diff options
author | Koen Kooi <koen@dominion.thruhere.net> | 2011-03-17 21:41:22 +0100 |
---|---|---|
committer | Koen Kooi <koen@dominion.thruhere.net> | 2011-03-17 21:41:22 +0100 |
commit | c58cc7d3796dcee6e93885c835ed04cb566abeb2 (patch) | |
tree | 3eea4d4ef6a4ef79e0f4e025d7012c1a5cc38835 /meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch | |
parent | eec6ab97f712e06eb52c9f7c99e19ffab3ce9d74 (diff) | |
download | meta-openembedded-c58cc7d3796dcee6e93885c835ed04cb566abeb2.tar.gz |
move layer into meta-oe in preparation for future splits
As per TSC decision
Signed-off-by: Koen Kooi <koen@dominion.thruhere.net>
Diffstat (limited to 'meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch')
-rw-r--r-- | meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch | 1401 |
1 files changed, 1401 insertions, 0 deletions
diff --git a/meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch b/meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch new file mode 100644 index 000000000..423cd5652 --- /dev/null +++ b/meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch | |||
@@ -0,0 +1,1401 @@ | |||
1 | 2010-07-10 Sandra Loosemore <sandra@codesourcery.com> | ||
2 | |||
3 | Backport from mainline: | ||
4 | |||
5 | 2010-05-08 Sandra Loosemore <sandra@codesourcery.com> | ||
6 | |||
7 | PR middle-end/28685 | ||
8 | |||
9 | gcc/ | ||
10 | * tree-ssa-reassoc.c (eliminate_redundant_comparison): New function. | ||
11 | (optimize_ops_list): Call it. | ||
12 | |||
13 | gcc/testsuite/ | ||
14 | * gcc.dg/pr28685-1.c: New file. | ||
15 | |||
16 | 2010-06-08 Sandra Loosemore <sandra@codesourcery.com> | ||
17 | |||
18 | PR tree-optimization/39874 | ||
19 | PR middle-end/28685 | ||
20 | |||
21 | gcc/ | ||
22 | * gimple.h (maybe_fold_and_comparisons, maybe_fold_or_comparisons): | ||
23 | Declare. | ||
24 | * gimple-fold.c (canonicalize_bool, same_bool_comparison_p, | ||
25 | same_bool_result_p): New. | ||
26 | (and_var_with_comparison, and_var_with_comparison_1, | ||
27 | and_comparisons_1, and_comparisons, maybe_fold_and_comparisons): New. | ||
28 | (or_var_with_comparison, or_var_with_comparison_1, | ||
29 | or_comparisons_1, or_comparisons, maybe_fold_or_comparisons): New. | ||
30 | * tree-ssa-reassoc.c (eliminate_redundant_comparison): Use | ||
31 | maybe_fold_and_comparisons or maybe_fold_or_comparisons instead | ||
32 | of combine_comparisons. | ||
33 | * tree-ssa-ifcombine.c (ifcombine_ifandif, ifcombine_iforif): Likewise. | ||
34 | |||
35 | gcc/testsuite/ | ||
36 | * gcc.dg/pr39874.c: New file. | ||
37 | |||
38 | 2010-07-10 Yao Qi <yao@codesourcery.com> | ||
39 | |||
40 | Merge from Sourcery G++ 4.4: | ||
41 | |||
42 | === modified file 'gcc/gimple.h' | ||
43 | --- old/gcc/gimple.h 2010-04-02 18:54:46 +0000 | ||
44 | +++ new/gcc/gimple.h 2010-07-30 13:21:51 +0000 | ||
45 | @@ -4743,4 +4743,9 @@ | ||
46 | |||
47 | extern void dump_gimple_statistics (void); | ||
48 | |||
49 | +extern tree maybe_fold_and_comparisons (enum tree_code, tree, tree, | ||
50 | + enum tree_code, tree, tree); | ||
51 | +extern tree maybe_fold_or_comparisons (enum tree_code, tree, tree, | ||
52 | + enum tree_code, tree, tree); | ||
53 | + | ||
54 | #endif /* GCC_GIMPLE_H */ | ||
55 | |||
56 | === added file 'gcc/testsuite/gcc.dg/pr28685-1.c' | ||
57 | --- old/gcc/testsuite/gcc.dg/pr28685-1.c 1970-01-01 00:00:00 +0000 | ||
58 | +++ new/gcc/testsuite/gcc.dg/pr28685-1.c 2010-07-30 13:21:51 +0000 | ||
59 | @@ -0,0 +1,50 @@ | ||
60 | +/* { dg-do compile } */ | ||
61 | +/* { dg-options "-O2 -fdump-tree-optimized" } */ | ||
62 | + | ||
63 | +/* Should produce <=. */ | ||
64 | +int test1 (int a, int b) | ||
65 | +{ | ||
66 | + return (a < b || a == b); | ||
67 | +} | ||
68 | + | ||
69 | +/* Should produce <=. */ | ||
70 | +int test2 (int a, int b) | ||
71 | +{ | ||
72 | + int lt = a < b; | ||
73 | + int eq = a == b; | ||
74 | + | ||
75 | + return (lt || eq); | ||
76 | +} | ||
77 | + | ||
78 | +/* Should produce <= (just deleting redundant test). */ | ||
79 | +int test3 (int a, int b) | ||
80 | +{ | ||
81 | + int lt = a <= b; | ||
82 | + int eq = a == b; | ||
83 | + | ||
84 | + return (lt || eq); | ||
85 | +} | ||
86 | + | ||
87 | +/* Should produce <= (operands reversed to test the swap logic). */ | ||
88 | +int test4 (int a, int b) | ||
89 | +{ | ||
90 | + int lt = a < b; | ||
91 | + int eq = b == a; | ||
92 | + | ||
93 | + return (lt || eq); | ||
94 | +} | ||
95 | + | ||
96 | +/* Should produce constant 0. */ | ||
97 | +int test5 (int a, int b) | ||
98 | +{ | ||
99 | + int lt = a < b; | ||
100 | + int eq = a == b; | ||
101 | + | ||
102 | + return (lt && eq); | ||
103 | +} | ||
