | ||
945 | |||
946 | regexs[state] = regex_list | ||
947 | |||
948 | # Build the master regular expressions | ||
949 | |||
950 | if debug: | ||
951 | debuglog.info("lex: ==== MASTER REGEXS FOLLOW ====") | ||
952 | |||
953 | for state in regexs: | ||
954 | lexre, re_text, re_names = _form_master_re(regexs[state],reflags,ldict,linfo.toknames) | ||
955 | lexobj.lexstatere[state] = lexre | ||
956 | lexobj.lexstateretext[state] = re_text | ||
957 | lexobj.lexstaterenames[state] = re_names | ||
958 | if debug: | ||
959 | for i in range(len(re_text)): | ||
960 | debuglog.info("lex: state '%s' : regex[%d] = '%s'",state, i, re_text[i]) | ||
961 | |||
962 | # For inclusive states, we need to add the regular expressions from the INITIAL state | ||
963 | for state,stype in stateinfo.items(): | ||
964 | if state != "INITIAL" and stype == 'inclusive': | ||
965 | lexobj.lexstatere[state].extend(lexobj.lexstatere['INITIAL']) | ||
966 | lexobj.lexstateretext[state].extend(lexobj.lexstateretext['INITIAL']) | ||
967 | lexobj.lexstaterenames[state].extend(lexobj.lexstaterenames['INITIAL']) | ||
968 | |||
969 | lexobj.lexstateinfo = stateinfo | ||
970 | lexobj.lexre = lexobj.lexstatere["INITIAL"] | ||
971 | lexobj.lexretext = lexobj.lexstateretext["INITIAL"] | ||
972 | lexobj.lexreflags = reflags | ||
973 | |||
974 | # Set up ignore variables | ||
975 | lexobj.lexstateignore = linfo.ignore | ||
976 | lexobj.lexignore = lexobj.lexstateignore.get("INITIAL","") | ||
977 | |||
978 | # Set up error functions | ||
979 | lexobj.lexstateerrorf = linfo.errorf | ||
980 | lexobj.lexerrorf = linfo.errorf.get("INITIAL",None) | ||
981 | if not lexobj.lexerrorf: | ||
982 | errorlog.warning("No t_error rule is defined") | ||
983 | |||
984 | # Check state information for ignore and error rules | ||
985 | for s,stype in stateinfo.items(): | ||
986 | if stype == 'exclusive': | ||
987 | if not s in linfo.errorf: | ||
988 | errorlog.warning("No error rule is defined for exclusive state '%s'", s) | ||
989 | if not s in linfo.ignore and lexobj.lexignore: | ||
990 | errorlog.warning("No ignore rule is defined for exclusive state '%s'", s) | ||
991 | elif stype == 'inclusive': | ||
992 | if not s in linfo.errorf: | ||
993 | linfo.errorf[s] = linfo.errorf.get("INITIAL",None) | ||
994 | if not s in linfo.ignore: | ||
995 | linfo.ignore[s] = linfo.ignore.get("INITIAL","") | ||
996 | |||
997 | # Create global versions of the token() and input() functions | ||
998 | token = lexobj.token | ||
999 | input = lexobj.input | ||
1000 | lexer = lexobj | ||
1001 | |||
1002 | # If in optimize mode, we write the lextab | ||
1003 | if lextab and optimize: | ||
1004 | lexobj.writetab(lextab,outputdir) | ||
1005 | |||
1006 | return lexobj | ||
1007 | |||
1008 | # ----------------------------------------------------------------------------- | ||
1009 | # runmain() | ||
1010 | # | ||
1011 | # This runs the lexer as a main program | ||
1012 | # ----------------------------------------------------------------------------- | ||
1013 | |||
1014 | def runmain(lexer=None,data=None): | ||
1015 | if not data: | ||
1016 | try: | ||
1017 | filename = sys.argv[1] | ||
1018 | f = open(filename) | ||
1019 | data = f.read() | ||
1020 | f.close() | ||
1021 | except IndexError: | ||
1022 | sys.stdout.write("Reading from standard input (type EOF to end):\n") | ||
1023 | data = sys.stdin.read() | ||
1024 | |||
1025 | if lexer: | ||
1026 | _input = lexer.input | ||
1027 | else: | ||
1028 | _input = input | ||
1029 | _input(data) | ||
1030 | if lexer: | ||
1031 | _token = lexer.token | ||
1032 | else: | ||
1033 | _token = token | ||
1034 | |||
1035 | while 1: | ||
1036 | tok = _token() | ||
1037 | if not tok: break | ||
1038 | sys.stdout.write("(%s,%r,%d,%d)\n" % (tok.type, tok.value, tok.lineno,tok.lexpos)) | ||
1039 | |||
1040 | # ----------------------------------------------------------------------------- | ||
1041 | # @TOKEN(regex) | ||
1042 | # | ||
1043 | # This decorator function can be used to set the regex expression on a function | ||
1044 | # when its docstring might need to be set in an alternative way | ||
1045 | # ----------------------------------------------------------------------------- | ||
1046 | |||
1047 | def TOKEN(r): | ||
1048 | def set_doc(f): | ||
1049 | if hasattr(r,"__call__"): | ||
1050 | f.__doc__ = r.__doc__ | ||
1051 | else: | ||
1052 | f.__doc__ = r | ||
1053 | return f | ||
1054 | return set_doc | ||
1055 | |||
1056 | # Alternative spelling of the TOKEN decorator | ||
1057 | Token = TOKEN | ||
1058 | |||
diff --git a/bitbake/lib/ply/yacc.py b/bitbake/lib/ply/yacc.py new file mode 100644 index 0000000000..6168fd9a03 --- /dev/null +++ b/bitbake/lib/ply/yacc.py | |||
@@ -0,0 +1,3276 @@ | |||
1 | # ----------------------------------------------------------------------------- | ||
2 | # ply: yacc.py | ||
3 | # | ||
4 | # Copyright (C) 2001-2009, | ||
5 | # David M. Beazley (Dabeaz LLC) | ||
6 | # All rights reserved. | ||
7 | # | ||
8 | # Redistribution and use in source and binary forms, with or without | ||
9 | # modification, are permitted provided that the following conditions are | ||
10 | # met: | ||
11 | # | ||
12 | # * Redistributions of source code must retain the above copyright notice, | ||
13 | # this list of conditions and the following disclaimer. | ||
14 | # * Redistributions in binary form must reproduce the above copyright notice, | ||
15 | # this list of conditions and the following disclaimer in the documentation | ||
16 | # and/or other materials provided with the distribution. | ||
17 | # * Neither the name of the David Beazley or Dabeaz LLC may be used to | ||
18 | # endorse or promote products derived from this software without | ||
19 | # specific prior written permission. | ||
20 | # | ||
21 | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
22 | # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
23 | # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
24 | # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
25 | # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
26 | # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
27 | # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
28 | # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
29 | # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
30 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
31 | # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
32 | # ----------------------------------------------------------------------------- | ||
33 | # | ||
34 | # This implements an LR parser that is constructed from grammar rules defined | ||
35 | # as Python functions. The grammer is specified by supplying the BNF inside | ||
36 | # Python documentation strings. The inspiration for this technique was borrowed | ||
37 | # from John Aycock's Spark parsing system. PLY might be viewed as cross between | ||
38 | # Spark and the GNU bison utility. | ||
39 | # | ||
40 | # The current implementation is only somewhat object-oriented. The | ||
41 | # LR parser itself is defined in terms of an object (which allows multiple | ||
42 | # parsers to co-exist). However, most of the variables used during table | ||
43 | # construction are defined in terms of global variables. Users shouldn't | ||
44 | # notice unless they are trying to define multiple parsers at the same | ||
45 | # time using threads (in which case they should have their head examined). | ||
46 | # | ||
47 | # This implementation supports both SLR and LALR(1) parsing. LALR(1) | ||
48 | # support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu), | ||
49 | # using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles, | ||
50 | # Techniques, and Tools" (The Dragon Book). LALR(1) has since been replaced | ||
51 | # by the more efficient DeRemer and Pennello algorithm. | ||
52 | # | ||
53 | # :::::::: WARNING ::::::: | ||
54 | # | ||
55 | # Construction of LR parsing tables is fairly complicated and expensive. | ||
56 | # To make this module run fast, a *LOT* of work has been put into | ||
57 | # optimization---often at the expensive of readability and what might | ||
58 | # consider to be good Python "coding style." Modify the code at your | ||
59 | # own risk! | ||
60 | # ---------------------------------------------------------------------------- | ||
61 | |||
62 | __version__ = "3.3" | ||
63 | __tabversion__ = "3.2" # Table version | ||
64 | |||
65 | #----------------------------------------------------------------------------- | ||
66 | # === User configurable parameters === | ||
67 | # | ||
68 | # Change these to modify the default behavior of yacc (if you wish) | ||
69 | #----------------------------------------------------------------------------- | ||
70 | |||
71 | yaccdebug = 0 # Debugging mode. If set, yacc generates a | ||
72 | # a 'parser.out' file in the current directory | ||
73 | |||
74 | debug_file = 'parser.out' # Default name of the debugging file | ||
75 | tab_module = 'parsetab' # Default name of the table module | ||
76 | default_lr = 'LALR' # Default LR table generation method | ||
77 | |||
78 | error_count = 3 # Number of symbols that must be shifted to leave recovery mode | ||
79 | |||
80 | yaccdevel = 0 # Set to True if developing yacc. This turns off optimized | ||
81 | # implementations of certain functions. | ||
82 | |||
83 | resultlimit = 40 # Size limit of results when running in debug mode. | ||
84 | |||
85 | pickle_protocol = 0 # Protocol to use when writing pickle files | ||
86 | |||
87 | import re, types, sys, os.path | ||
88 | |||
89 | # Compatibility function for python 2.6/3.0 | ||
90 | if sys.version_info[0] < 3: | ||
91 | def func_code(f): | ||
92 | return f.func_code | ||
93 | else: | ||
94 | def func_code(f): | ||
95 | return f.__code__ | ||
96 | |||
97 | # Compatibility | ||
98 | try: | ||
99 | MAXINT = sys.maxint | ||
100 | except AttributeError: | ||
101 | MAXINT = sys.maxsize | ||
102 | |||
103 | # Python 2.x/3.0 compatibility. | ||
104 | def load_ply_lex(): | ||
105 | if sys.version_info[0] < 3: | ||
106 | import lex | ||
107 | else: | ||
108 | import ply.lex as lex | ||
109 | return lex | ||
110 | |||
111 | # This object is a stand-in for a logging object created by the | ||
112 | # logging module. PLY will use this by default to create things | ||
113 | # such as the parser.out file. If a user wants more detailed | ||
114 | # information, they can create their own logging object and pass | ||
115 | # it into PLY. | ||
116 | |||
117 | class PlyLogger(object): | ||
118 | def __init__(self,f): | ||
119 | self.f = f | ||
120 | def debug(self,msg,*args,**kwargs): | ||
121 | self.f.write((msg % args) + "\n") | ||
122 | info = debug | ||
123 | |||
124 | def warning(self,msg,*args,**kwargs): | ||
125 | self.f.write("WARNING: "+ (msg % args) + "\n") | ||
126 | |||
127 | def error(self,msg,*args,**kwargs): | ||
128 | self.f.write("ERROR: " + (msg % args) + "\n") | ||
129 | |||
130 | critical = debug | ||
131 | |||
132 | # Null logger is used when no output is generated. Does nothing. | ||
133 | class NullLogger(object): | ||
134 | def __getattribute__(self,name): | ||
135 | return self | ||
136 | def __call__(self,*args,**kwargs): | ||
137 | return self | ||
138 | |||
139 | # Exception raised for yacc-related errors | ||
140 | class YaccError(Exception): pass | ||
141 | |||
142 | # Format the result message that the parser produces when running in debug mode. | ||
143 | def format_result(r): | ||
144 | repr_str = repr(r) | ||
145 | if '\n' in repr_str: repr_str = repr(repr_str) | ||
146 | if len(repr_str) > resultlimit: | ||
147 | repr_str = repr_str[:resultlimit]+" ..." | ||
148 | result = "<%s @ 0x%x> (%s)" % (type(r).__name__,id(r),repr_str) | ||
149 | return result | ||
150 | |||
151 | |||
152 | # Format stack entries when the parser is running in debug mode | ||
153 | def format_stack_entry(r): | ||
154 | repr_str = repr(r) | ||
155 | if '\n' in repr_str: repr_str = repr(repr_str) | ||
156 | if len(repr_str) < 16: | ||
157 | return repr_str | ||
158 | else: | ||
159 | return "<%s @ 0x%x>" % (type(r).__name__,id(r)) | ||
160 | |||
161 | #----------------------------------------------------------------------------- | ||
162 | # === LR Parsing Engine === | ||
163 | # | ||
164 | # The following classes are used for the LR parser itself. These are not | ||
165 | # used during table construction and are independent of the actual LR | ||
166 | # table generation algorithm | ||
167 | #----------------------------------------------------------------------------- | ||
168 | |||
169 | # This class is used to hold non-terminal grammar symbols during parsing. | ||
170 | # It normally has the following attributes set: | ||
171 | # .type = Grammar symbol type | ||
172 | # .value = Symbol value | ||
173 | # .lineno = Starting line number | ||
174 | # .endlineno = Ending line number (optional, set automatically) | ||
175 | # .lexpos = Starting lex position | ||
176 | # .endlexpos = Ending lex position (optional, set automatically) | ||
177 | |||
178 | class YaccSymbol: | ||
179 | def __str__(self): return self.type | ||
180 | def __repr__(self): return str(self) | ||
181 | |||
182 | # This class is a wrapper around the objects actually passed to each | ||
183 | # grammar rule. Index lookup and assignment actually assign the | ||
184 | # .value attribute of the underlying YaccSymbol object. | ||
185 | # The lineno() method returns the line number of a given | ||
186 | # item (or 0 if not defined). The linespan() method returns | ||
187 | # a tuple of (startline,endline) representing the range of lines | ||
188 | # for a symbol. The lexspan() method returns a tuple (lexpos,endlexpos) | ||
189 | # representing the range of positional information for a symbol. | ||
190 | |||
191 | class YaccProduction: | ||
192 | def __init__(self,s,stack=None): | ||
193 | self.slice = s | ||
194 | self.stack = stack | ||
195 | self.lexer = None | ||
196 | self.parser= None | ||
197 | def __getitem__(self,n): | ||
198 | if n >= 0: return self.slice[n].value | ||
199 | else: return self.stack[n].value | ||
200 | |||
201 | def __setitem__(self,n,v): | ||
202 | self.slice[n].value = v | ||
203 | |||
204 | def __getslice__(self,i,j): | ||
205 | return [s.value for s in self.slice[i:j]] | ||
206 | |||
207 | def __len__(self): | ||
208 | return len(self.slice) | ||
209 | |||
210 | def lineno(self,n): | ||
211 | return getattr(self.slice[n],"lineno",0) | ||
212 | |||
213 | def set_lineno(self,n,lineno): | ||
214 | self.slice[n].lineno = lineno | ||
215 | |||
216 | def linespan(self,n): | ||
217 | startline = getattr(self.slice[n],"lineno",0) | ||
218 | endline = getattr(self.slice[n],"endlineno",startline) | ||
219 | return startline,endline | ||
220 | |||
221 | def lexpos(self,n): | ||
222 | return getattr(self.slice[n],"lexpos",0) | ||
223 | |||
224 | def lexspan(self,n): | ||
225 | startpos = getattr(self.slice[n],"lexpos",0) | ||
226 | endpos = getattr(self.slice[n],"endlexpos",startpos) | ||
227 | return startpos,endpos | ||
228 | |||
229 | def error(self): | ||
230 | raise SyntaxError | ||
231 | |||
232 | |||
233 | # ----------------------------------------------------------------------------- | ||
234 | # == LRParser == | ||
235 | # | ||
236 | # The LR Parsing engine. | ||
237 | # ----------------------------------------------------------------------------- | ||
238 | |||
239 | class LRParser: | ||
240 | def __init__(self,lrtab,errorf): | ||
241 | self.productions = lrtab.lr_productions | ||
242 | self.action = lrtab.lr_action | ||
243 | self.goto = lrtab.lr_goto | ||
244 | self.errorfunc = errorf | ||
245 | |||
246 | def errok(self): | ||
247 | self.errorok = 1 | ||
248 | |||
249 | def restart(self): | ||
250 | del self.statestack[:] | ||
251 | del self.symstack[:] | ||
252 | sym = YaccSymbol() | ||
253 | sym.type = '$end' | ||
254 | self.symstack.append(sym) | ||
255 | self.statestack.append(0) | ||
256 | |||
257 | def parse(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): | ||
258 | if debug or yaccdevel: | ||
259 | if isinstance(debug,int): | ||
260 | debug = PlyLogger(sys.stderr) | ||
261 | return self.parsedebug(input,lexer,debug,tracking,tokenfunc) | ||
262 | elif tracking: | ||
263 | return self.parseopt(input,lexer,debug,tracking,tokenfunc) | ||
264 | else: | ||
265 | return self.parseopt_notrack(input,lexer,debug,tracking,tokenfunc) | ||
266 | |||
267 | |||
268 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
269 | # parsedebug(). | ||
270 | # | ||
271 | # This is the debugging enabled version of parse(). All changes made to the | ||
272 | # parsing engine should be made here. For the non-debugging version, | ||
273 | # copy this code to a method parseopt() and delete all of the sections | ||
274 | # enclosed in: | ||
275 | # | ||
276 | # #--! DEBUG | ||
277 | # statements | ||
278 | # #--! DEBUG | ||
279 | # | ||
280 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
281 | |||
282 | def parsedebug(self,input=None,lexer=None,debug=None,tracking=0,tokenfunc=None): | ||
283 | lookahead = None # Current lookahead symbol | ||
284 | lookaheadstack = [ ] # Stack of lookahead symbols | ||
285 | actions = self.action # Local reference to action table (to avoid lookup on self.) | ||
286 | goto = self.goto # Local reference to goto table (to avoid lookup on self.) | ||
287 | prod = self.productions # Local reference to production list (to avoid lookup on self.) | ||
288 | pslice = YaccProduction(None) # Production object passed to grammar rules | ||
289 | errorcount = 0 # Used during error recovery | ||
290 | |||
291 | # --! DEBUG | ||
292 | debug.info("PLY: PARSE DEBUG START") | ||
293 | # --! DEBUG | ||
294 | |||
295 | # If no lexer was given, we will try to use the lex module | ||
296 | if not lexer: | ||
297 | lex = load_ply_lex() | ||
298 | lexer = lex.lexer | ||
299 | |||
300 | # Set up the lexer and parser objects on pslice | ||
301 | pslice.lexer = lexer | ||
302 | pslice.parser = self | ||
303 | |||
304 | # If input was supplied, pass to lexer | ||
305 | if input is not None: | ||
306 | lexer.input(input) | ||
307 | |||
308 | if tokenfunc is None: | ||
309 | # Tokenize function | ||
310 | get_token = lexer.token | ||
311 | else: | ||
312 | get_token = tokenfunc | ||
313 | |||
314 | # Set up the state and symbol stacks | ||
315 | |||
316 | statestack = [ ] # Stack of parsing states | ||
317 | self.statestack = statestack | ||
318 | symstack = [ ] # Stack of grammar symbols | ||
319 | self.symstack = symstack | ||
320 | |||
321 | pslice.stack = symstack # Put in the production | ||
322 | errtoken = None # Err token | ||
323 | |||
324 | # The start state is assumed to be (0,$end) | ||
325 | |||
326 | statestack.append(0) | ||
327 | sym = YaccSymbol() | ||
328 | sym.type = "$end" | ||
329 | symstack.append(sym) | ||
330 | state = 0 | ||
331 | while 1: | ||
332 | # Get the next symbol on the input. If a lookahead symbol | ||
333 | # is already set, we just use that. Otherwise, we'll pull | ||
334 | # the next token off of the lookaheadstack or from the lexer | ||
335 | |||
336 | # --! DEBUG | ||
337 | debug.debug('') | ||
338 | debug.debug('State : %s', state) | ||
339 | # --! DEBUG | ||
340 | |||
341 | if not lookahead: | ||
342 | if not lookaheadstack: | ||
343 | lookahead = get_token() # Get the next token | ||
344 | else: | ||
345 | lookahead = lookaheadstack.pop() | ||
346 | if not lookahead: | ||
347 | lookahead = YaccSymbol() | ||
348 | lookahead.type = "$end" | ||
349 | |||
350 | # --! DEBUG | ||
351 | debug.debug('Stack : %s', | ||
352 | ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip()) | ||
353 | # --! DEBUG | ||
354 | |||
355 | # Check the action table | ||
356 | ltype = lookahead.type | ||
357 | t = actions[state].get(ltype) | ||
358 | |||
359 | if t is not None: | ||
360 | if t > 0: | ||
361 | # shift a symbol on the stack | ||
362 | statestack.append(t) | ||
363 | state = t | ||
364 | |||
365 | # --! DEBUG | ||
366 | debug.debug("Action : Shift and goto state %s", t) | ||
367 | # --! DEBUG | ||
368 | |||
369 | symstack.append(lookahead) | ||
370 | lookahead = None | ||
371 | |||
372 | # Decrease error count on successful shift | ||
373 | if errorcount: errorcount -=1 | ||
374 | continue | ||
375 | |||
376 | if t < 0: | ||
377 | # reduce a symbol on the stack, emit a production | ||
378 | p = prod[-t] | ||
379 | pname = p.name | ||
380 | plen = p.len | ||
381 | |||
382 | # Get production function | ||
383 | sym = YaccSymbol() | ||
384 | sym.type = pname # Production name | ||
385 | sym.value = None | ||
386 | |||
387 | # --! DEBUG | ||
388 | if plen: | ||
389 | debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, "["+",".join([format_stack_entry(_v.value) for _v in symstack[-plen:]])+"]",-t) | ||
390 | else: | ||
391 | debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, [],-t) | ||
392 | |||
393 | # --! DEBUG | ||
394 | |||
395 | if plen: | ||
396 | targ = symstack[-plen-1:] | ||
397 | targ[0] = sym | ||
398 | |||
399 | # --! TRACKING | ||
400 | if tracking: | ||
401 | t1 = targ[1] | ||
402 | sym.lineno = t1.lineno | ||
403 | sym.lexpos = t1.lexpos | ||
404 | t1 = targ[-1] | ||
405 | sym.endlineno = getattr(t1,"endlineno",t1.lineno) | ||
406 | sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos) | ||
407 | |||
408 | # --! TRACKING | ||
409 | |||
410 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
411 | # The code enclosed in this section is duplicated | ||
412 | # below as a performance optimization. Make sure | ||
413 | # changes get made in both locations. | ||
414 | |||
415 | pslice.slice = targ | ||
416 | |||
417 | try: | ||
418 | # Call the grammar rule with our special slice object | ||
419 | del symstack[-plen:] | ||
420 | del statestack[-plen:] | ||
421 | p.callable(pslice) | ||
422 | # --! DEBUG | ||
423 | debug.info("Result : %s", format_result(pslice[0])) | ||
424 | # --! DEBUG | ||
425 | symstack.append(sym) | ||
426 | state = goto[statestack[-1]][pname] | ||
427 | statestack.append(state) | ||
428 | except SyntaxError: | ||
429 | # If an error was set. Enter error recovery state | ||
430 | lookaheadstack.append(lookahead) | ||
431 | symstack.pop() | ||
432 | statestack.pop() | ||
433 | state = statestack[-1] | ||
434 | sym.type = 'error' | ||
435 | lookahead = sym | ||
436 | errorcount = error_count | ||
437 | self.errorok = 0 | ||
438 | continue | ||
439 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
440 | |||
441 | else: | ||
442 | |||
443 | # --! TRACKING | ||
444 | if tracking: | ||
445 | sym.lineno = lexer.lineno | ||
446 | sym.lexpos = lexer.lexpos | ||
447 | # --! TRACKING | ||
448 | |||
449 | targ = [ sym ] | ||
450 | |||
451 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
452 | # The code enclosed in this section is duplicated | ||
453 | # above as a performance optimization. Make sure | ||
454 | # changes get made in both locations. | ||
455 | |||
456 | pslice.slice = targ | ||
457 | |||
458 | try: | ||
459 | # Call the grammar rule with our special slice object | ||
460 | p.callable(pslice) | ||
461 | # --! DEBUG | ||
462 | debug.info("Result : %s", format_result(pslice[0])) | ||
463 | # --! DEBUG | ||
464 | symstack.append(sym) | ||
465 | state = goto[statestack[-1]][pname] | ||
466 | statestack.append(state) | ||
467 | except SyntaxError: | ||
468 | # If an error was set. Enter error recovery state | ||
469 | lookaheadstack.append(lookahead) | ||
470 | symstack.pop() | ||
471 | statestack.pop() | ||
472 | state = statestack[-1] | ||
473 | sym.type = 'error' | ||
474 | lookahead = sym | ||
475 | errorcount = error_count | ||
476 | self.errorok = 0 | ||
477 | continue | ||
478 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
479 | |||
480 | if t == 0: | ||
481 | n = symstack[-1] | ||
482 | result = getattr(n,"value",None) | ||
483 | # --! DEBUG | ||
484 | debug.info("Done : Returning %s", format_result(result)) | ||
485 | debug.info("PLY: PARSE DEBUG END") | ||
486 | # --! DEBUG | ||
487 | return result | ||
488 | |||
489 | if t == None: | ||
490 | |||
491 | # --! DEBUG | ||
492 | debug.error('Error : %s', | ||
493 | ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip()) | ||
494 | # --! DEBUG | ||
495 | |||
496 | # We have some kind of parsing error here. To handle | ||
497 | # this, we are going to push the current token onto | ||
498 | # the tokenstack and replace it with an 'error' token. | ||
499 | # If there are any synchronization rules, they may | ||
500 | # catch it. | ||
501 | # | ||
502 | # In addition to pushing the error token, we call call | ||
503 | # the user defined p_error() function if this is the | ||
504 | # first syntax error. This function is only called if | ||
505 | # errorcount == 0. | ||
506 | if errorcount == 0 or self.errorok: | ||
507 | errorcount = error_count | ||
508 | self.errorok = 0 | ||
509 | errtoken = lookahead | ||
510 | if errtoken.type == "$end": | ||
511 | errtoken = None # End of file! | ||
512 | if self.errorfunc: | ||
513 | global errok,token,restart | ||
514 | errok = self.errok # Set some special functions available in error recovery | ||
515 | token = get_token | ||
516 | restart = self.restart | ||
517 | if errtoken and not hasattr(errtoken,'lexer'): | ||
518 | errtoken.lexer = lexer | ||
519 | tok = self.errorfunc(errtoken) | ||
520 | del errok, token, restart # Delete special functions | ||
521 | |||
522 | if self.errorok: | ||
523 | # User must have done some kind of panic | ||
524 | # mode recovery on their own. The | ||
525 | # returned token is the next lookahead | ||
526 | lookahead = tok | ||
527 | errtoken = None | ||
528 | continue | ||
529 | else: | ||
530 | if errtoken: | ||
531 | if hasattr(errtoken,"lineno"): lineno = lookahead.lineno | ||
532 | else: lineno = 0 | ||
533 | if lineno: | ||
534 | sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) | ||
535 | else: | ||
536 | sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) | ||
537 | else: | ||
538 | sys.stderr.write("yacc: Parse error in input. EOF\n") | ||
539 | return | ||
540 | |||
541 | else: | ||
542 | errorcount = error_count | ||
543 | |||
544 | # case 1: the statestack only has 1 entry on it. If we're in this state, the | ||
545 | # entire parse has been rolled back and we're completely hosed. The token is | ||
546 | # discarded and we just keep going. | ||
547 | |||
548 | if len(statestack) <= 1 and lookahead.type != "$end": | ||
549 | lookahead = None | ||
550 | errtoken = None | ||
551 | state = 0 | ||
552 | # Nuke the pushback stack | ||
553 | del lookaheadstack[:] | ||
554 | continue | ||
555 | |||
556 | # case 2: the statestack has a couple of entries on it, but we're | ||
557 | # at the end of the file. nuke the top entry and generate an error token | ||
558 | |||
559 | # Start nuking entries on the stack | ||
560 | if lookahead.type == "$end": | ||
561 | # Whoa. We're really hosed here. Bail out | ||
562 | return | ||
563 | |||
564 | if lookahead.type != 'error': | ||
565 | sym = symstack[-1] | ||
566 | if sym.type == 'error': | ||
567 | # Hmmm. Error is on top of stack, we'll just nuke input | ||
568 | # symbol and continue | ||
569 | lookahead = None | ||
570 | continue | ||
571 | t = YaccSymbol() | ||
572 | t.type = 'error' | ||
573 | if hasattr(lookahead,"lineno"): | ||
574 | t.lineno = lookahead.lineno | ||
575 | t.value = lookahead | ||
576 | lookaheadstack.append(lookahead) | ||
577 | lookahead = t | ||
578 | else: | ||
579 | symstack.pop() | ||
580 | statestack.pop() | ||
581 | state = statestack[-1] # Potential bug fix | ||
582 | |||
583 | continue | ||
584 | |||
585 | # Call an error function here | ||
586 | raise RuntimeError("yacc: internal parser error!!!\n") | ||
587 | |||
588 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
589 | # parseopt(). | ||
590 | # | ||
591 | # Optimized version of parse() method. DO NOT EDIT THIS CODE DIRECTLY. | ||
592 | # Edit the debug version above, then copy any modifications to the method | ||
593 | # below while removing #--! DEBUG sections. | ||
594 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
595 | |||
596 | |||
597 | def parseopt(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): | ||
598 | lookahead = None # Current lookahead symbol | ||
599 | lookaheadstack = [ ] # Stack of lookahead symbols | ||
600 | actions = self.action # Local reference to action table (to avoid lookup on self.) | ||
601 | goto = self.goto # Local reference to goto table (to avoid lookup on self.) | ||
602 | prod = self.productions # Local reference to production list (to avoid lookup on self.) | ||
603 | pslice = YaccProduction(None) # Production object passed to grammar rules | ||
604 | errorcount = 0 # Used during error recovery | ||
605 | |||
606 | # If no lexer was given, we will try to use the lex module | ||
607 | if not lexer: | ||
608 | lex = load_ply_lex() | ||
609 | lexer = lex.lexer | ||
610 | |||
611 | # Set up the lexer and parser objects on pslice | ||
612 | pslice.lexer = lexer | ||
613 | pslice.parser = self | ||
614 | |||
615 | # If input was supplied, pass to lexer | ||
616 | if input is not None: | ||
617 | lexer.input(input) | ||
618 | |||
619 | if tokenfunc is None: | ||
620 | # Tokenize function | ||
621 | get_token = lexer.token | ||
622 | else: | ||
623 | get_token = tokenfunc | ||
624 | |||
625 | # Set up the state and symbol stacks | ||
626 | |||
627 | statestack = [ ] # Stack of parsing states | ||
628 | self.statestack = statestack | ||
629 | symstack = [ ] # Stack of grammar symbols | ||
630 | self.symstack = symstack | ||
631 | |||
632 | pslice.stack = symstack # Put in the production | ||
633 | errtoken = None # Err token | ||
634 | |||
635 | # The start state is assumed to be (0,$end) | ||
636 | |||
637 | statestack.append(0) | ||
638 | sym = YaccSymbol() | ||
639 | sym.type = '$end' | ||
640 | symstack.append(sym) | ||
641 | state = 0 | ||
642 | while 1: | ||
643 | # Get the next symbol on the input. If a lookahead symbol | ||
644 | # is already set, we just use that. Otherwise, we'll pull | ||
645 | # the next token off of the lookaheadstack or from the lexer | ||
646 | |||
647 | if not lookahead: | ||
648 | if not lookaheadstack: | ||
649 | lookahead = get_token() # Get the next token | ||
650 | else: | ||
651 | lookahead = lookaheadstack.pop() | ||
652 | if not lookahead: | ||
653 | lookahead = YaccSymbol() | ||
654 | lookahead.type = '$end' | ||
655 | |||
656 | # Check the action table | ||
657 | ltype = lookahead.type | ||
658 | t = actions[state].get(ltype) | ||
659 | |||
660 | if t is not None: | ||
661 | if t > 0: | ||
662 | # shift a symbol on the stack | ||
663 | statestack.append(t) | ||
664 | state = t | ||
665 | |||
666 | symstack.append(lookahead) | ||
667 | lookahead = None | ||
668 | |||
669 | # Decrease error count on successful shift | ||
670 | if errorcount: errorcount -=1 | ||
671 | continue | ||
672 | |||
673 | if t < 0: | ||
674 | # reduce a symbol on the stack, emit a production | ||
675 | p = prod[-t] | ||
676 | pname = p.name | ||
677 | plen = p.len | ||
678 | |||
679 | # Get production function | ||
680 | sym = YaccSymbol() | ||
681 | sym.type = pname # Production name | ||
682 | sym.value = None | ||
683 | |||
684 | if plen: | ||
685 | targ = symstack[-plen-1:] | ||
686 | targ[0] = sym | ||
687 | |||
688 | # --! TRACKING | ||
689 | if tracking: | ||
690 | t1 = targ[1] | ||
691 | sym.lineno = t1.lineno | ||
692 | sym.lexpos = t1.lexpos | ||
693 | t1 = targ[-1] | ||
694 | sym.endlineno = getattr(t1,"endlineno",t1.lineno) | ||
695 | sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos) | ||
696 | |||
697 | # --! TRACKING | ||
698 | |||
699 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
700 | # The code enclosed in this section is duplicated | ||
701 | # below as a performance optimization. Make sure | ||
702 | # changes get made in both locations. | ||
703 | |||
704 | pslice.slice = targ | ||
705 | |||
706 | try: | ||
707 | # Call the grammar rule with our special slice object | ||
708 | del symstack[-plen:] | ||
709 | del statestack[-plen:] | ||
710 | p.callable(pslice) | ||
711 | symstack.append(sym) | ||
712 | state = goto[statestack[-1]][pname] | ||
713 | statestack.append(state) | ||
714 | except SyntaxError: | ||
715 | # If an error was set. Enter error recovery state | ||
716 | lookaheadstack.append(lookahead) | ||
717 | symstack.pop() | ||
718 | statestack.pop() | ||
719 | state = statestack[-1] | ||
720 | sym.type = 'error' | ||
721 | lookahead = sym | ||
722 | errorcount = error_count | ||
723 | self.errorok = 0 | ||
724 | continue | ||
725 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
726 | |||
727 | else: | ||
728 | |||
729 | # --! TRACKING | ||
730 | if tracking: | ||
731 | sym.lineno = lexer.lineno | ||
732 | sym.lexpos = lexer.lexpos | ||
733 | # --! TRACKING | ||
734 | |||
735 | targ = [ sym ] | ||
736 | |||
737 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
738 | # The code enclosed in this section is duplicated | ||
739 | # above as a performance optimization. Make sure | ||
740 | # changes get made in both locations. | ||
741 | |||
742 | pslice.slice = targ | ||
743 | |||
744 | try: | ||