104 | + | ||
105 | +/* { dg-final { scan-tree-dump-times " <= " 4 "optimized" } } */ | ||
106 | +/* { dg-final { scan-tree-dump-times "return 0" 1 "optimized" } } */ | ||
107 | +/* { dg-final { scan-tree-dump-not " < " "optimized" } } */ | ||
108 | +/* { dg-final { scan-tree-dump-not " == " "optimized" } } */ | ||
109 | +/* { dg-final { cleanup-tree-dump "optimized" } } */ | ||
110 | |||
111 | === added file 'gcc/testsuite/gcc.dg/pr39874.c' | ||
112 | --- old/gcc/testsuite/gcc.dg/pr39874.c 1970-01-01 00:00:00 +0000 | ||
113 | +++ new/gcc/testsuite/gcc.dg/pr39874.c 2010-07-30 13:21:51 +0000 | ||
114 | @@ -0,0 +1,29 @@ | ||
115 | +/* { dg-do compile } */ | ||
116 | +/* { dg-options "-O2 -fdump-tree-optimized" } */ | ||
117 | + | ||
118 | +extern void func(); | ||
119 | + | ||
120 | +void test1(char *signature) | ||
121 | +{ | ||
122 | + char ch = signature[0]; | ||
123 | + if (ch == 15 || ch == 3) | ||
124 | + { | ||
125 | + if (ch == 15) func(); | ||
126 | + } | ||
127 | +} | ||
128 | + | ||
129 | + | ||
130 | +void test2(char *signature) | ||
131 | +{ | ||
132 | + char ch = signature[0]; | ||
133 | + if (ch == 15 || ch == 3) | ||
134 | + { | ||
135 | + if (ch > 14) func(); | ||
136 | + } | ||
137 | +} | ||
138 | + | ||
139 | +/* { dg-final { scan-tree-dump-times " == 15" 2 "optimized" } } */ | ||
140 | +/* { dg-final { scan-tree-dump-not " == 3" "optimized" } } */ | ||
141 | +/* { dg-final { cleanup-tree-dump "optimized" } } */ | ||
142 | + | ||
143 | + | ||
144 | |||
145 | === modified file 'gcc/tree-ssa-ccp.c' | ||
146 | --- old/gcc/tree-ssa-ccp.c 2010-04-02 15:50:04 +0000 | ||
147 | +++ new/gcc/tree-ssa-ccp.c 2010-07-30 13:21:51 +0000 | ||
148 | @@ -3176,6 +3176,1056 @@ | ||
149 | return changed; | ||
150 | } | ||
151 | |||
152 | +/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE | ||
153 | + if EXPR is null or we don't know how. | ||
154 | + If non-null, the result always has boolean type. */ | ||
155 | + | ||
156 | +static tree | ||
157 | +canonicalize_bool (tree expr, bool invert) | ||
158 | +{ | ||
159 | + if (!expr) | ||
160 | + return NULL_TREE; | ||
161 | + else if (invert) | ||
162 | + { | ||
163 | + if (integer_nonzerop (expr)) | ||
164 | + return boolean_false_node; | ||
165 | + else if (integer_zerop (expr)) | ||
166 | + return boolean_true_node; | ||
167 | + else if (TREE_CODE (expr) == SSA_NAME) | ||
168 | + return fold_build2 (EQ_EXPR, boolean_type_node, expr, | ||
169 | + build_int_cst (TREE_TYPE (expr), 0)); | ||
170 | + else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison) | ||
171 | + return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false), | ||
172 | + boolean_type_node, | ||
173 | + TREE_OPERAND (expr, 0), | ||
174 | + TREE_OPERAND (expr, 1)); | ||
175 | + else | ||
176 | + return NULL_TREE; | ||
177 | + } | ||
178 | + else | ||
179 | + { | ||
180 | + if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) | ||
181 | + return expr; | ||
182 | + if (integer_nonzerop (expr)) | ||
183 | + return boolean_true_node; | ||
184 | + else if (integer_zerop (expr)) | ||
185 | + return boolean_false_node; | ||
186 | + else if (TREE_CODE (expr) == SSA_NAME) | ||
187 | + return fold_build2 (NE_EXPR, boolean_type_node, expr, | ||
188 | + build_int_cst (TREE_TYPE (expr), 0)); | ||
189 | + else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison) | ||
190 | + return fold_build2 (TREE_CODE (expr), | ||
191 | + boolean_type_node, | ||
192 | + TREE_OPERAND (expr, 0), | ||
193 | + TREE_OPERAND (expr, 1)); | ||
194 | + else | ||
195 | + return NULL_TREE; | ||
196 | + } | ||
197 | +} | ||
198 | + | ||
199 | +/* Check to see if a boolean expression EXPR is logically equivalent to the | ||
200 | + comparison (OP1 CODE OP2). Check for various identities involving | ||
201 | + SSA_NAMEs. */ | ||
202 | + | ||
203 | +static bool | ||
204 | +same_bool_comparison_p (const_tree expr, enum tree_code code, | ||
205 | + const_tree op1, const_tree op2) | ||
206 | +{ | ||
207 | + gimple s; | ||
208 | + | ||
209 | + /* The obvious case. */ | ||
210 | + if (TREE_CODE (expr) == code | ||
211 | + && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0) | ||
212 | + && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0)) | ||
213 | + return true; | ||
214 | + | ||
215 | + /* Check for comparing (name, name != 0) and the case where expr | ||
216 | + is an SSA_NAME with a definition matching the comparison. */ | ||
217 | + if (TREE_CODE (expr) == SSA_NAME | ||
218 | + && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) | ||
219 | + { | ||
220 | + if (operand_equal_p (expr, op1, 0)) | ||