745 | # Call the grammar rule with our special slice object | ||
746 | p.callable(pslice) | ||
747 | symstack.append(sym) | ||
748 | state = goto[statestack[-1]][pname] | ||
749 | statestack.append(state) | ||
750 | except SyntaxError: | ||
751 | # If an error was set. Enter error recovery state | ||
752 | lookaheadstack.append(lookahead) | ||
753 | symstack.pop() | ||
754 | statestack.pop() | ||
755 | state = statestack[-1] | ||
756 | sym.type = 'error' | ||
757 | lookahead = sym | ||
758 | errorcount = error_count | ||
759 | self.errorok = 0 | ||
760 | continue | ||
761 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
762 | |||
763 | if t == 0: | ||
764 | n = symstack[-1] | ||
765 | return getattr(n,"value",None) | ||
766 | |||
767 | if t == None: | ||
768 | |||
769 | # We have some kind of parsing error here. To handle | ||
770 | # this, we are going to push the current token onto | ||
771 | # the tokenstack and replace it with an 'error' token. | ||
772 | # If there are any synchronization rules, they may | ||
773 | # catch it. | ||
774 | # | ||
775 | # In addition to pushing the error token, we call call | ||
776 | # the user defined p_error() function if this is the | ||
777 | # first syntax error. This function is only called if | ||
778 | # errorcount == 0. | ||
779 | if errorcount == 0 or self.errorok: | ||
780 | errorcount = error_count | ||
781 | self.errorok = 0 | ||
782 | errtoken = lookahead | ||
783 | if errtoken.type == '$end': | ||
784 | errtoken = None # End of file! | ||
785 | if self.errorfunc: | ||
786 | global errok,token,restart | ||
787 | errok = self.errok # Set some special functions available in error recovery | ||
788 | token = get_token | ||
789 | restart = self.restart | ||
790 | if errtoken and not hasattr(errtoken,'lexer'): | ||
791 | errtoken.lexer = lexer | ||
792 | tok = self.errorfunc(errtoken) | ||
793 | del errok, token, restart # Delete special functions | ||
794 | |||
795 | if self.errorok: | ||
796 | # User must have done some kind of panic | ||
797 | # mode recovery on their own. The | ||
798 | # returned token is the next lookahead | ||
799 | lookahead = tok | ||
800 | errtoken = None | ||
801 | continue | ||
802 | else: | ||
803 | if errtoken: | ||
804 | if hasattr(errtoken,"lineno"): lineno = lookahead.lineno | ||
805 | else: lineno = 0 | ||
806 | if lineno: | ||
807 | sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) | ||
808 | else: | ||
809 | sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) | ||
810 | else: | ||
811 | sys.stderr.write("yacc: Parse error in input. EOF\n") | ||
812 | return | ||
813 | |||
814 | else: | ||
815 | errorcount = error_count | ||
816 | |||
817 | # case 1: the statestack only has 1 entry on it. If we're in this state, the | ||
818 | # entire parse has been rolled back and we're completely hosed. The token is | ||
819 | # discarded and we just keep going. | ||
820 | |||
821 | if len(statestack) <= 1 and lookahead.type != '$end': | ||
822 | lookahead = None | ||
823 | errtoken = None | ||
824 | state = 0 | ||
825 | # Nuke the pushback stack | ||
826 | del lookaheadstack[:] | ||
827 | continue | ||
828 | |||
829 | # case 2: the statestack has a couple of entries on it, but we're | ||
830 | # at the end of the file. nuke the top entry and generate an error token | ||
831 | |||
832 | # Start nuking entries on the stack | ||
833 | if lookahead.type == '$end': | ||
834 | # Whoa. We're really hosed here. Bail out | ||
835 | return | ||
836 | |||
837 | if lookahead.type != 'error': | ||
838 | sym = symstack[-1] | ||
839 | if sym.type == 'error': | ||
840 | # Hmmm. Error is on top of stack, we'll just nuke input | ||
841 | # symbol and continue | ||
842 | lookahead = None | ||
843 | continue | ||
844 | t = YaccSymbol() | ||
845 | t.type = 'error' | ||
846 | if hasattr(lookahead,"lineno"): | ||
847 | t.lineno = lookahead.lineno | ||
848 | t.value = lookahead | ||
849 | lookaheadstack.append(lookahead) | ||
850 | lookahead = t | ||
851 | else: | ||
852 | symstack.pop() | ||
853 | statestack.pop() | ||
854 | state = statestack[-1] # Potential bug fix | ||
855 | |||
856 | continue | ||
857 | |||
858 | # Call an error function here | ||
859 | raise RuntimeError("yacc: internal parser error!!!\n") | ||
860 | |||
861 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
862 | # parseopt_notrack(). | ||
863 | # | ||
864 | # Optimized version of parseopt() with line number tracking removed. | ||
865 | # DO NOT EDIT THIS CODE DIRECTLY. Copy the optimized version and remove | ||
866 | # code in the #--! TRACKING sections | ||
867 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
868 | |||
869 | def parseopt_notrack(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): | ||
870 | lookahead = None # Current lookahead symbol | ||
871 | lookaheadstack = [ ] # Stack of lookahead symbols | ||
872 | actions = self.action # Local reference to action table (to avoid lookup on self.) | ||
873 | goto = self.goto # Local reference to goto table (to avoid lookup on self.) | ||
874 | prod = self.productions # Local reference to production list (to avoid lookup on self.) | ||
875 | pslice = YaccProduction(None) # Production object passed to grammar rules | ||
876 | errorcount = 0 # Used during error recovery | ||
877 | |||
878 | # If no lexer was given, we will try to use the lex module | ||
879 | if not lexer: | ||
880 | lex = load_ply_lex() | ||
881 | lexer = lex.lexer | ||
882 | |||
883 | # Set up the lexer and parser objects on pslice | ||
884 | pslice.lexer = lexer | ||
885 | pslice.parser = self | ||
886 | |||
887 | # If input was supplied, pass to lexer | ||
888 | if input is not None: | ||
889 | lexer.input(input) | ||
890 | |||
891 | if tokenfunc is None: | ||
892 | # Tokenize function | ||
893 | get_token = lexer.token | ||
894 | else: | ||
895 | get_token = tokenfunc | ||
896 | |||
897 | # Set up the state and symbol stacks | ||
898 | |||
899 | statestack = [ ] # Stack of parsing states | ||
900 | self.statestack = statestack | ||
901 | symstack = [ ] # Stack of grammar symbols | ||
902 | self.symstack = symstack | ||
903 | |||
904 | pslice.stack = symstack # Put in the production | ||
905 | errtoken = None # Err token | ||
906 | |||
907 | # The start state is assumed to be (0,$end) | ||
908 | |||
909 | statestack.append(0) | ||
910 | sym = YaccSymbol() | ||
911 | sym.type = '$end' | ||
912 | symstack.append(sym) | ||
913 | state = 0 | ||
914 | while 1: | ||
915 | # Get the next symbol on the input. If a lookahead symbol | ||
916 | # is already set, we just use that. Otherwise, we'll pull | ||
917 | # the next token off of the lookaheadstack or from the lexer | ||
918 | |||
919 | if not lookahead: | ||
920 | if not lookaheadstack: | ||
921 | lookahead = get_token() # Get the next token | ||
922 | else: | ||
923 | lookahead = lookaheadstack.pop() | ||
924 | if not lookahead: | ||
925 | lookahead = YaccSymbol() | ||
926 | lookahead.type = '$end' | ||
927 | |||
928 | # Check the action table | ||
929 | ltype = lookahead.type | ||
930 | t = actions[state].get(ltype) | ||
931 | |||
932 | if t is not None: | ||
933 | if t > 0: | ||
934 | # shift a symbol on the stack | ||
935 | statestack.append(t) | ||
936 | state = t | ||
937 | |||
938 | symstack.append(lookahead) | ||
939 | lookahead = None | ||
940 | |||
941 | # Decrease error count on successful shift | ||
942 | if errorcount: errorcount -=1 | ||
943 | continue | ||
944 | |||
945 | if t < 0: | ||
946 | # reduce a symbol on the stack, emit a production | ||
947 | p = prod[-t] | ||
948 | pname = p.name | ||
949 | plen = p.len | ||
950 | |||
951 | # Get production function | ||
952 | sym = YaccSymbol() | ||
953 | sym.type = pname # Production name | ||
954 | sym.value = None | ||
955 | |||
956 | if plen: | ||
957 | targ = symstack[-plen-1:] | ||
958 | targ[0] = sym | ||
959 | |||
960 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
961 | # The code enclosed in this section is duplicated | ||
962 | # below as a performance optimization. Make sure | ||
963 | # changes get made in both locations. | ||
964 | |||
965 | pslice.slice = targ | ||
966 | |||
967 | try: | ||
968 | # Call the grammar rule with our special slice object | ||
969 | del symstack[-plen:] | ||
970 | del statestack[-plen:] | ||
971 | p.callable(pslice) | ||
972 | symstack.append(sym) | ||
973 | state = goto[statestack[-1]][pname] | ||
974 | statestack.append(state) | ||
975 | except SyntaxError: | ||
976 | # If an error was set. Enter error recovery state | ||
977 | lookaheadstack.append(lookahead) | ||
978 | symstack.pop() | ||
979 | statestack.pop() | ||
980 | state = statestack[-1] | ||
981 | sym.type = 'error' | ||
982 | lookahead = sym | ||
983 | errorcount = error_count | ||
984 | self.errorok = 0 | ||
985 | continue | ||
986 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
987 | |||
988 | else: | ||
989 | |||
990 | targ = [ sym ] | ||
991 | |||
992 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
993 | # The code enclosed in this section is duplicated | ||
994 | # above as a performance optimization. Make sure | ||
995 | # changes get made in both locations. | ||
996 | |||
997 | pslice.slice = targ | ||
998 | |||
999 | try: | ||
1000 | # Call the grammar rule with our special slice object | ||
1001 | p.callable(pslice) | ||
1002 | symstack.append(sym) | ||
1003 | state = goto[statestack[-1]][pname] | ||
1004 | statestack.append(state) | ||
1005 | except SyntaxError: | ||
1006 | # If an error was set. Enter error recovery state | ||
1007 | lookaheadstack.append(lookahead) | ||
1008 | symstack.pop() | ||
1009 | statestack.pop() | ||
1010 | state = statestack[-1] | ||
1011 | sym.type = 'error' | ||
1012 | lookahead = sym | ||
1013 | errorcount = error_count | ||
1014 | self.errorok = 0 | ||
1015 | continue | ||
1016 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | ||
1017 | |||
1018 | if t == 0: | ||
1019 | n = symstack[-1] | ||
1020 | return getattr(n,"value",None) | ||
1021 | |||
1022 | if t == None: | ||
1023 | |||
1024 | # We have some kind of parsing error here. To handle | ||
1025 | # this, we are going to push the current token onto | ||
1026 | # the tokenstack and replace it with an 'error' token. | ||
1027 | # If there are any synchronization rules, they may | ||
1028 | # catch it. | ||
1029 | # | ||
1030 | # In addition to pushing the error token, we call call | ||
1031 | # the user defined p_error() function if this is the | ||
1032 | # first syntax error. This function is only called if | ||
1033 | # errorcount == 0. | ||
1034 | if errorcount == 0 or self.errorok: | ||
1035 | errorcount = error_count | ||
1036 | self.errorok = 0 | ||
1037 | errtoken = lookahead | ||
1038 | if errtoken.type == '$end': | ||
1039 | errtoken = None # End of file! | ||
1040 | if self.errorfunc: | ||
1041 | global errok,token,restart | ||
1042 | errok = self.errok # Set some special functions available in error recovery | ||
1043 | token = get_token | ||
1044 | restart = self.restart | ||
1045 | if errtoken and not hasattr(errtoken,'lexer'): | ||
1046 | errtoken.lexer = lexer | ||
1047 | tok = self.errorfunc(errtoken) | ||
1048 | del errok, token, restart # Delete special functions | ||
1049 | |||
1050 | if self.errorok: | ||
1051 | # User must have done some kind of panic | ||
1052 | # mode recovery on their own. The | ||
1053 | # returned token is the next lookahead | ||
1054 | lookahead = tok | ||
1055 | errtoken = None | ||
1056 | continue | ||
1057 | else: | ||
1058 | if errtoken: | ||
1059 | if hasattr(errtoken,"lineno"): lineno = lookahead.lineno | ||
1060 | else: lineno = 0 | ||
1061 | if lineno: | ||
1062 | sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) | ||
1063 | else: | ||
1064 | sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) | ||
1065 | else: | ||
1066 | sys.stderr.write("yacc: Parse error in input. EOF\n") | ||
1067 | return | ||
1068 | |||
1069 | else: | ||
1070 | errorcount = error_count | ||
1071 | |||
1072 | # case 1: the statestack only has 1 entry on it. If we're in this state, the | ||
1073 | # entire parse has been rolled back and we're completely hosed. The token is | ||
1074 | # discarded and we just keep going. | ||
1075 | |||
1076 | if len(statestack) <= 1 and lookahead.type != '$end': | ||
1077 | lookahead = None | ||
1078 | errtoken = None | ||
1079 | state = 0 | ||
1080 | # Nuke the pushback stack | ||
1081 | del lookaheadstack[:] | ||
1082 | continue | ||
1083 | |||
1084 | # case 2: the statestack has a couple of entries on it, but we're | ||
1085 | # at the end of the file. nuke the top entry and generate an error token | ||
1086 | |||
1087 | # Start nuking entries on the stack | ||
1088 | if lookahead.type == '$end': | ||
1089 | # Whoa. We're really hosed here. Bail out | ||
1090 | return | ||
1091 | |||
1092 | if lookahead.type != 'error': | ||
1093 | sym = symstack[-1] | ||
1094 | if sym.type == 'error': | ||
1095 | # Hmmm. Error is on top of stack, we'll just nuke input | ||
1096 | # symbol and continue | ||
1097 | lookahead = None | ||
1098 | continue | ||
1099 | t = YaccSymbol() | ||
1100 | t.type = 'error' | ||
1101 | if hasattr(lookahead,"lineno"): | ||
1102 | t.lineno = lookahead.lineno | ||
1103 | t.value = lookahead | ||
1104 | lookaheadstack.append(lookahead) | ||
1105 | lookahead = t | ||
1106 | else: | ||
1107 | symstack.pop() | ||
1108 | statestack.pop() | ||
1109 | state = statestack[-1] # Potential bug fix | ||
1110 | |||
1111 | continue | ||
1112 | |||
1113 | # Call an error function here | ||
1114 | raise RuntimeError("yacc: internal parser error!!!\n") | ||
1115 | |||
1116 | # ----------------------------------------------------------------------------- | ||
1117 | # === Grammar Representation === | ||
1118 | # | ||
1119 | # The following functions, classes, and variables are used to represent and | ||
1120 | # manipulate the rules that make up a grammar. | ||
1121 | # ----------------------------------------------------------------------------- | ||
1122 | |||
1123 | import re | ||
1124 | |||
1125 | # regex matching identifiers | ||
1126 | _is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$') | ||
1127 | |||
1128 | # ----------------------------------------------------------------------------- | ||
1129 | # class Production: | ||
1130 | # | ||
1131 | # This class stores the raw information about a single production or grammar rule. | ||
1132 | # A grammar rule refers to a specification such as this: | ||
1133 | # | ||
1134 | # expr : expr PLUS term | ||
1135 | # | ||
1136 | # Here are the basic attributes defined on all productions | ||
1137 | # | ||
1138 | # name - Name of the production. For example 'expr' | ||
1139 | # prod - A list of symbols on the right side ['expr','PLUS','term'] | ||
1140 | # prec - Production precedence level | ||
1141 | # number - Production number. | ||
1142 | # func - Function that executes on reduce | ||
1143 | # file - File where production function is defined | ||
1144 | # lineno - Line number where production function is defined | ||
1145 | # | ||
1146 | # The following attributes are defined or optional. | ||
1147 | # | ||
1148 | # len - Length of the production (number of symbols on right hand side) | ||
1149 | # usyms - Set of unique symbols found in the production | ||
1150 | # ----------------------------------------------------------------------------- | ||
1151 | |||
1152 | class Production(object): | ||
1153 | reduced = 0 | ||
1154 | def __init__(self,number,name,prod,precedence=('right',0),func=None,file='',line=0): | ||
1155 | self.name = name | ||
1156 | self.prod = tuple(prod) | ||
1157 | self.number = number | ||
1158 | self.func = func | ||
1159 | self.callable = None | ||
1160 | self.file = file | ||
1161 | self.line = line | ||
1162 | self.prec = precedence | ||
1163 | |||
1164 | # Internal settings used during table construction | ||
1165 | |||
1166 | self.len = len(self.prod) # Length of the production | ||
1167 | |||
1168 | # Create a list of unique production symbols used in the production | ||
1169 | self.usyms = [ ] | ||
1170 | for s in self.prod: | ||
1171 | if s not in self.usyms: | ||
1172 | self.usyms.append(s) | ||
1173 | |||
1174 | # List of all LR items for the production | ||
1175 | self.lr_items = [] | ||
1176 | self.lr_next = None | ||
1177 | |||
1178 | # Create a string representation | ||
1179 | if self.prod: | ||
1180 | self.str = "%s -> %s" % (self.name," ".join(self.prod)) | ||
1181 | else: | ||
1182 | self.str = "%s -> <empty>" % self.name | ||
1183 | |||
1184 | def __str__(self): | ||
1185 | return self.str | ||
1186 | |||
1187 | def __repr__(self): | ||
1188 | return "Production("+str(self)+")" | ||
1189 | |||
1190 | def __len__(self): | ||
1191 | return len(self.prod) | ||
1192 | |||
1193 | def __nonzero__(self): | ||
1194 | return 1 | ||
1195 | |||
1196 | def __getitem__(self,index): | ||
1197 | return self.prod[index] | ||
1198 | |||
1199 | # Return the nth lr_item from the production (or None if at the end) | ||
1200 | def lr_item(self,n): | ||
1201 | if n > len(self.prod): return None | ||
1202 | p = LRItem(self,n) | ||
1203 | |||
1204 | # Precompute the list of productions immediately following. Hack. Remove later | ||
1205 | try: | ||
1206 | p.lr_after = Prodnames[p.prod[n+1]] | ||
1207 | except (IndexError,KeyError): | ||
1208 | p.lr_after = [] | ||
1209 | try: | ||
1210 | p.lr_before = p.prod[n-1] | ||
1211 | except IndexError: | ||
1212 | p.lr_before = None | ||
1213 | |||
1214 | return p | ||
1215 | |||
1216 | # Bind the production function name to a callable | ||
1217 | def bind(self,pdict): | ||
1218 | if self.func: | ||
1219 | self.callable = pdict[self.func] | ||
1220 | |||
1221 | # This class serves as a minimal standin for Production objects when | ||
1222 | # reading table data from files. It only contains information | ||
1223 | # actually used by the LR parsing engine, plus some additional | ||
1224 | # debugging information. | ||
1225 | class MiniProduction(object): | ||
1226 | def __init__(self,str,name,len,func,file,line): | ||
1227 | self.name = name | ||
1228 | self.len = len | ||
1229 | self.func = func | ||
1230 | self.callable = None | ||
1231 | self.file = file | ||
1232 | self.line = line | ||
1233 | self.str = str | ||
1234 | def __str__(self): | ||
1235 | return self.str | ||
1236 | def __repr__(self): | ||
1237 | return "MiniProduction(%s)" % self.str | ||
1238 | |||
1239 | # Bind the production function name to a callable | ||
1240 | def bind(self,pdict): | ||
1241 | if self.func: | ||
1242 | self.callable = pdict[self.func] | ||
1243 | |||
1244 | |||
1245 | # ----------------------------------------------------------------------------- | ||
1246 | # class LRItem | ||
1247 | # | ||
1248 | # This class represents a specific stage of parsing a production rule. For | ||
1249 | # example: | ||
1250 | # | ||
1251 | # expr : expr . PLUS term | ||
1252 | # | ||
1253 | # In the above, the "." represents the current location of the parse. Here | ||
1254 | # basic attributes: | ||
1255 | # | ||
1256 | # name - Name of the production. For example 'expr' | ||
1257 | # prod - A list of symbols on the right side ['expr','.', 'PLUS','term'] | ||
1258 | # number - Production number. | ||
1259 | # | ||
1260 | # lr_next Next LR item. Example, if we are ' expr -> expr . PLUS term' | ||
1261 | # then lr_next refers to 'expr -> expr PLUS . term' | ||
1262 | # lr_index - LR item index (location of the ".") in the prod list. | ||
1263 | # lookaheads - LALR lookahead symbols for this item | ||
1264 | # len - Length of the production (number of symbols on right hand side) | ||
1265 | # lr_after - List of all productions that immediately follow | ||
1266 | # lr_before - Grammar symbol immediately before | ||
1267 | # ----------------------------------------------------------------------------- | ||
1268 | |||
1269 | class LRItem(object): | ||
1270 | def __init__(self,p,n): | ||
1271 | self.name = p.name | ||
1272 | self.prod = list(p.prod) | ||
1273 | self.number = p.number | ||
1274 | self.lr_index = n | ||
1275 | self.lookaheads = { } | ||
1276 | self.prod.insert(n,".") | ||
1277 | self.prod = tuple(self.prod) | ||
1278 | self.len = len(self.prod) | ||
1279 | self.usyms = p.usyms | ||
1280 | |||
1281 | def __str__(self): | ||
1282 | if self.prod: | ||
1283 | s = "%s -> %s" % (self.name," ".join(self.prod)) | ||
1284 | else: | ||
1285 | s = "%s -> <empty>" % self.name | ||
1286 | return s | ||
1287 | |||
1288 | def __repr__(self): | ||
1289 | return "LRItem("+str(self)+")" | ||
1290 | |||
1291 | # ----------------------------------------------------------------------------- | ||
1292 | # rightmost_terminal() | ||
1293 | # | ||
1294 | # Return the rightmost terminal from a list of symbols. Used in add_production() | ||
1295 | # ----------------------------------------------------------------------------- | ||
1296 | def rightmost_terminal(symbols, terminals): | ||
1297 | i = len(symbols) - 1 | ||
1298 | while i >= 0: | ||
1299 | if symbols[i] in terminals: | ||
1300 | return symbols[i] | ||
1301 | i -= 1 | ||
1302 | return None | ||
1303 | |||
1304 | # ----------------------------------------------------------------------------- | ||
1305 | # === GRAMMAR CLASS === | ||
1306 | # | ||
1307 | # The following class represents the contents of the specified grammar along | ||
1308 | # with various computed properties such as first sets, follow sets, LR items, etc. | ||
1309 | # This data is used for critical parts of the table generation process later. | ||
1310 | # ----------------------------------------------------------------------------- | ||
1311 | |||
1312 | class GrammarError(YaccError): pass | ||
1313 | |||
1314 | class Grammar(object): | ||
1315 | def __init__(self,terminals): | ||
1316 | self.Productions = [None] # A list of all of the productions. The first | ||
1317 | # entry is always reserved for the purpose of | ||
1318 | # building an augmented grammar | ||
1319 | |||
1320 | self.Prodnames = { } # A dictionary mapping the names of nonterminals to a list of all | ||
1321 | # productions of that nonterminal. | ||
1322 | |||
1323 | self.Prodmap = { } # A dictionary that is only used to detect duplicate | ||
1324 | # productions. | ||
1325 | |||
1326 | self.Terminals = { } # A dictionary mapping the names of terminal symbols to a | ||
1327 | # list of the rules where they are used. | ||
1328 | |||
1329 | for term in terminals: | ||
1330 | self.Terminals[term] = [] | ||
1331 | |||
1332 | self.Terminals['error'] = [] | ||
1333 | |||
1334 | self.Nonterminals = { } # A dictionary mapping names of nonterminals to a list | ||
1335 | # of rule numbers where they are used. | ||
1336 | |||
1337 | self.First = { } # A dictionary of precomputed FIRST(x) symbols | ||
1338 | |||
1339 | self.Follow = { } # A dictionary of precomputed FOLLOW(x) symbols | ||
1340 | |||
1341 | self.Precedence = { } # Precedence rules for each terminal. Contains tuples of the | ||
1342 | # form ('right',level) or ('nonassoc', level) or ('left',level) | ||
1343 | |||
1344 | self.UsedPrecedence = { } # Precedence rules that were actually used by the grammer. | ||
1345 | # This is only used to provide error checking and to generate | ||
1346 | # a warning about unused precedence rules. | ||
1347 | |||
1348 | self.Start = None # Starting symbol for the grammar | ||
1349 | |||
1350 | |||
1351 | def __len__(self): | ||
1352 | return len(self.Productions) | ||
1353 | |||
1354 | def __getitem__(self,index): | ||
1355 | return self.Productions[index] | ||
1356 | |||
1357 | # ----------------------------------------------------------------------------- | ||
1358 | # set_precedence() | ||
1359 | # | ||
1360 | # Sets the precedence for a given terminal. assoc is the associativity such as | ||
1361 | # 'left','right', or 'nonassoc'. level is a numeric level. | ||
1362 | # | ||
1363 | # ----------------------------------------------------------------------------- | ||
1364 | |||
1365 | def set_precedence(self,term,assoc,level): | ||
1366 | assert self.Productions == [None],"Must call set_precedence() before add_production()" | ||
1367 | if term in self.Precedence: | ||
1368 | raise GrammarError("Precedence already specified for terminal '%s'" % term) | ||
1369 | if assoc not in ['left','right','nonassoc']: | ||
1370 | raise GrammarError("Associativity must be one of 'left','right', or 'nonassoc'") | ||
1371 | self.Precedence[term] = (assoc,level) | ||
1372 | |||
1373 | # ----------------------------------------------------------------------------- | ||
1374 | # add_production() | ||
1375 | # | ||
1376 | # Given an action function, this function assembles a production rule and | ||
1377 | # computes its precedence level. | ||
1378 | # | ||
1379 | # The production rule is supplied as a list of symbols. For example, | ||
1380 | # a rule such as 'expr : expr PLUS term' has a production name of 'expr' and | ||
1381 | # symbols ['expr','PLUS','term']. | ||
1382 | # | ||
1383 | # Precedence is determined by the precedence of the right-most non-terminal | ||
1384 | # or the precedence of a terminal specified by %prec. | ||
1385 | # | ||
1386 | # A variety of error checks are performed to make sure production symbols | ||
1387 | # are valid and that %prec is used correctly. | ||
1388 | # ----------------------------------------------------------------------------- | ||
1389 | |||
1390 | def add_production(self,prodname,syms,func=None,file='',line=0): | ||
1391 | |||
1392 | if prodname in self.Terminals: | ||
1393 | raise GrammarError("%s:%d: Illegal rule name '%s'. Already defined as a token" % (file,line,prodname)) | ||
1394 | if prodname == 'error': | ||
1395 | raise GrammarError("%s:%d: Illegal rule name '%s'. error is a reserved word" % (file,line,prodname)) | ||
1396 | if not _is_identifier.match(prodname): | ||
1397 | raise GrammarError("%s:%d: Illegal rule name '%s'" % (file,line,prodname)) | ||
1398 | |||
1399 | # Look for literal tokens | ||
1400 | for n,s in enumerate(syms): | ||
1401 | if s[0] in "'\"": | ||
1402 | try: | ||
1403 | c = eval(s) | ||
1404 | if (len(c) > 1): | ||
1405 | raise GrammarError("%s:%d: Literal token %s in rule '%s' may only be a single character" % (file,line,s, prodname)) | ||
1406 | if not c in self.Terminals: | ||
1407 | self.Terminals[c] = [] | ||
1408 | syms[n] = c | ||
1409 | continue | ||
1410 | except SyntaxError: | ||
1411 | pass | ||
1412 | if not _is_identifier.match(s) and s != '%prec': | ||
1413 | raise GrammarError("%s:%d: Illegal name '%s' in rule '%s'" % (file,line,s, prodname)) | ||
1414 | |||
1415 | # Determine the precedence level | ||
1416 | if '%prec' in syms: | ||
1417 | if syms[-1] == '%prec': | ||
1418 | raise GrammarError("%s:%d: Syntax error. Nothing follows %%prec" % (file,line)) | ||
1419 | if syms[-2] != '%prec': | ||
1420 | raise GrammarError("%s:%d: Syntax error. %%prec can only appear at the end of a grammar rule" % (file,line)) | ||
1421 | precname = syms[-1] | ||
1422 | prodprec = self.Precedence.get(precname,None) | ||
1423 | if not prodprec: | ||
1424 | raise GrammarError("%s:%d: Nothing known about the precedence of '%s'" % (file,line,precname)) | ||
1425 | else: | ||
1426 | self.UsedPrecedence[precname] = 1 | ||
1427 | del syms[-2:] # Drop %prec from the rule | ||
1428 | else: | ||
1429 | # If no %prec, precedence is determined by the rightmost terminal symbol | ||
1430 | precname = rightmost_terminal(syms,self.Terminals) | ||
1431 | prodprec = self.Precedence.get(precname,('right',0)) | ||
1432 | |||
1433 | # See if the rule is already in the rulemap | ||
1434 | map = "%s -> %s" % (prodname,syms) | ||
1435 | if map in self.Prodmap: | ||
1436 | m = self.Prodmap[map] | ||
1437 | raise GrammarError("%s:%d: Duplicate rule %s. " % (file,line, m) + | ||
1438 | "Previous definition at %s:%d" % (m.file, m.line)) | ||
1439 | |||
1440 | # From this point on, everything is valid. Create a new Production instance | ||
1441 | pnumber = len(self.Productions) | ||
1442 | if not prodname in self.Nonterminals: | ||
1443 | self.Nonterminals[prodname] = [ ] | ||
1444 | |||
1445 | # Add the production number to Terminals and Nonterminals | ||
1446 | for t in syms: | ||
1447 | if t in self.Terminals: | ||
1448 | self.Terminals[t].append(pnumber) | ||
1449 | else: | ||
1450 | if not t in self.Nonterminals: | ||
1451 | self.Nonterminals[t] = [ ] | ||
1452 | self.Nonterminals[t].append(pnumber) | ||
1453 | |||
1454 | # Create a production and add it to the list of productions | ||
1455 | p = Production(pnumber,prodname,syms,prodprec,func,file,line) | ||
1456 | self.Productions.append(p) | ||
1457 | self.Prodmap[map] = p | ||
1458 | |||
1459 | # Add to the global productions list | ||
1460 | try: | ||
1461 | self.Prodnames[prodname].append(p) | ||
1462 | except KeyError: | ||
1463 | self.Prodnames[prodname] = [ p ] | ||
1464 | return 0 | ||
1465 | |||
1466 | # ----------------------------------------------------------------------------- | ||
1467 | # set_start() | ||
1468 | # | ||
1469 | # Sets the starting symbol and creates the augmented grammar. Production | ||
1470 | # rule 0 is S' -> start where start is the start symbol. | ||
1471 | # ----------------------------------------------------------------------------- | ||
1472 | |||
1473 | def set_start(self,start=None): | ||
1474 | if not start: | ||
1475 | start = self.Productions[1].name | ||
1476 | if start not in self.Nonterminals: | ||
1477 | raise GrammarError("start symbol %s undefined" % start) | ||
1478 | self.Productions[0] = Production(0,"S'",[start]) | ||
1479 | self.Nonterminals[start].append(0) | ||
1480 | self.Start = start | ||
1481 | |||
1482 | # ----------------------------------------------------------------------------- | ||
1483 | # find_unreachable() | ||
1484 | # | ||
1485 | # Find all of the nonterminal symbols that can't be reached from the starting | ||
1486 | # symbol. Returns a list of nonterminals that can't be reached. | ||
1487 | # ----------------------------------------------------------------------------- | ||
1488 | |||
1489 | def find_unreachable(self): | ||
1490 | |||
1491 | # Mark all symbols that are reachable from a symbol s | ||
1492 | def mark_reachable_from(s): | ||
1493 | if reachable[s]: | ||
1494 | # We've already reached symbol s. | ||
1495 | return | ||
1496 | reachable[s] = 1 | ||
1497 | for p in self.Prodnames.get(s,[]): | ||
1498 | for r in p.prod: | ||
1499 | mark_reachable_from(r) | ||
1500 | |||
1501 | reachable = { } | ||
1502 | for s in list(self.Terminals) + list(self.Nonterminals): | ||
1503 | reachable[s] = 0 | ||
1504 | |||
1505 | mark_reachable_from( self.Productions[0].prod[0] ) | ||
1506 | |||
1507 | return [s for s in list(self.Nonterminals) | ||
1508 | if not reachable[s]] | ||
1509 | |||
1510 | # ----------------------------------------------------------------------------- | ||
1511 | # infinite_cycles() | ||
1512 | # | ||
1513 | # This function looks at the various parsing rules and tries to detect | ||
1514 | # infinite recursion cycles (grammar rules where there is no possible way | ||
1515 | # to derive a string of only terminals). | ||
1516 | # ----------------------------------------------------------------------------- | ||
1517 | |||
1518 | def infinite_cycles(self): | ||
1519 | terminates = {} | ||
1520 | |||
1521 | # Terminals: | ||
1522 | for t in self.Terminals: | ||
1523 | terminates[t] = 1 | ||
1524 | |||
1525 | terminates['$end'] = 1 | ||
1526 | |||
1527 | # Nonterminals: | ||
1528 | |||
1529 | # Initialize to false: | ||
1530 | for n in self.Nonterminals: | ||
1531 | terminates[n] = 0 | ||
1532 | |||
1533 | # Then propagate termination until no change: | ||
1534 | while 1: | ||
1535 | some_change = 0 | ||
1536 | for (n,pl) in self.Prodnames.items(): | ||
1537 | # Nonterminal n terminates iff any of its productions terminates. | ||
1538 | for p in pl: | ||
1539 | # Production p terminates iff all of its rhs symbols terminate. | ||
1540 | for s in p.prod: | ||
1541 | if not terminates[s]: | ||
1542 | # The symbol s does not terminate, | ||
1543 | # so production p does not terminate. | ||
1544 | p_terminates = 0 | ||
1545 | break | ||
1546 | else: | ||
1547 | # didn't break from the loop, | ||
1548 | # so every symbol s terminates | ||
1549 | # so production p terminates. | ||
1550 | p_terminates = 1 | ||
1551 | |||
1552 | if p_terminates: | ||
1553 | # symbol n terminates! | ||
1554 | if not terminates[n]: | ||
1555 | terminates[n] = 1 | ||
1556 | some_change = 1 | ||
1557 | # Don't need to consider any more productions for this n. | ||
1558 | break | ||
1559 | |||
1560 | if not some_change: | ||
1561 | break | ||
1562 | |||
1563 | infinite = [] | ||
1564 | for (s,term) in terminates.items(): | ||
1565 | if not term: | ||
1566 | if not s in self.Prodnames and not s in self.Terminals and s != 'error': | ||
1567 | # s is used-but-not-defined, and we've already warned of that, | ||
1568 | # so it would be overkill to say that it's also non-terminating. | ||
1569 | pass | ||
1570 | else: | ||
1571 | infinite.append(s) | ||
1572 | |||
1573 | return infinite | ||
1574 | |||
1575 | |||