221 | + return ((code == NE_EXPR && integer_zerop (op2)) | ||
222 | + || (code == EQ_EXPR && integer_nonzerop (op2))); | ||
223 | + s = SSA_NAME_DEF_STMT (expr); | ||
224 | + if (is_gimple_assign (s) | ||
225 | + && gimple_assign_rhs_code (s) == code | ||
226 | + && operand_equal_p (gimple_assign_rhs1 (s), op1, 0) | ||
227 | + && operand_equal_p (gimple_assign_rhs2 (s), op2, 0)) | ||
228 | + return true; | ||
229 | + } | ||
230 | + | ||
231 | + /* If op1 is of the form (name != 0) or (name == 0), and the definition | ||
232 | + of name is a comparison, recurse. */ | ||
233 | + if (TREE_CODE (op1) == SSA_NAME | ||
234 | + && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE) | ||
235 | + { | ||
236 | + s = SSA_NAME_DEF_STMT (op1); | ||
237 | + if (is_gimple_assign (s) | ||
238 | + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison) | ||
239 | + { | ||
240 | + enum tree_code c = gimple_assign_rhs_code (s); | ||
241 | + if ((c == NE_EXPR && integer_zerop (op2)) | ||
242 | + || (c == EQ_EXPR && integer_nonzerop (op2))) | ||
243 | + return same_bool_comparison_p (expr, c, | ||
244 | + gimple_assign_rhs1 (s), | ||
245 | + gimple_assign_rhs2 (s)); | ||
246 | + if ((c == EQ_EXPR && integer_zerop (op2)) | ||
247 | + || (c == NE_EXPR && integer_nonzerop (op2))) | ||
248 | + return same_bool_comparison_p (expr, | ||
249 | + invert_tree_comparison (c, false), | ||
250 | + gimple_assign_rhs1 (s), | ||
251 | + gimple_assign_rhs2 (s)); | ||
252 | + } | ||
253 | + } | ||
254 | + return false; | ||
255 | +} | ||
256 | + | ||
257 | +/* Check to see if two boolean expressions OP1 and OP2 are logically | ||
258 | + equivalent. */ | ||
259 | + | ||
260 | +static bool | ||
261 | +same_bool_result_p (const_tree op1, const_tree op2) | ||
262 | +{ | ||
263 | + /* Simple cases first. */ | ||
264 | + if (operand_equal_p (op1, op2, 0)) | ||
265 | + return true; | ||
266 | + | ||
267 | + /* Check the cases where at least one of the operands is a comparison. | ||
268 | + These are a bit smarter than operand_equal_p in that they apply some | ||
269 | + identifies on SSA_NAMEs. */ | ||
270 | + if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison | ||
271 | + && same_bool_comparison_p (op1, TREE_CODE (op2), | ||
272 | + TREE_OPERAND (op2, 0), | ||
273 | + TREE_OPERAND (op2, 1))) | ||
274 | + return true; | ||
275 | + if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison | ||
276 | + && same_bool_comparison_p (op2, TREE_CODE (op1), | ||
277 | + TREE_OPERAND (op1, 0), | ||
278 | + TREE_OPERAND (op1, 1))) | ||
279 | + return true; | ||
280 | + | ||
281 | + /* Default case. */ | ||
282 | + return false; | ||
283 | +} | ||
284 | + | ||
285 | +/* Forward declarations for some mutually recursive functions. */ | ||
286 | + | ||
287 | +static tree | ||
288 | +and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, | ||
289 | + enum tree_code code2, tree op2a, tree op2b); | ||
290 | +static tree | ||
291 | +and_var_with_comparison (tree var, bool invert, | ||
292 | + enum tree_code code2, tree op2a, tree op2b); | ||
293 | +static tree | ||
294 | +and_var_with_comparison_1 (gimple stmt, | ||
295 | + enum tree_code code2, tree op2a, tree op2b); | ||
296 | +static tree | ||
297 | +or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, | ||
298 | + enum tree_code code2, tree op2a, tree op2b); | ||
299 | +static tree | ||
300 | +or_var_with_comparison (tree var, bool invert, | ||
301 | + enum tree_code code2, tree op2a, tree op2b); | ||
302 | +static tree | ||
303 | +or_var_with_comparison_1 (gimple stmt, | ||
304 | + enum tree_code code2, tree op2a, tree op2b); | ||
305 | + | ||
306 | +/* Helper function for and_comparisons_1: try to simplify the AND of the | ||
307 | + ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). | ||
308 | + If INVERT is true, invert the value of the VAR before doing the AND. | ||
309 | + Return NULL_EXPR if we can't simplify this to a single expression. */ | ||
310 | + | ||
311 | +static tree | ||
312 | +and_var_with_comparison (tree var, bool invert, | ||
313 | + enum tree_code code2, tree op2a, tree op2b) | ||
314 | +{ | ||
315 | + tree t; | ||
316 | + gimple stmt = SSA_NAME_DEF_STMT (var); | ||
317 | + | ||
318 | + /* We can only deal with variables whose definitions are assignments. */ | ||
319 | + if (!is_gimple_assign (stmt)) | ||
320 | + return NULL_TREE; | ||
321 | + | ||
322 | + /* If we have an inverted comparison, apply DeMorgan's law and rewrite | ||
323 | + !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b)) | ||
324 | + Then we only have to consider the simpler non-inverted cases. */ | ||
325 | + if (invert) | ||