1576 | # ----------------------------------------------------------------------------- | ||
1577 | # undefined_symbols() | ||
1578 | # | ||
1579 | # Find all symbols that were used the grammar, but not defined as tokens or | ||
1580 | # grammar rules. Returns a list of tuples (sym, prod) where sym in the symbol | ||
1581 | # and prod is the production where the symbol was used. | ||
1582 | # ----------------------------------------------------------------------------- | ||
1583 | def undefined_symbols(self): | ||
1584 | result = [] | ||
1585 | for p in self.Productions: | ||
1586 | if not p: continue | ||
1587 | |||
1588 | for s in p.prod: | ||
1589 | if not s in self.Prodnames and not s in self.Terminals and s != 'error': | ||
1590 | result.append((s,p)) | ||
1591 | return result | ||
1592 | |||
1593 | # ----------------------------------------------------------------------------- | ||
1594 | # unused_terminals() | ||
1595 | # | ||
1596 | # Find all terminals that were defined, but not used by the grammar. Returns | ||
1597 | # a list of all symbols. | ||
1598 | # ----------------------------------------------------------------------------- | ||
1599 | def unused_terminals(self): | ||
1600 | unused_tok = [] | ||
1601 | for s,v in self.Terminals.items(): | ||
1602 | if s != 'error' and not v: | ||
1603 | unused_tok.append(s) | ||
1604 | |||
1605 | return unused_tok | ||
1606 | |||
1607 | # ------------------------------------------------------------------------------ | ||
1608 | # unused_rules() | ||
1609 | # | ||
1610 | # Find all grammar rules that were defined, but not used (maybe not reachable) | ||
1611 | # Returns a list of productions. | ||
1612 | # ------------------------------------------------------------------------------ | ||
1613 | |||
1614 | def unused_rules(self): | ||
1615 | unused_prod = [] | ||
1616 | for s,v in self.Nonterminals.items(): | ||
1617 | if not v: | ||
1618 | p = self.Prodnames[s][0] | ||
1619 | unused_prod.append(p) | ||
1620 | return unused_prod | ||
1621 | |||
1622 | # ----------------------------------------------------------------------------- | ||
1623 | # unused_precedence() | ||
1624 | # | ||
1625 | # Returns a list of tuples (term,precedence) corresponding to precedence | ||
1626 | # rules that were never used by the grammar. term is the name of the terminal | ||
1627 | # on which precedence was applied and precedence is a string such as 'left' or | ||
1628 | # 'right' corresponding to the type of precedence. | ||
1629 | # ----------------------------------------------------------------------------- | ||
1630 | |||
1631 | def unused_precedence(self): | ||
1632 | unused = [] | ||
1633 | for termname in self.Precedence: | ||
1634 | if not (termname in self.Terminals or termname in self.UsedPrecedence): | ||
1635 | unused.append((termname,self.Precedence[termname][0])) | ||
1636 | |||
1637 | return unused | ||
1638 | |||
1639 | # ------------------------------------------------------------------------- | ||
1640 | # _first() | ||
1641 | # | ||
1642 | # Compute the value of FIRST1(beta) where beta is a tuple of symbols. | ||
1643 | # | ||
1644 | # During execution of compute_first1, the result may be incomplete. | ||
1645 | # Afterward (e.g., when called from compute_follow()), it will be complete. | ||
1646 | # ------------------------------------------------------------------------- | ||
1647 | def _first(self,beta): | ||
1648 | |||
1649 | # We are computing First(x1,x2,x3,...,xn) | ||
1650 | result = [ ] | ||
1651 | for x in beta: | ||
1652 | x_produces_empty = 0 | ||
1653 | |||
1654 | # Add all the non-<empty> symbols of First[x] to the result. | ||
1655 | for f in self.First[x]: | ||
1656 | if f == '<empty>': | ||
1657 | x_produces_empty = 1 | ||
1658 | else: | ||
1659 | if f not in result: result.append(f) | ||
1660 | |||
1661 | if x_produces_empty: | ||
1662 | # We have to consider the next x in beta, | ||
1663 | # i.e. stay in the loop. | ||
1664 | pass | ||
1665 | else: | ||
1666 | # We don't have to consider any further symbols in beta. | ||
1667 | break | ||
1668 | else: | ||
1669 | # There was no 'break' from the loop, | ||
1670 | # so x_produces_empty was true for all x in beta, | ||
1671 | # so beta produces empty as well. | ||
1672 | result.append('<empty>') | ||
1673 | |||
1674 | return result | ||
1675 | |||
1676 | # ------------------------------------------------------------------------- | ||
1677 | # compute_first() | ||
1678 | # | ||
1679 | # Compute the value of FIRST1(X) for all symbols | ||
1680 | # ------------------------------------------------------------------------- | ||
1681 | def compute_first(self): | ||
1682 | if self.First: | ||
1683 | return self.First | ||
1684 | |||
1685 | # Terminals: | ||
1686 | for t in self.Terminals: | ||
1687 | self.First[t] = [t] | ||
1688 | |||
1689 | self.First['$end'] = ['$end'] | ||
1690 | |||
1691 | # Nonterminals: | ||
1692 | |||
1693 | # Initialize to the empty set: | ||
1694 | for n in self.Nonterminals: | ||
1695 | self.First[n] = [] | ||
1696 | |||
1697 | # Then propagate symbols until no change: | ||
1698 | while 1: | ||
1699 | some_change = 0 | ||
1700 | for n in self.Nonterminals: | ||
1701 | for p in self.Prodnames[n]: | ||
1702 | for f in self._first(p.prod): | ||
1703 | if f not in self.First[n]: | ||
1704 | self.First[n].append( f ) | ||
1705 | some_change = 1 | ||
1706 | if not some_change: | ||
1707 | break | ||
1708 | |||
1709 | return self.First | ||
1710 | |||
1711 | # --------------------------------------------------------------------- | ||
1712 | # compute_follow() | ||
1713 | # | ||
1714 | # Computes all of the follow sets for every non-terminal symbol. The | ||
1715 | # follow set is the set of all symbols that might follow a given | ||
1716 | # non-terminal. See the Dragon book, 2nd Ed. p. 189. | ||
1717 | # --------------------------------------------------------------------- | ||
1718 | def compute_follow(self,start=None): | ||
1719 | # If already computed, return the result | ||
1720 | if self.Follow: | ||
1721 | return self.Follow | ||
1722 | |||
1723 | # If first sets not computed yet, do that first. | ||
1724 | if not self.First: | ||
1725 | self.compute_first() | ||
1726 | |||
1727 | # Add '$end' to the follow list of the start symbol | ||
1728 | for k in self.Nonterminals: | ||
1729 | self.Follow[k] = [ ] | ||
1730 | |||
1731 | if not start: | ||
1732 | start = self.Productions[1].name | ||
1733 | |||
1734 | self.Follow[start] = [ '$end' ] | ||
1735 | |||
1736 | while 1: | ||
1737 | didadd = 0 | ||
1738 | for p in self.Productions[1:]: | ||
1739 | # Here is the production set | ||
1740 | for i in range(len(p.prod)): | ||
1741 | B = p.prod[i] | ||
1742 | if B in self.Nonterminals: | ||
1743 | # Okay. We got a non-terminal in a production | ||
1744 | fst = self._first(p.prod[i+1:]) | ||
1745 | hasempty = 0 | ||
1746 | for f in fst: | ||
1747 | if f != '<empty>' and f not in self.Follow[B]: | ||
1748 | self.Follow[B].append(f) | ||
1749 | didadd = 1 | ||
1750 | if f == '<empty>': | ||
1751 | hasempty = 1 | ||
1752 | if hasempty or i == (len(p.prod)-1): | ||
1753 | # Add elements of follow(a) to follow(b) | ||
1754 | for f in self.Follow[p.name]: | ||
1755 | if f not in self.Follow[B]: | ||
1756 | self.Follow[B].append(f) | ||
1757 | didadd = 1 | ||
1758 | if not didadd: break | ||
1759 | return self.Follow | ||
1760 | |||
1761 | |||
1762 | # ----------------------------------------------------------------------------- | ||
1763 | # build_lritems() | ||
1764 | # | ||
1765 | # This function walks the list of productions and builds a complete set of the | ||
1766 | # LR items. The LR items are stored in two ways: First, they are uniquely | ||
1767 | # numbered and placed in the list _lritems. Second, a linked list of LR items | ||
1768 | # is built for each production. For example: | ||
1769 | # | ||
1770 | # E -> E PLUS E | ||
1771 | # | ||
1772 | # Creates the list | ||
1773 | # | ||
1774 | # [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ] | ||
1775 | # ----------------------------------------------------------------------------- | ||
1776 | |||
1777 | def build_lritems(self): | ||
1778 | for p in self.Productions: | ||
1779 | lastlri = p | ||
1780 | i = 0 | ||
1781 | lr_items = [] | ||
1782 | while 1: | ||
1783 | if i > len(p): | ||
1784 | lri = None | ||
1785 | else: | ||
1786 | lri = LRItem(p,i) | ||
1787 | # Precompute the list of productions immediately following | ||
1788 | try: | ||
1789 | lri.lr_after = self.Prodnames[lri.prod[i+1]] | ||
1790 | except (IndexError,KeyError): | ||
1791 | lri.lr_after = [] | ||
1792 | try: | ||
1793 | lri.lr_before = lri.prod[i-1] | ||
1794 | except IndexError: | ||
1795 | lri.lr_before = None | ||
1796 | |||
1797 | lastlri.lr_next = lri | ||
1798 | if not lri: break | ||
1799 | lr_items.append(lri) | ||
1800 | lastlri = lri | ||
1801 | i += 1 | ||
1802 | p.lr_items = lr_items | ||
1803 | |||
1804 | # ----------------------------------------------------------------------------- | ||
1805 | # == Class LRTable == | ||
1806 | # | ||
1807 | # This basic class represents a basic table of LR parsing information. | ||
1808 | # Methods for generating the tables are not defined here. They are defined | ||
1809 | # in the derived class LRGeneratedTable. | ||
1810 | # ----------------------------------------------------------------------------- | ||
1811 | |||
1812 | class VersionError(YaccError): pass | ||
1813 | |||
1814 | class LRTable(object): | ||
1815 | def __init__(self): | ||
1816 | self.lr_action = None | ||
1817 | self.lr_goto = None | ||
1818 | self.lr_productions = None | ||
1819 | self.lr_method = None | ||
1820 | |||
1821 | def read_table(self,module): | ||
1822 | if isinstance(module,types.ModuleType): | ||
1823 | parsetab = module | ||
1824 | else: | ||
1825 | if sys.version_info[0] < 3: | ||
1826 | exec("import %s as parsetab" % module) | ||
1827 | else: | ||
1828 | env = { } | ||
1829 | exec("import %s as parsetab" % module, env, env) | ||
1830 | parsetab = env['parsetab'] | ||
1831 | |||
1832 | if parsetab._tabversion != __tabversion__: | ||
1833 | raise VersionError("yacc table file version is out of date") | ||
1834 | |||
1835 | self.lr_action = parsetab._lr_action | ||
1836 | self.lr_goto = parsetab._lr_goto | ||
1837 | |||
1838 | self.lr_productions = [] | ||
1839 | for p in parsetab._lr_productions: | ||
1840 | self.lr_productions.append(MiniProduction(*p)) | ||
1841 | |||
1842 | self.lr_method = parsetab._lr_method | ||
1843 | return parsetab._lr_signature | ||
1844 | |||
1845 | def read_pickle(self,filename): | ||
1846 | try: | ||
1847 | import cPickle as pickle | ||
1848 | except ImportError: | ||
1849 | import pickle | ||
1850 | |||
1851 | in_f = open(filename,"rb") | ||
1852 | |||
1853 | tabversion = pickle.load(in_f) | ||
1854 | if tabversion != __tabversion__: | ||
1855 | raise VersionError("yacc table file version is out of date") | ||
1856 | self.lr_method = pickle.load(in_f) | ||
1857 | signature = pickle.load(in_f) | ||
1858 | self.lr_action = pickle.load(in_f) | ||
1859 | self.lr_goto = pickle.load(in_f) | ||
1860 | productions = pickle.load(in_f) | ||
1861 | |||
1862 | self.lr_productions = [] | ||
1863 | for p in productions: | ||
1864 | self.lr_productions.append(MiniProduction(*p)) | ||
1865 | |||
1866 | in_f.close() | ||
1867 | return signature | ||
1868 | |||
1869 | # Bind all production function names to callable objects in pdict | ||
1870 | def bind_callables(self,pdict): | ||
1871 | for p in self.lr_productions: | ||
1872 | p.bind(pdict) | ||
1873 | |||
1874 | # ----------------------------------------------------------------------------- | ||
1875 | # === LR Generator === | ||
1876 | # | ||
1877 | # The following classes and functions are used to generate LR parsing tables on | ||
1878 | # a grammar. | ||
1879 | # ----------------------------------------------------------------------------- | ||
1880 | |||
1881 | # ----------------------------------------------------------------------------- | ||
1882 | # digraph() | ||
1883 | # traverse() | ||
1884 | # | ||
1885 | # The following two functions are used to compute set valued functions | ||
1886 | # of the form: | ||
1887 | # | ||
1888 | # F(x) = F'(x) U U{F(y) | x R y} | ||
1889 | # | ||
1890 | # This is used to compute the values of Read() sets as well as FOLLOW sets | ||
1891 | # in LALR(1) generation. | ||
1892 | # | ||
1893 | # Inputs: X - An input set | ||
1894 | # R - A relation | ||
1895 | # FP - Set-valued function | ||
1896 | # ------------------------------------------------------------------------------ | ||
1897 | |||
1898 | def digraph(X,R,FP): | ||
1899 | N = { } | ||
1900 | for x in X: | ||
1901 | N[x] = 0 | ||
1902 | stack = [] | ||
1903 | F = { } | ||
1904 | for x in X: | ||
1905 | if N[x] == 0: traverse(x,N,stack,F,X,R,FP) | ||
1906 | return F | ||
1907 | |||
1908 | def traverse(x,N,stack,F,X,R,FP): | ||
1909 | stack.append(x) | ||
1910 | d = len(stack) | ||
1911 | N[x] = d | ||
1912 | F[x] = FP(x) # F(X) <- F'(x) | ||
1913 | |||
1914 | rel = R(x) # Get y's related to x | ||
1915 | for y in rel: | ||
1916 | if N[y] == 0: | ||
1917 | traverse(y,N,stack,F,X,R,FP) | ||
1918 | N[x] = min(N[x],N[y]) | ||
1919 | for a in F.get(y,[]): | ||
1920 | if a not in F[x]: F[x].append(a) | ||
1921 | if N[x] == d: | ||
1922 | N[stack[-1]] = MAXINT | ||
1923 | F[stack[-1]] = F[x] | ||
1924 | element = stack.pop() | ||
1925 | while element != x: | ||
1926 | N[stack[-1]] = MAXINT | ||
1927 | F[stack[-1]] = F[x] | ||
1928 | element = stack.pop() | ||
1929 | |||
1930 | class LALRError(YaccError): pass | ||
1931 | |||
1932 | # ----------------------------------------------------------------------------- | ||
1933 | # == LRGeneratedTable == | ||
1934 | # | ||
1935 | # This class implements the LR table generation algorithm. There are no | ||
1936 | # public methods except for write() | ||
1937 | # ----------------------------------------------------------------------------- | ||
1938 | |||
1939 | class LRGeneratedTable(LRTable): | ||
1940 | def __init__(self,grammar,method='LALR',log=None): | ||
1941 | if method not in ['SLR','LALR']: | ||
1942 | raise LALRError("Unsupported method %s" % method) | ||
1943 | |||
1944 | self.grammar = grammar | ||
1945 | self.lr_method = method | ||
1946 | |||
1947 | # Set up the logger | ||
1948 | if not log: | ||
1949 | log = NullLogger() | ||
1950 | self.log = log | ||
1951 | |||
1952 | # Internal attributes | ||
1953 | self.lr_action = {} # Action table | ||
1954 | self.lr_goto = {} # Goto table | ||
1955 | self.lr_productions = grammar.Productions # Copy of grammar Production array | ||
1956 | self.lr_goto_cache = {} # Cache of computed gotos | ||
1957 | self.lr0_cidhash = {} # Cache of closures | ||
1958 | |||
1959 | self._add_count = 0 # Internal counter used to detect cycles | ||
1960 | |||
1961 | # Diagonistic information filled in by the table generator | ||
1962 | self.sr_conflict = 0 | ||
1963 | self.rr_conflict = 0 | ||
1964 | self.conflicts = [] # List of conflicts | ||
1965 | |||
1966 | self.sr_conflicts = [] | ||
1967 | self.rr_conflicts = [] | ||
1968 | |||
1969 | # Build the tables | ||
1970 | self.grammar.build_lritems() | ||
1971 | self.grammar.compute_first() | ||
1972 | self.grammar.compute_follow() | ||
1973 | self.lr_parse_table() | ||
1974 | |||
1975 | # Compute the LR(0) closure operation on I, where I is a set of LR(0) items. | ||
1976 | |||
1977 | def lr0_closure(self,I): | ||
1978 | self._add_count += 1 | ||
1979 | |||
1980 | # Add everything in I to J | ||
1981 | J = I[:] | ||
1982 | didadd = 1 | ||
1983 | while didadd: | ||
1984 | didadd = 0 | ||
1985 | for j in J: | ||
1986 | for x in j.lr_after: | ||
1987 | if getattr(x,"lr0_added",0) == self._add_count: continue | ||
1988 | # Add B --> .G to J | ||
1989 | J.append(x.lr_next) | ||
1990 | x.lr0_added = self._add_count | ||
1991 | didadd = 1 | ||
1992 | |||
1993 | return J | ||
1994 | |||
1995 | # Compute the LR(0) goto function goto(I,X) where I is a set | ||
1996 | # of LR(0) items and X is a grammar symbol. This function is written | ||
1997 | # in a way that guarantees uniqueness of the generated goto sets | ||
1998 | # (i.e. the same goto set will never be returned as two different Python | ||
1999 | # objects). With uniqueness, we can later do fast set comparisons using | ||
2000 | # id(obj) instead of element-wise comparison. | ||
2001 | |||
2002 | def lr0_goto(self,I,x): | ||
2003 | # First we look for a previously cached entry | ||
2004 | g = self.lr_goto_cache.get((id(I),x),None) | ||
2005 | if g: return g | ||