326 | + t = or_var_with_comparison_1 (stmt, | ||
327 | + invert_tree_comparison (code2, false), | ||
328 | + op2a, op2b); | ||
329 | + else | ||
330 | + t = and_var_with_comparison_1 (stmt, code2, op2a, op2b); | ||
331 | + return canonicalize_bool (t, invert); | ||
332 | +} | ||
333 | + | ||
334 | +/* Try to simplify the AND of the ssa variable defined by the assignment | ||
335 | + STMT with the comparison specified by (OP2A CODE2 OP2B). | ||
336 | + Return NULL_EXPR if we can't simplify this to a single expression. */ | ||
337 | + | ||
338 | +static tree | ||
339 | +and_var_with_comparison_1 (gimple stmt, | ||
340 | + enum tree_code code2, tree op2a, tree op2b) | ||
341 | +{ | ||
342 | + tree var = gimple_assign_lhs (stmt); | ||
343 | + tree true_test_var = NULL_TREE; | ||
344 | + tree false_test_var = NULL_TREE; | ||
345 | + enum tree_code innercode = gimple_assign_rhs_code (stmt); | ||
346 | + | ||
347 | + /* Check for identities like (var AND (var == 0)) => false. */ | ||
348 | + if (TREE_CODE (op2a) == SSA_NAME | ||
349 | + && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) | ||
350 | + { | ||
351 | + if ((code2 == NE_EXPR && integer_zerop (op2b)) | ||
352 | + || (code2 == EQ_EXPR && integer_nonzerop (op2b))) | ||
353 | + { | ||
354 | + true_test_var = op2a; | ||
355 | + if (var == true_test_var) | ||
356 | + return var; | ||
357 | + } | ||
358 | + else if ((code2 == EQ_EXPR && integer_zerop (op2b)) | ||
359 | + || (code2 == NE_EXPR && integer_nonzerop (op2b))) | ||
360 | + { | ||
361 | + false_test_var = op2a; | ||
362 | + if (var == false_test_var) | ||
363 | + return boolean_false_node; | ||
364 | + } | ||
365 | + } | ||
366 | + | ||
367 | + /* If the definition is a comparison, recurse on it. */ | ||
368 | + if (TREE_CODE_CLASS (innercode) == tcc_comparison) | ||
369 | + { | ||
370 | + tree t = and_comparisons_1 (innercode, | ||
371 | + gimple_assign_rhs1 (stmt), | ||
372 | + gimple_assign_rhs2 (stmt), | ||
373 | + code2, | ||
374 | + op2a, | ||
375 | + op2b); | ||
376 | + if (t) | ||
377 | + return t; | ||
378 | + } | ||
379 | + | ||
380 | + /* If the definition is an AND or OR expression, we may be able to | ||
381 | + simplify by reassociating. */ | ||
382 | + if (innercode == TRUTH_AND_EXPR | ||
383 | + || innercode == TRUTH_OR_EXPR | ||
384 | + || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE | ||
385 | + && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))) | ||
386 | + { | ||
387 | + tree inner1 = gimple_assign_rhs1 (stmt); | ||
388 | + tree inner2 = gimple_assign_rhs2 (stmt); | ||
389 | + gimple s; | ||
390 | + tree t; | ||
391 | + tree partial = NULL_TREE; | ||
392 | + bool is_and = (innercode == TRUTH_AND_EXPR || innercode == BIT_AND_EXPR); | ||
393 | + | ||
394 | + /* Check for boolean identities that don't require recursive examination | ||
395 | + of inner1/inner2: | ||
396 | + inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var | ||
397 | + inner1 AND (inner1 OR inner2) => inner1 | ||
398 | + !inner1 AND (inner1 AND inner2) => false | ||
399 | + !inner1 AND (inner1 OR inner2) => !inner1 AND inner2 | ||
400 | + Likewise for similar cases involving inner2. */ | ||
401 | + if (inner1 == true_test_var) | ||
402 | + return (is_and ? var : inner1); | ||
403 | + else if (inner2 == true_test_var) | ||
404 | + return (is_and ? var : inner2); | ||
405 | + else if (inner1 == false_test_var) | ||
406 | + return (is_and | ||
407 | + ? boolean_false_node | ||
408 | + : and_var_with_comparison (inner2, false, code2, op2a, op2b)); | ||
409 | + else if (inner2 == false_test_var) | ||
410 | + return (is_and | ||
411 | + ? boolean_false_node | ||
412 | + : and_var_with_comparison (inner1, false, code2, op2a, op2b)); | ||
413 | + | ||
414 | + /* Next, redistribute/reassociate the AND across the inner tests. | ||
415 | + Compute the first partial result, (inner1 AND (op2a code op2b)) */ | ||
416 | + if (TREE_CODE (inner1) == SSA_NAME | ||
417 | + && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) | ||
418 | + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison | ||
419 | + && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), | ||
420 | + gimple_assign_rhs1 (s), | ||
421 | + gimple_assign_rhs2 (s), | ||
422 | + code2, op2a, op2b))) | ||
423 | + { | ||
424 | + /* Handle the AND case, where we are reassociating: | ||
425 | + (inner1 AND inner2) AND (op2a code2 op2b) | ||
426 | + => (t AND inner2) | ||
427 | + If the partial result t is a constant, we win. Otherwise | ||
428 | + continue on to try reassociating with the other inner test. */ | ||
429 | + if (is_and) | ||
430 | + { | ||
431 | + if (integer_onep (t)) | ||