2006 | |||
2007 | # Now we generate the goto set in a way that guarantees uniqueness | ||
2008 | # of the result | ||
2009 | |||
2010 | s = self.lr_goto_cache.get(x,None) | ||
2011 | if not s: | ||
2012 | s = { } | ||
2013 | self.lr_goto_cache[x] = s | ||
2014 | |||
2015 | gs = [ ] | ||
2016 | for p in I: | ||
2017 | n = p.lr_next | ||
2018 | if n and n.lr_before == x: | ||
2019 | s1 = s.get(id(n),None) | ||
2020 | if not s1: | ||
2021 | s1 = { } | ||
2022 | s[id(n)] = s1 | ||
2023 | gs.append(n) | ||
2024 | s = s1 | ||
2025 | g = s.get('$end',None) | ||
2026 | if not g: | ||
2027 | if gs: | ||
2028 | g = self.lr0_closure(gs) | ||
2029 | s['$end'] = g | ||
2030 | else: | ||
2031 | s['$end'] = gs | ||
2032 | self.lr_goto_cache[(id(I),x)] = g | ||
2033 | return g | ||
2034 | |||
2035 | # Compute the LR(0) sets of item function | ||
2036 | def lr0_items(self): | ||
2037 | |||
2038 | C = [ self.lr0_closure([self.grammar.Productions[0].lr_next]) ] | ||
2039 | i = 0 | ||
2040 | for I in C: | ||
2041 | self.lr0_cidhash[id(I)] = i | ||
2042 | i += 1 | ||
2043 | |||
2044 | # Loop over the items in C and each grammar symbols | ||
2045 | i = 0 | ||
2046 | while i < len(C): | ||
2047 | I = C[i] | ||
2048 | i += 1 | ||
2049 | |||
2050 | # Collect all of the symbols that could possibly be in the goto(I,X) sets | ||
2051 | asyms = { } | ||
2052 | for ii in I: | ||
2053 | for s in ii.usyms: | ||
2054 | asyms[s] = None | ||
2055 | |||
2056 | for x in asyms: | ||
2057 | g = self.lr0_goto(I,x) | ||
2058 | if not g: continue | ||
2059 | if id(g) in self.lr0_cidhash: continue | ||
2060 | self.lr0_cidhash[id(g)] = len(C) | ||
2061 | C.append(g) | ||
2062 | |||
2063 | return C | ||
2064 | |||
2065 | # ----------------------------------------------------------------------------- | ||
2066 | # ==== LALR(1) Parsing ==== | ||
2067 | # | ||
2068 | # LALR(1) parsing is almost exactly the same as SLR except that instead of | ||
2069 | # relying upon Follow() sets when performing reductions, a more selective | ||
2070 | # lookahead set that incorporates the state of the LR(0) machine is utilized. | ||
2071 | # Thus, we mainly just have to focus on calculating the lookahead sets. | ||
2072 | # | ||
2073 | # The method used here is due to DeRemer and Pennelo (1982). | ||
2074 | # | ||
2075 | # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1) | ||
2076 | # Lookahead Sets", ACM Transactions on Programming Languages and Systems, | ||
2077 | # Vol. 4, No. 4, Oct. 1982, pp. 615-649 | ||
2078 | # | ||
2079 | # Further details can also be found in: | ||
2080 | # | ||
2081 | # J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing", | ||
2082 | # McGraw-Hill Book Company, (1985). | ||
2083 | # | ||
2084 | # ----------------------------------------------------------------------------- | ||
2085 | |||
2086 | # ----------------------------------------------------------------------------- | ||
2087 | # compute_nullable_nonterminals() | ||
2088 | # | ||
2089 | # Creates a dictionary containing all of the non-terminals that might produce | ||
2090 | # an empty production. | ||
2091 | # ----------------------------------------------------------------------------- | ||
2092 | |||
2093 | def compute_nullable_nonterminals(self): | ||
2094 | nullable = {} | ||
2095 | num_nullable = 0 | ||
2096 | while 1: | ||
2097 | for p in self.grammar.Productions[1:]: | ||
2098 | if p.len == 0: | ||
2099 | nullable[p.name] = 1 | ||
2100 | continue | ||
2101 | for t in p.prod: | ||
2102 | if not t in nullable: break | ||
2103 | else: | ||
2104 | nullable[p.name] = 1 | ||
2105 | if len(nullable) == num_nullable: break | ||
2106 | num_nullable = len(nullable) | ||
2107 | return nullable | ||
2108 | |||
2109 | # ----------------------------------------------------------------------------- | ||
2110 | # find_nonterminal_trans(C) | ||
2111 | # | ||
2112 | # Given a set of LR(0) items, this functions finds all of the non-terminal | ||
2113 | # transitions. These are transitions in which a dot appears immediately before | ||
2114 | # a non-terminal. Returns a list of tuples of the form (state,N) where state | ||
2115 | # is the state number and N is the nonterminal symbol. | ||
2116 | # | ||
2117 | # The input C is the set of LR(0) items. | ||
2118 | # ----------------------------------------------------------------------------- | ||
2119 | |||
2120 | def find_nonterminal_transitions(self,C): | ||
2121 | trans = [] | ||
2122 | for state in range(len(C)): | ||
2123 | for p in C[state]: | ||
2124 | if p.lr_index < p.len - 1: | ||
2125 | t = (state,p.prod[p.lr_index+1]) | ||
2126 | if t[1] in self.grammar.Nonterminals: | ||
2127 | if t not in trans: trans.append(t) | ||
2128 | state = state + 1 | ||
2129 | return trans | ||
2130 | |||
2131 | # ----------------------------------------------------------------------------- | ||
2132 | # dr_relation() | ||
2133 | # | ||
2134 | # Computes the DR(p,A) relationships for non-terminal transitions. The input | ||
2135 | # is a tuple (state,N) where state is a number and N is a nonterminal symbol. | ||
2136 | # | ||
2137 | # Returns a list of terminals. | ||
2138 | # ----------------------------------------------------------------------------- | ||
2139 | |||
2140 | def dr_relation(self,C,trans,nullable): | ||
2141 | dr_set = { } | ||
2142 | state,N = trans | ||
2143 | terms = [] | ||
2144 | |||
2145 | g = self.lr0_goto(C[state],N) | ||
2146 | for p in g: | ||
2147 | if p.lr_index < p.len - 1: | ||
2148 | a = p.prod[p.lr_index+1] | ||
2149 | if a in self.grammar.Terminals: | ||
2150 | if a not in terms: terms.append(a) | ||
2151 | |||
2152 | # This extra bit is to handle the start state | ||
2153 | if state == 0 and N == self.grammar.Productions[0].prod[0]: | ||
2154 | terms.append('$end') | ||
2155 | |||
2156 | return terms | ||
2157 | |||
2158 | # ----------------------------------------------------------------------------- | ||
2159 | # reads_relation() | ||
2160 | # | ||
2161 | # Computes the READS() relation (p,A) READS (t,C). | ||
2162 | # ----------------------------------------------------------------------------- | ||
2163 | |||
2164 | def reads_relation(self,C, trans, empty): | ||
2165 | # Look for empty transitions | ||
2166 | rel = [] | ||
2167 | state, N = trans | ||
2168 | |||
2169 | g = self.lr0_goto(C[state],N) | ||
2170 | j = self.lr0_cidhash.get(id(g),-1) | ||
2171 | for p in g: | ||
2172 | if p.lr_index < p.len - 1: | ||
2173 | a = p.prod[p.lr_index + 1] | ||
2174 | if a in empty: | ||
2175 | rel.append((j,a)) | ||
2176 | |||
2177 | return rel | ||
2178 | |||
2179 | # ----------------------------------------------------------------------------- | ||
2180 | # compute_lookback_includes() | ||
2181 | # | ||
2182 | # Determines the lookback and includes relations | ||
2183 | # | ||
2184 | # LOOKBACK: | ||
2185 | # | ||
2186 | # This relation is determined by running the LR(0) state machine forward. | ||
2187 | # For example, starting with a production "N : . A B C", we run it forward | ||
2188 | # to obtain "N : A B C ." We then build a relationship between this final | ||
2189 | # state and the starting state. These relationships are stored in a dictionary | ||
2190 | # lookdict. | ||
2191 | # | ||
2192 | # INCLUDES: | ||
2193 | # | ||
2194 | # Computes the INCLUDE() relation (p,A) INCLUDES (p',B). | ||
2195 | # | ||
2196 | # This relation is used to determine non-terminal transitions that occur | ||
2197 | # inside of other non-terminal transition states. (p,A) INCLUDES (p', B) | ||
2198 | # if the following holds: | ||
2199 | # | ||
2200 | # B -> LAT, where T -> epsilon and p' -L-> p | ||
2201 | # | ||
2202 | # L is essentially a prefix (which may be empty), T is a suffix that must be | ||
2203 | # able to derive an empty string. State p' must lead to state p with the string L. | ||
2204 | # | ||
2205 | # ----------------------------------------------------------------------------- | ||
2206 | |||
2207 | def compute_lookback_includes(self,C,trans,nullable): | ||
2208 | |||
2209 | lookdict = {} # Dictionary of lookback relations | ||
2210 | includedict = {} # Dictionary of include relations | ||
2211 | |||
2212 | # Make a dictionary of non-terminal transitions | ||
2213 | dtrans = {} | ||
2214 | for t in trans: | ||
2215 | dtrans[t] = 1 | ||
2216 | |||
2217 | # Loop over all transitions and compute lookbacks and includes | ||
2218 | for state,N in trans: | ||
2219 | lookb = [] | ||
2220 | includes = [] | ||
2221 | for p in C[state]: | ||
2222 | if p.name != N: continue | ||
2223 | |||
2224 | # Okay, we have a name match. We now follow the production all the way | ||
2225 | # through the state machine until we get the . on the right hand side | ||
2226 | |||
2227 | lr_index = p.lr_index | ||
2228 | j = state | ||
2229 | while lr_index < p.len - 1: | ||
2230 | lr_index = lr_index + 1 | ||
2231 | t = p.prod[lr_index] | ||
2232 | |||
2233 | # Check to see if this symbol and state are a non-terminal transition | ||
2234 | if (j,t) in dtrans: | ||
2235 | # Yes. Okay, there is some chance that this is an includes relation | ||
2236 | # the only way to know for certain is whether the rest of the | ||
2237 | # production derives empty | ||
2238 | |||
2239 | li = lr_index + 1 | ||
2240 | while li < p.len: | ||
2241 | if p.prod[li] in self.grammar.Terminals: break # No forget it | ||
2242 | if not p.prod[li] in nullable: break | ||
2243 | li = li + 1 | ||
2244 | else: | ||
2245 | # Appears to be a relation between (j,t) and (state,N) | ||
2246 | includes.append((j,t)) | ||
2247 | |||
2248 | g = self.lr0_goto(C[j],t) # Go to next set | ||
2249 | j = self.lr0_cidhash.get(id(g),-1) # Go to next state | ||
2250 | |||
2251 | # When we get here, j is the final state, now we have to locate the production | ||
2252 | for r in C[j]: | ||
2253 | if r.name != p.name: continue | ||
2254 | if r.len != p.len: continue | ||
2255 | i = 0 | ||
2256 | # This look is comparing a production ". A B C" with "A B C ." | ||
2257 | while i < r.lr_index: | ||
2258 | if r.prod[i] != p.prod[i+1]: break | ||
2259 | i = i + 1 | ||
2260 | else: | ||
2261 | lookb.append((j,r)) | ||
2262 | for i in includes: | ||
2263 | if not i in includedict: includedict[i] = [] | ||
2264 | includedict[i].append((state,N)) | ||
2265 | lookdict[(state,N)] = lookb | ||
2266 | |||
2267 | return lookdict,includedict | ||
2268 | |||
2269 | # ----------------------------------------------------------------------------- | ||
2270 | # compute_read_sets() | ||
2271 | # | ||
2272 | # Given a set of LR(0) items, this function computes the read sets. | ||
2273 | # | ||
2274 | # Inputs: C = Set of LR(0) items | ||
2275 | # ntrans = Set of nonterminal transitions | ||
2276 | # nullable = Set of empty transitions | ||
2277 | # | ||
2278 | # Returns a set containing the read sets | ||
2279 | # ----------------------------------------------------------------------------- | ||
2280 | |||
2281 | def compute_read_sets(self,C, ntrans, nullable): | ||
2282 | FP = lambda x: self.dr_relation(C,x,nullable) | ||
2283 | R = lambda x: self.reads_relation(C,x,nullable) | ||
2284 | F = digraph(ntrans,R,FP) | ||
2285 | return F | ||
2286 | |||
2287 | # ----------------------------------------------------------------------------- | ||
2288 | # compute_follow_sets() | ||
2289 | # | ||
2290 | # Given a set of LR(0) items, a set of non-terminal transitions, a readset, | ||
2291 | # and an include set, this function computes the follow sets | ||
2292 | # | ||
2293 | # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)} | ||
2294 | # | ||
2295 | # Inputs: | ||
2296 | # ntrans = Set of nonterminal transitions | ||
2297 | # readsets = Readset (previously computed) | ||
2298 | # inclsets = Include sets (previously computed) | ||
2299 | # | ||
2300 | # Returns a set containing the follow sets | ||
2301 | # ----------------------------------------------------------------------------- | ||
2302 | |||
2303 | def compute_follow_sets(self,ntrans,readsets,inclsets): | ||
2304 | FP = lambda x: readsets[x] | ||
2305 | R = lambda x: inclsets.get(x,[]) | ||
2306 | F = digraph(ntrans,R,FP) | ||
2307 | return F | ||
2308 | |||
2309 | # ----------------------------------------------------------------------------- | ||
2310 | # add_lookaheads() | ||
2311 | # | ||
2312 | # Attaches the lookahead symbols to grammar rules. | ||
2313 | # | ||
2314 | # Inputs: lookbacks - Set of lookback relations | ||
2315 | # followset - Computed follow set | ||
2316 | # | ||
2317 | # This function directly attaches the lookaheads to productions contained | ||
2318 | # in the lookbacks set | ||
2319 | # ----------------------------------------------------------------------------- | ||
2320 | |||
2321 | def add_lookaheads(self,lookbacks,followset): | ||
2322 | for trans,lb in lookbacks.items(): | ||
2323 | # Loop over productions in lookback | ||
2324 | for state,p in lb: | ||
2325 | if not state in p.lookaheads: | ||
2326 | p.lookaheads[state] = [] | ||
2327 | f = followset.get(trans,[]) | ||
2328 | for a in f: | ||
2329 | if a not in p.lookaheads[state]: p.lookaheads[state].append(a) | ||
2330 | |||
2331 | # ----------------------------------------------------------------------------- | ||
2332 | # add_lalr_lookaheads() | ||
2333 | # | ||
2334 | # This function does all of the work of adding lookahead information for use | ||
2335 | # with LALR parsing | ||
2336 | # ----------------------------------------------------------------------------- | ||
2337 | |||
2338 | def add_lalr_lookaheads(self,C): | ||
2339 | # Determine all of the nullable nonterminals | ||
2340 | nullable = self.compute_nullable_nonterminals() | ||
2341 | |||
2342 | # Find all non-terminal transitions | ||
2343 | trans = self.find_nonterminal_transitions(C) | ||
2344 | |||
2345 | # Compute read sets | ||
2346 | readsets = self.compute_read_sets(C,trans,nullable) | ||
2347 | |||
2348 | # Compute lookback/includes relations | ||
2349 | lookd, included = self.compute_lookback_includes(C,trans,nullable) | ||
2350 | |||
2351 | # Compute LALR FOLLOW sets | ||
2352 | followsets = self.compute_follow_sets(trans,readsets,included) | ||
2353 | |||
2354 | # Add all of the lookaheads | ||
2355 | self.add_lookaheads(lookd,followsets) | ||
2356 | |||
2357 | # ----------------------------------------------------------------------------- | ||
2358 | # lr_parse_table() | ||
2359 | # | ||
2360 | # This function constructs the parse tables for SLR or LALR | ||
2361 | # ----------------------------------------------------------------------------- | ||
2362 | def lr_parse_table(self): | ||
2363 | Productions = self.grammar.Productions | ||
2364 | Precedence = self.grammar.Precedence | ||
2365 | goto = self.lr_goto # Goto array | ||
2366 | action = self.lr_action # Action array | ||
2367 | log = self.log # Logger for output | ||
2368 | |||
2369 | actionp = { } # Action production array (temporary) | ||
2370 | |||
2371 | log.info("Parsing method: %s", self.lr_method) | ||
2372 | |||
2373 | # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items | ||
2374 | # This determines the number of states | ||
2375 | |||
2376 | C = self.lr0_items() | ||
2377 | |||
2378 | if self.lr_method == 'LALR': | ||
2379 | self.add_lalr_lookaheads(C) | ||
2380 | |||
2381 | # Build the parser table, state by state | ||
2382 | st = 0 | ||
2383 | for I in C: | ||
2384 | # Loop over each production in I | ||
2385 | actlist = [ ] # List of actions | ||
2386 | st_action = { } | ||
2387 | st_actionp = { } | ||
2388 | st_goto = { } | ||
2389 | log.info("") | ||
2390 | log.info("state %d", st) | ||
2391 | log.info("") | ||
2392 | for p in I: | ||
2393 | log.info(" (%d) %s", p.number, str(p)) | ||
2394 | log.info("") | ||
2395 | |||
2396 | for p in I: | ||
2397 | if p.len == p.lr_index + 1: | ||
2398 | if p.name == "S'": | ||
2399 | # Start symbol. Accept! | ||
2400 | st_action["$end"] = 0 | ||
2401 | st_actionp["$end"] = p | ||
2402 | else: | ||
2403 | # We are at the end of a production. Reduce! | ||
2404 | if self.lr_method == 'LALR': | ||
2405 | laheads = p.lookaheads[st] | ||
2406 | else: | ||
2407 | laheads = self.grammar.Follow[p.name] | ||
2408 | for a in laheads: | ||
2409 | actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p))) | ||
2410 | r = st_action.get(a,None) | ||
2411 | if r is not None: | ||
2412 | # Whoa. Have a shift/reduce or reduce/reduce conflict | ||
2413 | if r > 0: | ||
2414 | # Need to decide on shift or reduce here | ||
2415 | # By default we favor shifting. Need to add | ||
2416 | # some precedence rules here. | ||