432 | + return inner2; | ||
433 | + else if (integer_zerop (t)) | ||
434 | + return boolean_false_node; | ||
435 | + } | ||
436 | + | ||
437 | + /* Handle the OR case, where we are redistributing: | ||
438 | + (inner1 OR inner2) AND (op2a code2 op2b) | ||
439 | + => (t OR (inner2 AND (op2a code2 op2b))) */ | ||
440 | + else | ||
441 | + { | ||
442 | + if (integer_onep (t)) | ||
443 | + return boolean_true_node; | ||
444 | + else | ||
445 | + /* Save partial result for later. */ | ||
446 | + partial = t; | ||
447 | + } | ||
448 | + } | ||
449 | + | ||
450 | + /* Compute the second partial result, (inner2 AND (op2a code op2b)) */ | ||
451 | + if (TREE_CODE (inner2) == SSA_NAME | ||
452 | + && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) | ||
453 | + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison | ||
454 | + && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), | ||
455 | + gimple_assign_rhs1 (s), | ||
456 | + gimple_assign_rhs2 (s), | ||
457 | + code2, op2a, op2b))) | ||
458 | + { | ||
459 | + /* Handle the AND case, where we are reassociating: | ||
460 | + (inner1 AND inner2) AND (op2a code2 op2b) | ||
461 | + => (inner1 AND t) */ | ||
462 | + if (is_and) | ||
463 | + { | ||
464 | + if (integer_onep (t)) | ||
465 | + return inner1; | ||
466 | + else if (integer_zerop (t)) | ||
467 | + return boolean_false_node; | ||
468 | + } | ||
469 | + | ||
470 | + /* Handle the OR case. where we are redistributing: | ||
471 | + (inner1 OR inner2) AND (op2a code2 op2b) | ||
472 | + => (t OR (inner1 AND (op2a code2 op2b))) | ||
473 | + => (t OR partial) */ | ||
474 | + else | ||
475 | + { | ||
476 | + if (integer_onep (t)) | ||
477 | + return boolean_true_node; | ||
478 | + else if (partial) | ||
479 | + { | ||
480 | + /* We already got a simplification for the other | ||
481 | + operand to the redistributed OR expression. The | ||
482 | + interesting case is when at least one is false. | ||
483 | + Or, if both are the same, we can apply the identity | ||
484 | + (x OR x) == x. */ | ||
485 | + if (integer_zerop (partial)) | ||
486 | + return t; | ||
487 | + else if (integer_zerop (t)) | ||
488 | + return partial; | ||
489 | + else if (same_bool_result_p (t, partial)) | ||
490 | + return t; | ||
491 | + } | ||
492 | + } | ||
493 | + } | ||
494 | + } | ||
495 | + return NULL_TREE; | ||
496 | +} | ||
497 | + | ||
498 | +/* Try to simplify the AND of two comparisons defined by | ||
499 | + (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. | ||
500 | + If this can be done without constructing an intermediate value, | ||
501 | + return the resulting tree; otherwise NULL_TREE is returned. | ||
502 | + This function is deliberately asymmetric as it recurses on SSA_DEFs | ||
503 | + in the first comparison but not the second. */ | ||
504 | + | ||
505 | +static tree | ||
506 | +and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, | ||
507 | + enum tree_code code2, tree op2a, tree op2b) | ||
508 | +{ | ||
509 | + /* First check for ((x CODE1 y) AND (x CODE2 y)). */ | ||
510 | + if (operand_equal_p (op1a, op2a, 0) | ||
511 | + && operand_equal_p (op1b, op2b, 0)) | ||
512 | + { | ||
513 | + tree t = combine_comparisons (UNKNOWN_LOCATION, | ||
514 | + TRUTH_ANDIF_EXPR, code1, code2, | ||
515 | + boolean_type_node, op1a, op1b); | ||
516 | + if (t) | ||
517 | + return t; | ||
518 | + } | ||
519 | + | ||
520 | + /* Likewise the swapped case of the above. */ | ||
521 | + if (operand_equal_p (op1a, op2b, 0) | ||
522 | + && operand_equal_p (op1b, op2a, 0)) | ||
523 | + { | ||
524 | + tree t = combine_comparisons (UNKNOWN_LOCATION, | ||
525 | + TRUTH_ANDIF_EXPR, code1, | ||
526 | + swap_tree_comparison (code2), | ||
527 | + boolean_type_node, op1a, op1b); | ||
528 | + if (t) | ||
529 | + return t; | ||
530 | + } | ||
531 | + | ||
532 | + /* If both comparisons are of the same value against constants, we might | ||
533 | + be able to merge them. */ | ||
534 | + if (operand_equal_p (op1a, op2a, 0) | ||
535 | + && TREE_CODE (op1b) == INTEGER_CST | ||
536 | + && TREE_CODE (op2b) == INTEGER_CST) | ||
537 | + { | ||
538 | + int cmp = tree_int_cst_compare (op1b, op2b); | ||
539 | + | ||
540 | + /* If we have (op1a == op1b), we should either be able to | ||
541 | + return that or FALSE, depending on whether the constant op1b | ||
542 | + also satisfies the other comparison against op2b. */ | ||
543 | + if (code1 == EQ_EXPR) | ||
544 | + { | ||
545 | + bool done = true; | ||
546 | + bool val; | ||
547 | + switch (code2) | ||
548 | + { | ||
549 | + case EQ_EXPR: val = (cmp == 0); break; | ||
550 | + case NE_EXPR: val = (cmp != 0); break; | ||