2417 | sprec,slevel = Productions[st_actionp[a].number].prec | ||
2418 | rprec,rlevel = Precedence.get(a,('right',0)) | ||
2419 | if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')): | ||
2420 | # We really need to reduce here. | ||
2421 | st_action[a] = -p.number | ||
2422 | st_actionp[a] = p | ||
2423 | if not slevel and not rlevel: | ||
2424 | log.info(" ! shift/reduce conflict for %s resolved as reduce",a) | ||
2425 | self.sr_conflicts.append((st,a,'reduce')) | ||
2426 | Productions[p.number].reduced += 1 | ||
2427 | elif (slevel == rlevel) and (rprec == 'nonassoc'): | ||
2428 | st_action[a] = None | ||
2429 | else: | ||
2430 | # Hmmm. Guess we'll keep the shift | ||
2431 | if not rlevel: | ||
2432 | log.info(" ! shift/reduce conflict for %s resolved as shift",a) | ||
2433 | self.sr_conflicts.append((st,a,'shift')) | ||
2434 | elif r < 0: | ||
2435 | # Reduce/reduce conflict. In this case, we favor the rule | ||
2436 | # that was defined first in the grammar file | ||
2437 | oldp = Productions[-r] | ||
2438 | pp = Productions[p.number] | ||
2439 | if oldp.line > pp.line: | ||
2440 | st_action[a] = -p.number | ||
2441 | st_actionp[a] = p | ||
2442 | chosenp,rejectp = pp,oldp | ||
2443 | Productions[p.number].reduced += 1 | ||
2444 | Productions[oldp.number].reduced -= 1 | ||
2445 | else: | ||
2446 | chosenp,rejectp = oldp,pp | ||
2447 | self.rr_conflicts.append((st,chosenp,rejectp)) | ||
2448 | log.info(" ! reduce/reduce conflict for %s resolved using rule %d (%s)", a,st_actionp[a].number, st_actionp[a]) | ||
2449 | else: | ||
2450 | raise LALRError("Unknown conflict in state %d" % st) | ||
2451 | else: | ||
2452 | st_action[a] = -p.number | ||
2453 | st_actionp[a] = p | ||
2454 | Productions[p.number].reduced += 1 | ||
2455 | else: | ||
2456 | i = p.lr_index | ||
2457 | a = p.prod[i+1] # Get symbol right after the "." | ||
2458 | if a in self.grammar.Terminals: | ||
2459 | g = self.lr0_goto(I,a) | ||
2460 | j = self.lr0_cidhash.get(id(g),-1) | ||
2461 | if j >= 0: | ||
2462 | # We are in a shift state | ||
2463 | actlist.append((a,p,"shift and go to state %d" % j)) | ||
2464 | r = st_action.get(a,None) | ||
2465 | if r is not None: | ||
2466 | # Whoa have a shift/reduce or shift/shift conflict | ||
2467 | if r > 0: | ||
2468 | if r != j: | ||
2469 | raise LALRError("Shift/shift conflict in state %d" % st) | ||
2470 | elif r < 0: | ||
2471 | # Do a precedence check. | ||
2472 | # - if precedence of reduce rule is higher, we reduce. | ||
2473 | # - if precedence of reduce is same and left assoc, we reduce. | ||
2474 | # - otherwise we shift | ||
2475 | rprec,rlevel = Productions[st_actionp[a].number].prec | ||
2476 | sprec,slevel = Precedence.get(a,('right',0)) | ||
2477 | if (slevel > rlevel) or ((slevel == rlevel) and (rprec == 'right')): | ||
2478 | # We decide to shift here... highest precedence to shift | ||
2479 | Productions[st_actionp[a].number].reduced -= 1 | ||
2480 | st_action[a] = j | ||
2481 | st_actionp[a] = p | ||
2482 | if not rlevel: | ||
2483 | log.info(" ! shift/reduce conflict for %s resolved as shift",a) | ||
2484 | self.sr_conflicts.append((st,a,'shift')) | ||
2485 | elif (slevel == rlevel) and (rprec == 'nonassoc'): | ||
2486 | st_action[a] = None | ||
2487 | else: | ||
2488 | # Hmmm. Guess we'll keep the reduce | ||
2489 | if not slevel and not rlevel: | ||
2490 | log.info(" ! shift/reduce conflict for %s resolved as reduce",a) | ||
2491 | self.sr_conflicts.append((st,a,'reduce')) | ||
2492 | |||
2493 | else: | ||
2494 | raise LALRError("Unknown conflict in state %d" % st) | ||
2495 | else: | ||
2496 | st_action[a] = j | ||
2497 | st_actionp[a] = p | ||
2498 | |||
2499 | # Print the actions associated with each terminal | ||
2500 | _actprint = { } | ||
2501 | for a,p,m in actlist: | ||
2502 | if a in st_action: | ||
2503 | if p is st_actionp[a]: | ||
2504 | log.info(" %-15s %s",a,m) | ||
2505 | _actprint[(a,m)] = 1 | ||
2506 | log.info("") | ||
2507 | # Print the actions that were not used. (debugging) | ||
2508 | not_used = 0 | ||
2509 | for a,p,m in actlist: | ||
2510 | if a in st_action: | ||
2511 | if p is not st_actionp[a]: | ||
2512 | if not (a,m) in _actprint: | ||
2513 | log.debug(" ! %-15s [ %s ]",a,m) | ||
2514 | not_used = 1 | ||
2515 | _actprint[(a,m)] = 1 | ||
2516 | if not_used: | ||
2517 | log.debug("") | ||
2518 | |||
2519 | # Construct the goto table for this state | ||
2520 | |||
2521 | nkeys = { } | ||
2522 | for ii in I: | ||
2523 | for s in ii.usyms: | ||
2524 | if s in self.grammar.Nonterminals: | ||
2525 | nkeys[s] = None | ||
2526 | for n in nkeys: | ||
2527 | g = self.lr0_goto(I,n) | ||
2528 | j = self.lr0_cidhash.get(id(g),-1) | ||
2529 | if j >= 0: | ||
2530 | st_goto[n] = j | ||
2531 | log.info(" %-30s shift and go to state %d",n,j) | ||
2532 | |||
2533 | action[st] = st_action | ||
2534 | actionp[st] = st_actionp | ||
2535 | goto[st] = st_goto | ||
2536 | st += 1 | ||
2537 | |||
2538 | |||
2539 | # ----------------------------------------------------------------------------- | ||
2540 | # write() | ||
2541 | # | ||
2542 | # This function writes the LR parsing tables to a file | ||
2543 | # ----------------------------------------------------------------------------- | ||
2544 | |||
2545 | def write_table(self,modulename,outputdir='',signature=""): | ||
2546 | basemodulename = modulename.split(".")[-1] | ||
2547 | filename = os.path.join(outputdir,basemodulename) + ".py" | ||
2548 | try: | ||
2549 | f = open(filename,"w") | ||
2550 | |||
2551 | f.write(""" | ||
2552 | # %s | ||
2553 | # This file is automatically generated. Do not edit. | ||
2554 | _tabversion = %r | ||
2555 | |||
2556 | _lr_method = %r | ||
2557 | |||
2558 | _lr_signature = %r | ||
2559 | """ % (filename, __tabversion__, self.lr_method, signature)) | ||
2560 | |||
2561 | # Change smaller to 0 to go back to original tables | ||
2562 | smaller = 1 | ||
2563 | |||
2564 | # Factor out names to try and make smaller | ||
2565 | if smaller: | ||
2566 | items = { } | ||
2567 | |||
2568 | for s,nd in self.lr_action.items(): | ||
2569 | for name,v in nd.items(): | ||
2570 | i = items.get(name) | ||
2571 | if not i: | ||
2572 | i = ([],[]) | ||
2573 | items[name] = i | ||
2574 | i[0].append(s) | ||
2575 | i[1].append(v) | ||
2576 | |||
2577 | f.write("\n_lr_action_items = {") | ||
2578 | for k,v in items.items(): | ||
2579 | f.write("%r:([" % k) | ||
2580 | for i in v[0]: | ||
2581 | f.write("%r," % i) | ||
2582 | f.write("],[") | ||
2583 | for i in v[1]: | ||
2584 | f.write("%r," % i) | ||
2585 | |||
2586 | f.write("]),") | ||
2587 | f.write("}\n") | ||
2588 | |||
2589 | f.write(""" | ||
2590 | _lr_action = { } | ||
2591 | for _k, _v in _lr_action_items.items(): | ||
2592 | for _x,_y in zip(_v[0],_v[1]): | ||
2593 | if not _x in _lr_action: _lr_action[_x] = { } | ||
2594 | _lr_action[_x][_k] = _y | ||
2595 | del _lr_action_items | ||
2596 | """) | ||
2597 | |||
2598 | else: | ||
2599 | f.write("\n_lr_action = { "); | ||
2600 | for k,v in self.lr_action.items(): | ||
2601 | f.write("(%r,%r):%r," % (k[0],k[1],v)) | ||
2602 | f.write("}\n"); | ||
2603 | |||
2604 | if smaller: | ||
2605 | # Factor out names to try and make smaller | ||
2606 | items = { } | ||
2607 | |||
2608 | for s,nd in self.lr_goto.items(): | ||
2609 | for name,v in nd.items(): | ||
2610 | i = items.get(name) | ||
2611 | if not i: | ||
2612 | i = ([],[]) | ||
2613 | items[name] = i | ||
2614 | i[0].append(s) | ||
2615 | i[1].append(v) | ||
2616 | |||
2617 | f.write("\n_lr_goto_items = {") | ||
2618 | for k,v in items.items(): | ||
2619 | f.write("%r:([" % k) | ||
2620 | for i in v[0]: | ||
2621 | f.write("%r," % i) | ||
2622 | f.write("],[") | ||
2623 | for i in v[1]: | ||
2624 | f.write("%r," % i) | ||
2625 | |||
2626 | f.write("]),") | ||
2627 | f.write("}\n") | ||
2628 | |||
2629 | f.write(""" | ||
2630 | _lr_goto = { } | ||
2631 | for _k, _v in _lr_goto_items.items(): | ||
2632 | for _x,_y in zip(_v[0],_v[1]): | ||
2633 | if not _x in _lr_goto: _lr_goto[_x] = { } | ||
2634 | _lr_goto[_x][_k] = _y | ||
2635 | del _lr_goto_items | ||
2636 | """) | ||
2637 | else: | ||
2638 | f.write("\n_lr_goto = { "); | ||
2639 | for k,v in self.lr_goto.items(): | ||
2640 | f.write("(%r,%r):%r," % (k[0],k[1],v)) | ||
2641 | f.write("}\n"); | ||
2642 | |||
2643 | # Write production table | ||
2644 | f.write("_lr_productions = [\n") | ||
2645 | for p in self.lr_productions: | ||
2646 | if p.func: | ||
2647 | f.write(" (%r,%r,%d,%r,%r,%d),\n" % (p.str,p.name, p.len, p.func,p.file,p.line)) | ||
2648 | else: | ||
2649 | f.write(" (%r,%r,%d,None,None,None),\n" % (str(p),p.name, p.len)) | ||
2650 | f.write("]\n") | ||
2651 | f.close() | ||
2652 | |||
2653 | except IOError: | ||
2654 | e = sys.exc_info()[1] | ||
2655 | sys.stderr.write("Unable to create '%s'\n" % filename) | ||
2656 | sys.stderr.write(str(e)+"\n") | ||
2657 | return | ||
2658 | |||
2659 | |||
2660 | # ----------------------------------------------------------------------------- | ||
2661 | # pickle_table() | ||
2662 | # | ||
2663 | # This function pickles the LR parsing tables to a supplied file object | ||
2664 | # ----------------------------------------------------------------------------- | ||
2665 | |||
2666 | def pickle_table(self,filename,signature=""): | ||
2667 | try: | ||
2668 | import cPickle as pickle | ||
2669 | except ImportError: | ||
2670 | import pickle | ||
2671 | outf = open(filename,"wb") | ||
2672 | pickle.dump(__tabversion__,outf,pickle_protocol) | ||
2673 | pickle.dump(self.lr_method,outf,pickle_protocol) | ||
2674 | pickle.dump(signature,outf,pickle_protocol) | ||
2675 | pickle.dump(self.lr_action,outf,pickle_protocol) | ||
2676 | pickle.dump(self.lr_goto,outf,pickle_protocol) | ||
2677 | |||
2678 | outp = [] | ||
2679 | for p in self.lr_productions: | ||
2680 | if p.func: | ||
2681 | outp.append((p.str,p.name, p.len, p.func,p.file,p.line)) | ||
2682 | else: | ||
2683 | outp.append((str(p),p.name,p.len,None,None,None)) | ||
2684 | pickle.dump(outp,outf,pickle_protocol) | ||
2685 | outf.close() | ||
2686 | |||
2687 | # ----------------------------------------------------------------------------- | ||
2688 | # === INTROSPECTION === | ||
2689 | # | ||
2690 | # The following functions and classes are used to implement the PLY | ||
2691 | # introspection features followed by the yacc() function itself. | ||
2692 | # ----------------------------------------------------------------------------- | ||
2693 | |||
2694 | # ----------------------------------------------------------------------------- | ||
2695 | # get_caller_module_dict() | ||
2696 | # | ||
2697 | # This function returns a dictionary containing all of the symbols defined within | ||
2698 | # a caller further down the call stack. This is used to get the environment | ||
2699 | # associated with the yacc() call if none was provided. | ||
2700 | # ----------------------------------------------------------------------------- | ||
2701 | |||
2702 | def get_caller_module_dict(levels): | ||
2703 | try: | ||
2704 | raise RuntimeError | ||
2705 | except RuntimeError: | ||
2706 | e,b,t = sys.exc_info() | ||
2707 | f = t.tb_frame | ||
2708 | while levels > 0: | ||
2709 | f = f.f_back | ||
2710 | levels -= 1 | ||
2711 | ldict = f.f_globals.copy() | ||
2712 | if f.f_globals != f.f_locals: | ||
2713 | ldict.update(f.f_locals) | ||
2714 | |||
2715 | return ldict | ||
2716 | |||
2717 | # ----------------------------------------------------------------------------- | ||
2718 | # parse_grammar() | ||
2719 | # | ||
2720 | # This takes a raw grammar rule string and parses it into production data | ||
2721 | # ----------------------------------------------------------------------------- | ||
2722 | def parse_grammar(doc,file,line): | ||
2723 | grammar = [] | ||
2724 | # Split the doc string into lines | ||
2725 | pstrings = doc.splitlines() | ||
2726 | lastp = None | ||
2727 | dline = line | ||
2728 | for ps in pstrings: | ||
2729 | dline += 1 | ||
2730 | p = ps.split() | ||
2731 | if not p: continue | ||
2732 | try: | ||
2733 | if p[0] == '|': | ||
2734 | # This is a continuation of a previous rule | ||
2735 | if not lastp: | ||
2736 | raise SyntaxError("%s:%d: Misplaced '|'" % (file,dline)) | ||
2737 | prodname = lastp | ||
2738 | syms = p[1:] | ||
2739 | else: | ||
2740 | prodname = p[0] | ||
2741 | lastp = prodname | ||
2742 | syms = p[2:] | ||
2743 | assign = p[1] | ||
2744 | if assign != ':' and assign != '::=': | ||
2745 | raise SyntaxError("%s:%d: Syntax error. Expected ':'" % (file,dline)) | ||
2746 | |||
2747 | grammar.append((file,dline,prodname,syms)) | ||
2748 | except SyntaxError: | ||
2749 | raise | ||
2750 | except Exception: | ||
2751 | raise SyntaxError("%s:%d: Syntax error in rule '%s'" % (file,dline,ps.strip())) | ||
2752 | |||
2753 | return grammar | ||
2754 | |||
2755 | # ----------------------------------------------------------------------------- | ||
2756 | # ParserReflect() | ||
2757 | # | ||
2758 | # This class represents information extracted for building a parser including | ||
2759 | # start symbol, error function, tokens, precedence list, action functions, | ||
2760 | # etc. | ||
2761 | # ----------------------------------------------------------------------------- | ||
2762 | class ParserReflect(object): | ||
2763 | def __init__(self,pdict,log=None): | ||
2764 | self.pdict = pdict | ||
2765 | self.start = None | ||
2766 | self.error_func = None | ||
2767 | self.tokens = None | ||
2768 | self.files = {} | ||
2769 | self.grammar = [] | ||
2770 | self.error = 0 | ||
2771 | |||
2772 | if log is None: | ||
2773 | self.log = PlyLogger(sys.stderr) | ||
2774 | else: | ||
2775 | self.log = log | ||
2776 | |||
2777 | # Get all of the basic information | ||
2778 | def get_all(self): | ||
2779 | self.get_start() | ||
2780 | self.get_error_func() | ||
2781 | self.get_tokens() | ||
2782 | self.get_precedence() | ||
2783 | self.get_pfunctions() | ||
2784 | |||
2785 | # Validate all of the information | ||
2786 | def validate_all(self): | ||
2787 | self.validate_start() | ||
2788 | self.validate_error_func() | ||
2789 | self.validate_tokens() | ||
2790 | self.validate_precedence() | ||
2791 | self.validate_pfunctions() | ||
2792 | self.validate_files() | ||
2793 | return self.error | ||
2794 | |||
2795 | # Compute a signature over the grammar | ||
2796 | def signature(self): | ||
2797 | try: | ||
2798 | from hashlib import md5 | ||
2799 | except ImportError: | ||
2800 | from md5 import md5 | ||
2801 | try: | ||
2802 | sig = md5() | ||
2803 | if self.start: | ||
2804 | sig.update(self.start.encode('latin-1')) | ||
2805 | if self.prec: | ||
2806 | sig.update("".join(["".join(p) for p in self.prec]).encode('latin-1')) | ||
2807 | if self.tokens: | ||
2808 | sig.update(" ".join(self.tokens).encode('latin-1')) | ||
2809 | for f in self.pfuncs: | ||
2810 | if f[3]: | ||
2811 | sig.update(f[3].encode('latin-1')) | ||
2812 | except (TypeError,ValueError): | ||
2813 | pass | ||
2814 | return sig.digest() | ||
2815 | |||
2816 | # ----------------------------------------------------------------------------- | ||
2817 | # validate_file() | ||
2818 | # | ||
2819 | # This method checks to see if there are duplicated p_rulename() functions | ||
2820 | # in the parser module file. Without this function, it is really easy for | ||
2821 | # users to make mistakes by cutting and pasting code fragments (and it's a real | ||
2822 | # bugger to try and figure out why the resulting parser doesn't work). Therefore, | ||
2823 | # we just do a little regular expression pattern matching of def statements | ||
2824 | # to try and detect duplicates. | ||
2825 | # ----------------------------------------------------------------------------- | ||
2826 | |||
2827 | def validate_files(self): | ||
2828 | # Match def p_funcname( | ||
2829 | fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(') | ||
2830 | |||
2831 | for filename in self.files.keys(): | ||
2832 | base,ext = os.path.splitext(filename) | ||
2833 | if ext != '.py': return 1 # No idea. Assume it's okay. | ||
2834 | |||
2835 | try: | ||
2836 | f = open(filename) | ||
2837 | lines = f.readlines() | ||
2838 | f.close() | ||
2839 | except IOError: | ||
2840 | continue | ||
2841 | |||
2842 | counthash = { } | ||
2843 | for linen,l in enumerate(lines): | ||
2844 | linen += 1 | ||
2845 | m = fre.match(l) | ||
2846 | if m: | ||
2847 | name = m.group(1) | ||
2848 | prev = counthash.get(name) | ||
2849 | if not prev: | ||
2850 | counthash[name] = linen | ||
2851 | else: | ||
2852 | self.log.warning("%s:%d: Function %s redefined. Previously defined on line %d", filename,linen,name,prev) | ||
2853 | |||
2854 | # Get the start symbol | ||
2855 | def get_start(self): | ||
2856 | self.start = self.pdict.get('start') | ||
2857 | |||
2858 | # Validate the start symbol | ||
2859 | def validate_start(self): | ||
2860 | if self.start is not None: | ||
2861 | if not isinstance(self.start,str): | ||
2862 | self.log.error("'start' must be a string") | ||
2863 | |||
2864 | # Look for error handler | ||
2865 | def get_error_func(self): | ||
2866 | self.error_func = self.pdict.get('p_error') | ||
2867 | |||
2868 | # Validate the error function | ||
2869 | def validate_error_func(self): | ||
2870 | if self.error_func: | ||
2871 | if isinstance(self.error_func,types.FunctionType): | ||
2872 | ismethod = 0 | ||
2873 | elif isinstance(self.error_func, types.MethodType): | ||
2874 | ismethod = 1 | ||
2875 | else: | ||
2876 | self.log.error("'p_error' defined, but is not a function or method") | ||
2877 | self.error = 1 | ||
2878 | return | ||
2879 | |||
2880 | eline = func_code(self.error_func).co_firstlineno | ||
2881 | efile = func_code(self.error_func).co_filename | ||
2882 | self.files[efile] = 1 | ||
2883 | |||
2884 | if (func_code(self.error_func).co_argcount != 1+ismethod): | ||
2885 | self.log.error("%s:%d: p_error() requires 1 argument",efile,eline) | ||
2886 | self.error = 1 | ||
2887 | |||
2888 | # Get the tokens map | ||
2889 | def get_tokens(self): | ||
2890 | tokens = self.pdict.get("tokens",None) | ||
2891 | if not tokens: | ||
2892 | self.log.error("No token list is defined") | ||
2893 | self.error = 1 | ||
2894 | return | ||
2895 | |||
2896 | if not isinstance(tokens,(list, tuple)): | ||
2897 | self.log.error("tokens must be a list or tuple") | ||
2898 | self.error = 1 | ||
2899 | return | ||
2900 | |||
2901 | if not tokens: | ||
2902 | self.log.error("tokens is empty") | ||
2903 | self.error = 1 | ||
2904 | return | ||
2905 | |||
2906 | self.tokens = tokens | ||
2907 | |||
2908 | # Validate the tokens | ||
2909 | def validate_tokens(self): | ||
2910 | # Validate the tokens. | ||
2911 | if 'error' in self.tokens: | ||
2912 | self.log.error("Illegal token name 'error'. Is a reserved word") | ||
2913 | self.error = 1 | ||
2914 | return | ||
2915 | |||
2916 | terminals = {} | ||
2917 | for n in self.tokens: | ||
2918 | if n in terminals: | ||
2919 | self.log.warning("Token '%s' multiply defined", n) | ||
2920 | terminals[n] = 1 | ||
2921 | |||
2922 | # Get the precedence map (if any) | ||
2923 | def get_precedence(self): | ||
2924 | self.prec = self.pdict.get("precedence",None) | ||
2925 | |||
2926 | # Validate and parse the precedence map | ||
2927 | def validate_precedence(self): | ||
2928 | preclist = [] | ||
2929 | if self.prec: | ||
2930 | if not isinstance(self.prec,(list,tuple)): | ||
2931 | self.log.error("precedence must be a list or tuple") | ||
2932 | self.error = 1 | ||
2933 | return | ||
2934 | for level,p in enumerate(self.prec): | ||
2935 | if not isinstance(p,(list,tuple)): | ||
2936 | self.log.error("Bad precedence table") | ||
2937 | self.error = 1 | ||
2938 | return | ||
2939 | |||
2940 | if len(p) < 2: | ||
2941 | self.log.error("Malformed precedence entry %s. Must be (assoc, term, ..., term)",p) | ||
2942 | self.error = 1 | ||
2943 | return | ||
2944 | assoc = p[0] | ||
2945 | if not isinstance(assoc,str): | ||
2946 | self.log.error("precedence associativity must be a string") | ||
2947 | self.error = 1 | ||
2948 | return | ||
2949 | for term in p[1:]: | ||
2950 | if not isinstance(term,str): | ||
2951 | self.log.error("precedence items must be strings") | ||
2952 | self.error = 1 | ||
2953 | return | ||
2954 | preclist.append((term,assoc,level+1)) | ||
2955 | self.preclist = preclist | ||
2956 | |||
2957 | # Get all p_functions from the grammar | ||
2958 | def get_pfunctions(self): | ||
2959 | p_functions = [] | ||
2960 | for name, item in self.pdict.items(): | ||
2961 | if name[:2] != 'p_': continue | ||
2962 | if name == 'p_error': continue | ||
2963 | if isinstance(item,(types.FunctionType,types.MethodType)): | ||
2964 | line = func_code(item).co_firstlineno | ||
2965 | file = func_code(item).co_filename | ||
2966 | p_functions.append((line,file,name,item.__doc__)) | ||
2967 | |||
2968 | # Sort all of the actions by line number | ||
2969 | p_functions.sort() | ||
2970 | self.pfuncs = p_functions | ||
2971 | |||
2972 | |||
2973 | # Validate all of the p_functions | ||
2974 | def validate_pfunctions(self): | ||
2975 | grammar = [] | ||
2976 | # Check for non-empty symbols | ||
2977 | if len(self.pfuncs) == 0: | ||
2978 | self.log.error("no rules of the form p_rulename are defined") | ||
2979 | self.error = 1 | ||
2980 | return | ||
2981 | |||
2982 | for line, file, name, doc in self.pfuncs: | ||
2983 | func = self.pdict[name] | ||
2984 | if isinstance(func, types.MethodType): | ||
2985 | reqargs = 2 | ||
2986 | else: | ||
2987 | reqargs = 1 | ||
2988 | if func_code(func).co_argcount > reqargs: | ||
2989 | self.log.error("%s:%d: Rule '%s' has too many arguments",file,line,func.__name__) | ||
2990 | self.error = 1 | ||
2991 | elif func_code(func).co_argcount < reqargs: | ||
2992 | self.log.error("%s:%d: Rule '%s' requires an argument",file,line,func.__name__) | ||
2993 | self.error = 1 | ||
2994 | elif not func.__doc__: | ||
2995 | self.log.warning("%s:%d: No documentation string specified in function '%s' (ignored)",file,line,func.__name__) | ||
2996 | else: | ||
2997 | try: | ||
2998 | parsed_g = parse_grammar(doc,file,line) | ||
2999 | for g in parsed_g: | ||
3000 | grammar.append((name, g)) | ||
3001 | except SyntaxError: | ||
3002 | e = sys.exc_info()[1] | ||
3003 | self.log.error(str(e)) | ||
3004 | self.error = 1 | ||
3005 | |||
3006 | # Looks like a valid grammar rule | ||
3007 | # Mark the file in which defined. | ||
3008 | self.files[file] = 1 | ||
3009 | |||
3010 | # Secondary validation step that looks for p_ definitions that are not functions | ||
3011 | # or functions that look like they might be grammar rules. | ||
3012 | |||
3013 | for n,v in self.pdict.items(): | ||
3014 | if n[0:2] == 'p_' and isinstance(v, (types.FunctionType, types.MethodType)): continue | ||
3015 | if n[0:2] == 't_': continue | ||
3016 | if n[0:2] == 'p_' and n != 'p_error': | ||
3017 | self.log.warning("'%s' not defined as a function", n) | ||
3018 | if ((isinstance(v,types.FunctionType) and func_code(v).co_argcount == 1) or | ||
3019 | (isinstance(v,types.MethodType) and func_code(v).co_argcount == 2)): | ||
3020 | try: | ||
3021 | doc = v.__doc__.split(" ") | ||
3022 | if doc[1] == ':': | ||
3023 | self.log.warning("%s:%d: Possible grammar rule '%s' defined without p_ prefix", | ||
3024 | func_code(v).co_filename, func_code(v).co_firstlineno,n) | ||
3025 | except Exception: | ||
3026 | pass | ||
3027 | |||
3028 | self.grammar = grammar | ||
3029 | |||
3030 | # ----------------------------------------------------------------------------- | ||
3031 | # yacc(module) | ||
3032 | # | ||
3033 | # Build a parser | ||
3034 | # ----------------------------------------------------------------------------- | ||
3035 | |||
3036 | def yacc(method='LALR', debug=yaccdebug, module=None, tabmodule=tab_module, start=None, | ||
3037 | check_recursion=1, optimize=0, write_tables=1, debugfile=debug_file,outputdir='', | ||
3038 | debuglog=None, errorlog = None, picklefile=None): | ||
3039 | |||
3040 | global parse # Reference to the parsing method of the last built parser | ||
3041 | |||
3042 | # If pickling is enabled, table files are not created | ||
3043 | |||
3044 | if picklefile: | ||
3045 | write_tables = 0 | ||
3046 | |||
3047 | if errorlog is None: | ||
3048 | errorlog = PlyLogger(sys.stderr) | ||
3049 | |||
3050 | # Get the module dictionary used for the parser | ||
3051 | if module: | ||
3052 | _items = [(k,getattr(module,k)) for k in dir(module)] | ||
3053 | pdict = dict(_items) | ||
3054 | else: | ||
3055 | pdict = get_caller_module_dict(2) | ||
3056 | |||
3057 | # Collect parser information from the dictionary | ||
3058 | pinfo = ParserReflect(pdict,log=errorlog) | ||
3059 | pinfo.get_all() | ||
3060 | |||
3061 | if pinfo.error: | ||
3062 | raise YaccError("Unable to build parser") | ||
3063 | |||
3064 | # Check signature against table files (if any) | ||
3065 | signature = pinfo.signature() | ||
3066 | |||
3067 | # Read the tables | ||
3068 | try: | ||
3069 | lr = LRTable() | ||
3070 | if picklefile: | ||
3071 | read_signature = lr.read_pickle(picklefile) | ||
3072 | else: | ||
3073 | read_signature = lr.read_table(tabmodule) | ||
3074 | if optimize or (read_signature == signature): | ||
3075 | try: | ||
3076 | lr.bind_callables(pinfo.pdict) | ||
3077 | parser = LRParser(lr,pinfo.error_func) | ||
3078 | parse = parser.parse | ||
3079 | return parser | ||
3080 | except Exception: | ||
3081 | e = sys.exc_info()[1] | ||
3082 | errorlog.warning("There was a problem loading the table file: %s", repr(e)) | ||
3083 | except VersionError: | ||
3084 | e = sys.exc_info() | ||
3085 | errorlog.warning(str(e)) | ||
3086 | except Exception: | ||
3087 | pass | ||
3088 | |||
3089 | if debuglog is None: | ||
3090 | if debug: | ||
3091 | debuglog = PlyLogger(open(debugfile,"w")) | ||
3092 | else: | ||
3093 | debuglog = NullLogger() | ||
3094 | |||
3095 | debuglog.info("Created by PLY version %s (http://www.dabeaz.com/ply)", __version__) | ||
3096 | |||
3097 | |||
3098 | errors = 0 | ||
3099 | |||
3100 | # Validate the parser information | ||
3101 | if pinfo.validate_all(): | ||
3102 | raise YaccError("Unable to build parser") | ||
3103 | |||
3104 | if not pinfo.error_func: | ||
3105 | errorlog.warning("no p_error() function is defined") | ||
3106 | |||
3107 | # Create a grammar object | ||
3108 | grammar = Grammar(pinfo.tokens) | ||
3109 | |||
3110 | # Set precedence level for terminals | ||
3111 | for term, assoc, level in pinfo.preclist: | ||
3112 | try: | ||
3113 | grammar.set_precedence(term,assoc,level) | ||
3114 | except GrammarError: | ||
3115 | e = sys.exc_info()[1] | ||
3116 | errorlog.warning("%s",str(e)) | ||
3117 | |||
3118 | # Add productions to the grammar | ||
3119 | for funcname, gram in pinfo.grammar: | ||
3120 | file, line, prodname, syms = gram | ||
3121 | try: | ||
3122 | grammar.add_production(prodname,syms,funcname,file,line) | ||
3123 | except GrammarError: | ||
3124 | e = sys.exc_info()[1] | ||
3125 | errorlog.error("%s",str(e)) | ||
3126 | errors = 1 | ||
3127 | |||
3128 | # Set the grammar start symbols | ||
3129 | try: | ||
3130 | if start is None: | ||
3131 | grammar.set_start(pinfo.start) | ||
3132 | else: | ||
3133 | grammar.set_start(start) | ||
3134 | except GrammarError: | ||
3135 | e = sys.exc_info()[1] | ||
3136 | errorlog.error(str(e)) | ||
3137 | errors = 1 | ||
3138 | |||
3139 | if errors: | ||
3140 | raise YaccError("Unable to build parser") | ||
3141 | |||
3142 | # Verify the grammar structure | ||
3143 | undefined_symbols = grammar.undefined_symbols() | ||
3144 | for sym, prod in undefined_symbols: | ||
3145 | errorlog.error("%s:%d: Symbol '%s' used, but not defined as a token or a rule",prod.file,prod.line,sym) | ||
3146 | errors = 1 | ||
3147 | |||
3148 | unused_terminals = grammar.unused_terminals() | ||
3149 | if unused_terminals: | ||
3150 | debuglog.info("") | ||
3151 | debuglog.info("Unused terminals:") | ||
3152 | debuglog.info("") | ||
3153 | for term in unused_terminals: | ||
3154 | errorlog.warning("Token '%s' defined, but not used", term) | ||
3155 | debuglog.info(" %s", term) | ||
3156 | |||
3157 | # Print out all productions to the debug log | ||
3158 | if debug: | ||
3159 | debuglog.info("") | ||
3160 | debuglog.info("Grammar") | ||
3161 | debuglog.info("") | ||
3162 | for n,p in enumerate(grammar.Productions): | ||
3163 | debuglog.info("Rule %-5d %s", n, p) | ||
3164 | |||
3165 | # Find unused non-terminals | ||
3166 | unused_rules = grammar.unused_rules() | ||
3167 | for prod in unused_rules: | ||
3168 | errorlog.warning("%s:%d: Rule '%s' defined, but not used", prod.file, prod.line, prod.name) | ||
3169 | |||
3170 | if len(unused_terminals) == 1: | ||
3171 | errorlog.warning("There is 1 unused token") | ||
3172 | if len(unused_terminals) > 1: | ||
3173 | errorlog.warning("There are %d unused tokens", len(unused_terminals)) | ||
3174 | |||
3175 | if len(unused_rules) == 1: | ||
3176 | errorlog.warning("There is 1 unused rule") | ||
3177 | if len(unused_rules) > 1: | ||
3178 | errorlog.warning("There are %d unused rules", len(unused_rules)) | ||
3179 | |||
3180 | if debug: | ||
3181 | debuglog.info("") | ||
3182 | debuglog.info("Terminals, with rules where they appear") | ||
3183 | debuglog.info("") | ||
3184 | terms = list(grammar.Terminals) | ||
3185 | terms.sort() | ||
3186 | for term in terms: | ||
3187 | debuglog.info("%-20s : %s", term, " ".join([str(s) for s in grammar.Terminals[term]])) | ||
3188 | |||
3189 | debuglog.info("") | ||
3190 | debuglog.info("Nonterminals, with rules where they appear") | ||
3191 | debuglog.info("") | ||
3192 | nonterms = list(grammar.Nonterminals) | ||
3193 | nonterms.sort() | ||
3194 | for nonterm in nonterms: | ||
3195 | debuglog.info("%-20s : %s", nonterm, " ".join([str(s) for s in grammar.Nonterminals[nonterm]])) | ||
3196 | debuglog.info("") | ||
3197 | |||
3198 | if check_recursion: | ||
3199 | unreachable = grammar.find_unreachable() | ||
3200 | for u in unreachable: | ||
3201 | errorlog.warning("Symbol '%s' is unreachable",u) | ||
3202 | |||
3203 | infinite = grammar.infinite_cycles() | ||
3204 | for inf in infinite: | ||
3205 | errorlog.error("Infinite recursion detected for symbol '%s'", inf) | ||
3206 | errors = 1 | ||
3207 | |||
3208 | unused_prec = grammar.unused_precedence() | ||
3209 | for term, assoc in unused_prec: | ||
3210 | errorlog.error("Precedence rule '%s' defined for unknown symbol '%s'", assoc, term) | ||
3211 | errors = 1 | ||
3212 | |||
3213 | if errors: | ||
3214 | raise YaccError("Unable to build parser") | ||
3215 | |||
3216 | # Run the LRGeneratedTable on the grammar | ||
3217 | if debug: | ||
3218 | errorlog.debug("Generating %s tables", method) | ||
3219 | |||
3220 | lr = LRGeneratedTable(grammar,method,debuglog) | ||
3221 | |||
3222 | if debug: | ||
3223 | num_sr = len(lr.sr_conflicts) | ||
3224 | |||
3225 | # Report shift/reduce and reduce/reduce conflicts | ||
3226 | if num_sr == 1: | ||
3227 | errorlog.warning("1 shift/reduce conflict") | ||
3228 | elif num_sr > 1: | ||
3229 | errorlog.warning("%d shift/reduce conflicts", num_sr) | ||
3230 | |||
3231 | num_rr = len(lr.rr_conflicts) | ||
3232 | if num_rr == 1: | ||
3233 | errorlog.warning("1 reduce/reduce conflict") | ||
3234 | elif num_rr > 1: | ||
3235 | errorlog.warning("%d reduce/reduce conflicts", num_rr) | ||
3236 | |||
3237 | # Write out conflicts to the output file | ||
3238 | if debug and (lr.sr_conflicts or lr.rr_conflicts): | ||
3239 | debuglog.warning("") | ||
3240 | debuglog.warning("Conflicts:") | ||
3241 | debuglog.warning("") | ||
3242 | |||
3243 | for state, tok, resolution in lr.sr_conflicts: | ||
3244 | debuglog.warning("shift/reduce conflict for %s in state %d resolved as %s", tok, state, resolution) | ||
3245 | |||
3246 | already_reported = {} | ||
3247 | for state, rule, rejected in lr.rr_conflicts: | ||
3248 | if (state,id(rule),id(rejected)) in already_reported: | ||
3249 | continue | ||
3250 | debuglog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule) | ||
3251 | debuglog.warning("rejected rule (%s) in state %d", rejected,state) | ||
3252 | errorlog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule) | ||
3253 | errorlog.warning("rejected rule (%s) in state %d", rejected, state) | ||
3254 | already_reported[state,id(rule),id(rejected)] = 1 | ||
3255 | |||
3256 | warned_never = [] | ||
3257 | for state, rule, rejected in lr.rr_conflicts: | ||
3258 | if not rejected.reduced and (rejected not in warned_never): | ||
3259 | debuglog.warning("Rule (%s) is never reduced", rejected) | ||
3260 | errorlog.warning("Rule (%s) is never reduced", rejected) | ||
3261 | warned_never.append(rejected) | ||
3262 | |||
3263 | # Write the table file if requested | ||
3264 | if write_tables: | ||
3265 | lr.write_table(tabmodule,outputdir,signature) | ||
3266 | |||
3267 | # Write a pickled version of the tables | ||
3268 | if picklefile: | ||
3269 | lr.pickle_table(picklefile,signature) | ||
3270 | |||
3271 | # Build the parser | ||
3272 | lr.bind_callables(pinfo.pdict) | ||
3273 | parser = LRParser(lr,pinfo.error_func) | ||
3274 | |||
3275 | parse = parser.parse | ||
3276 | return parser | ||