551 | + case LT_EXPR: val = (cmp < 0); break; | ||
552 | + case GT_EXPR: val = (cmp > 0); break; | ||
553 | + case LE_EXPR: val = (cmp <= 0); break; | ||
554 | + case GE_EXPR: val = (cmp >= 0); break; | ||
555 | + default: done = false; | ||
556 | + } | ||
557 | + if (done) | ||
558 | + { | ||
559 | + if (val) | ||
560 | + return fold_build2 (code1, boolean_type_node, op1a, op1b); | ||
561 | + else | ||
562 | + return boolean_false_node; | ||
563 | + } | ||
564 | + } | ||
565 | + /* Likewise if the second comparison is an == comparison. */ | ||
566 | + else if (code2 == EQ_EXPR) | ||
567 | + { | ||
568 | + bool done = true; | ||
569 | + bool val; | ||
570 | + switch (code1) | ||
571 | + { | ||
572 | + case EQ_EXPR: val = (cmp == 0); break; | ||
573 | + case NE_EXPR: val = (cmp != 0); break; | ||
574 | + case LT_EXPR: val = (cmp > 0); break; | ||
575 | + case GT_EXPR: val = (cmp < 0); break; | ||
576 | + case LE_EXPR: val = (cmp >= 0); break; | ||
577 | + case GE_EXPR: val = (cmp <= 0); break; | ||
578 | + default: done = false; | ||
579 | + } | ||
580 | + if (done) | ||
581 | + { | ||
582 | + if (val) | ||
583 | + return fold_build2 (code2, boolean_type_node, op2a, op2b); | ||
584 | + else | ||
585 | + return boolean_false_node; | ||
586 | + } | ||
587 | + } | ||
588 | + | ||
589 | + /* Same business with inequality tests. */ | ||
590 | + else if (code1 == NE_EXPR) | ||
591 | + { | ||
592 | + bool val; | ||
593 | + switch (code2) | ||
594 | + { | ||
595 | + case EQ_EXPR: val = (cmp != 0); break; | ||
596 | + case NE_EXPR: val = (cmp == 0); break; | ||
597 | + case LT_EXPR: val = (cmp >= 0); break; | ||
598 | + case GT_EXPR: val = (cmp <= 0); break; | ||
599 | + case LE_EXPR: val = (cmp > 0); break; | ||
600 | + case GE_EXPR: val = (cmp < 0); break; | ||
601 | + default: | ||
602 | + val = false; | ||
603 | + } | ||
604 | + if (val) | ||
605 | + return fold_build2 (code2, boolean_type_node, op2a, op2b); | ||
606 | + } | ||
607 | + else if (code2 == NE_EXPR) | ||
608 | + { | ||
609 | + bool val; | ||
610 | + switch (code1) | ||
611 | + { | ||
612 | + case EQ_EXPR: val = (cmp == 0); break; | ||
613 | + case NE_EXPR: val = (cmp != 0); break; | ||
614 | + case LT_EXPR: val = (cmp <= 0); break; | ||
615 | + case GT_EXPR: val = (cmp >= 0); break; | ||
616 | + case LE_EXPR: val = (cmp < 0); break; | ||
617 | + case GE_EXPR: val = (cmp > 0); break; | ||
618 | + default: | ||
619 | + val = false; | ||
620 | + } | ||
621 | + if (val) | ||
622 | + return fold_build2 (code1, boolean_type_node, op1a, op1b); | ||
623 | + } | ||
624 | + | ||
625 | + /* Chose the more restrictive of two < or <= comparisons. */ | ||
626 | + else if ((code1 == LT_EXPR || code1 == LE_EXPR) | ||
627 | + && (code2 == LT_EXPR || code2 == LE_EXPR)) | ||
628 | + { | ||
629 | + if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) | ||
630 | + return fold_build2 (code1, boolean_type_node, op1a, op1b); | ||
631 | + else | ||
632 | + return fold_build2 (code2, boolean_type_node, op2a, op2b); | ||
633 | + } | ||
634 | + | ||
635 | + /* Likewise chose the more restrictive of two > or >= comparisons. */ | ||
636 | + else if ((code1 == GT_EXPR || code1 == GE_EXPR) | ||
637 | + && (code2 == GT_EXPR || code2 == GE_EXPR)) | ||
638 | + { | ||
639 | + if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) | ||
640 | + return fold_build2 (code1, boolean_type_node, op1a, op1b); | ||
641 | + else | ||
642 | + return fold_build2 (code2, boolean_type_node, op2a, op2b); | ||
643 | + } | ||
644 | + | ||
645 | + /* Check for singleton ranges. */ | ||
646 | + else if (cmp == 0 | ||
647 | + && ((code1 == LE_EXPR && code2 == GE_EXPR) | ||
648 | + || (code1 == GE_EXPR && code2 == LE_EXPR))) | ||
649 | + return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b); | ||
650 | + | ||
651 | + /* Check for disjoint ranges. */ | ||
652 | + else if (cmp <= 0 | ||
653 | + && (code1 == LT_EXPR || code1 == LE_EXPR) | ||
654 | + && (code2 == GT_EXPR || code2 == GE_EXPR)) | ||
655 | + return boolean_false_node; | ||
656 | + else if (cmp >= 0 | ||
657 | + && (code1 == GT_EXPR || code1 == GE_EXPR) | ||
658 | + && (code2 == LT_EXPR || code2 == LE_EXPR)) | ||
659 | + return boolean_false_node; | ||
660 | + } | ||
661 | + | ||
662 | + /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where | ||
663 | + NAME's definition is a truth value. See if there are any simplifications | ||
664 | + that can be done against the NAME's definition. */ | ||
665 | + if (TREE_CODE (op1a) == SSA_NAME | ||
666 | + && (code1 == NE_EXPR || code1 == EQ_EXPR) | ||
667 | + && (integer_zerop (op1b) || integer_onep (op1b))) | ||
668 | + { | ||
669 | + bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) | ||
670 | + || (code1 == NE_EXPR && integer_onep (op1b))); | ||
671 | + gimple stmt = SSA_NAME_DEF_STMT (op1a); | ||
672 | + switch (gimple_code (stmt)) | ||
673 | + { | ||
674 | + case GIMPLE_ASSIGN: | ||
675 | + /* Try to simplify by copy-propagating the definition. */ | ||
676 | + return and_var_with_comparison (op1a, invert, code2, op2a, op2b); | ||
677 | + | ||
678 | + case GIMPLE_PHI: | ||
679 | + /* If every argument to the PHI produces the same result when | ||
680 | + ANDed with the second comparison, we win. | ||
681 | + Do not do this unless the type is bool since we need a bool | ||
682 | + result here anyway. */ | ||
683 | + if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) | ||
684 | + { | ||
685 | + tree result = NULL_TREE; | ||
686 | + unsigned i; | ||
687 | + for (i = 0; i < gimple_phi_num_args (stmt); i++) | ||
688 | + { | ||
689 | + tree arg = gimple_phi_arg_def (stmt, i); | ||
690 | + | ||
691 | + /* If this PHI has itself as an argument, ignore it. | ||
692 | + If all the other args produce the same result, | ||
693 | + we're still OK. */ | ||
694 | + if (arg == gimple_phi_result (stmt)) | ||
695 | + continue; | ||
696 | + else if (TREE_CODE (arg) == INTEGER_CST) | ||
697 | + { | ||
698 | + if (invert ? integer_nonzerop (arg) : integer_zerop (arg)) | ||
699 | + { | ||
700 | + if (!result) | ||
701 | + result = boolean_false_node; | ||
702 | + else if (!integer_zerop (result)) | ||
703 | + return NULL_TREE; | ||
704 | + } | ||
705 | + else if (!result) | ||
706 | + result = fold_build2 (code2, boolean_type_node, | ||
707 | + op2a, op2b); | ||
708 | + else if (!same_bool_comparison_p (result, | ||
709 | + code2, op2a, op2b)) | ||
710 | + return NULL_TREE; | ||
711 | + } | ||
712 | + else if (TREE_CODE (arg) == SSA_NAME) | ||
713 | + { | ||
714 | + tree temp = and_var_with_comparison (arg, invert, | ||
715 | + code2, op2a, op2b); | ||
716 | + if (!temp) | ||
717 | + return NULL_TREE; | ||
718 | + else if (!result) | ||
719 | + result = temp; | ||
720 | + else if (!same_bool_result_p (result, temp)) | ||
721 | + return NULL_TREE; | ||
722 | + } | ||
723 | + else | ||
724 | + return NULL_TREE; | ||
725 | + } | ||
726 | + return result; | ||
727 | + } | ||
728 | + | ||
729 | + default: | ||
730 | + break; | ||
731 | + } | ||
732 | + } | ||
733 | + return NULL_TREE; | ||
734 | +} | ||
735 | + | ||
736 | +/* Try to simplify the AND of two comparisons, specified by | ||
737 | + (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. | ||
738 | + If this can be simplified to a single expression (without requiring | ||
739 | + introducing more SSA variables to hold intermediate values), | ||
740 | + return the resulting tree. Otherwise return NULL_TREE. | ||
741 | + If the result expression is non-null, it has boolean type. */ | ||
742 | + | ||
743 | +tree | ||
744 | +maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b, | ||
745 | + enum tree_code code2, tree op2a, tree op2b) | ||
746 | +{ | ||
747 | + tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); | ||
748 | + if (t) | ||
749 | + return t; | ||
750 | + else | ||
751 | + return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); | ||
752 | +} | ||
753 | + | ||
754 | +/* Helper function for or_comparisons_1: try to simplify the OR of the | ||
755 | + ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). | ||
756 | + If INVERT is true, invert the value of VAR before doing the OR. | ||
757 | + Return NULL_EXPR if we can't simplify this to a single expression. */ | ||
758 | + | ||
759 | +static tree | ||
760 | +or_var_with_comparison (tree var, bool invert, | ||
761 | + enum tree_code code2, tree op2a, tree op2b) | ||
762 | +{ | ||
763 | + tree t; | ||
764 | + gimple stmt = SSA_NAME_DEF_STMT (var); | ||
765 | + | ||
766 | + /* We can only deal with variables whose definitions are assignments. */ | ||
767 | + if (!is_gimple_assign (stmt)) | ||
768 | + return NULL_TREE; | ||
769 | + | ||
770 | + /* If we have an inverted comparison, apply DeMorgan's law and rewrite | ||
771 | + !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b)) | ||
772 | + Then we only have to consider the simpler non-inverted cases. */ | ||
773 | + if (invert) | ||
774 | + t = and_var_with_comparison_1 (stmt, | ||
775 | + invert_tree_comparison (code2, false), | ||
776 | + op2a, op2b); | ||
777 | + else | ||
778 | + t = or_var_with_comparison_1 (stmt, code2, op2a, op2b); | ||
779 | + return canonicalize_bool (t, invert); | ||
780 | +} | ||
781 | + | ||
782 | +/* Try to simplify the OR of the ssa variable defined by the assignment | ||
783 | + STMT with the comparison specified by (OP2A CODE2 OP2B). | ||
784 | + Return NULL_EXPR if we can't simplify this to a single expression. */ | ||
785 | + | ||
786 | +static tree | ||
787 | +or_var_with_comparison_1 (gimple stmt, | ||
788 | + enum tree_code code2, tree op2a, tree op2b) | ||
789 | +{ | ||
790 | + tree var = gimple_assign_lhs (stmt); | ||
791 | + tree true_test_var = NULL_TREE; | ||
792 | + tree false_test_var = NULL_TREE; | ||
793 | + enum tree_code innercode = gimple_assign_rhs_code (stmt); | ||
794 | + | ||
795 | + /* Check for identities like (var OR (var != 0)) => true . */ | ||
796 | + if (TREE_CODE (op2a) == SSA_NAME | ||
797 | + && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) | ||
798 | + { | ||
799 | + if ((code2 == NE_EXPR && integer_zerop (op2b)) | ||
800 | + || (code2 == EQ_EXPR && integer_nonzerop (op2b))) | ||
801 | + { | ||
802 | + true_test_var = op2a; | ||
803 | + if (var == true_test_var) | ||
804 | + return var; | ||
805 | + } | ||
806 | + else if ((code2 == EQ_EXPR && integer_zerop (op2b)) | ||
807 | + || (code2 == NE_EXPR && integer_nonzerop (op2b))) | ||
808 | + { | ||
809 | + false_test_var = op2a; | ||
810 | + if (var == false_test_var) | ||
811 | + return boolean_true_node; | ||
812 | + } | ||
813 | + } | ||
814 | + | ||
815 | + /* If the definition is a comparison, recurse on it. */ | ||
816 | + if (TREE_CODE_CLASS (innercode) == tcc_comparison) | ||
817 | + { | ||
818 | + tree t = or_comparisons_1 (innercode, | ||
819 | + gimple_assign_rhs1 (stmt), | ||
820 | + gimple_assign_rhs2 (stmt), | ||
821 | + code2, | ||
822 | + op2a, | ||
823 | + op2b); | ||
824 | + if (t) | ||
825 | + return t; | ||
826 | + } | ||
827 | + | ||
828 | + /* If the definition is an AND or OR expression, we may be able to | ||
829 | + simplify by reassociating. */ | ||
830 | + if (innercode == TRUTH_AND_EXPR | ||
831 | + || innercode == TRUTH_OR_EXPR | ||
832 | + || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE | ||
833 | + && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))) | ||
834 | + { | ||
835 | + tree inner1 = gimple_assign_rhs1 (stmt); | ||
836 | + tree inner2 = gimple_assign_rhs2 (stmt); | ||
837 | + gimple s; | ||
838 | + tree t; | ||
839 | + tree partial = NULL_TREE; | ||
840 | + bool is_or = (innercode == TRUTH_OR_EXPR || innercode == BIT_IOR_EXPR); | ||
841 | + | ||
842 | + /* Check for boolean identities that don't require recursive examination | ||
843 | + of inner1/inner2: | ||
844 | + inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var | ||
845 | + inner1 OR (inner1 AND inner2) => inner1 | ||
846 | + !inner1 OR (inner1 OR inner2) => true | ||
847 | + !inner1 OR (inner1 AND inner2) => !inner1 OR inner2 | ||
848 | + */ | ||
849 | + if (inner1 == true_test_var) | ||
850 | + return (is_or ? var : inner1); | ||
851 | + else if (inner2 == true_test_var) | ||
852 | + return (is_or ? var : inner2); | ||
853 | + else if (inner1 == false_test_var) | ||
854 | + return (is_or | ||
855 | + ? boolean_true_node | ||
856 | + : or_var_with_comparison (inner2, false, code2, op2a, op2b)); | ||
857 | + else if (inner2 == false_test_var) | ||
858 | + return (is_or | ||
859 | + ? boolean_true_node | ||
860 | + : or_var_with_comparison (inner1, false, code2, op2a, op2b)); | ||
861 | + | ||
862 | + /* Next, redistribute/reassociate the OR across the inner tests. | ||
863 | + Compute the first partial result, (inner1 OR (op2a code op2b)) */ | ||
864 | + if (TREE_CODE (inner1) == SSA_NAME | ||
865 | + && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) | ||
866 | + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison | ||
867 | + && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), | ||
868 | + gimple_assign_rhs1 (s), | ||
869 | + gimple_assign_rhs2 (s), | ||
870 | + code2, op2a, op2b))) | ||
871 | + { | ||
872 | + /* Handle the OR case, where we are reassociating: | ||
873 | + (inner1 OR inner2) OR (op2a code2 op2b) | ||
874 | + => (t OR inner2) | ||
875 | + If the partial result t is a constant, we win. Otherwise | ||
876 | + continue on to try reassociating with the other inner test. */ | ||
877 | + if (innercode == TRUTH_OR_EXPR) | ||
878 | + { | ||
879 | + if (integer_onep (t)) | ||
880 | + return boolean_true_node; | ||
881 | + else if (integer_zerop (t)) | ||
882 | + return inner2; | ||
883 | + } | ||
884 | + | ||
885 | + /* Handle the AND case, where we are redistributing: | ||
886 | + (inner1 AND inner2) OR (op2a code2 op2b) | ||
887 | + => (t AND (inner2 OR (op2a code op2b))) */ | ||
888 | + else | ||
889 | + { | ||
890 | + if (integer_zerop (t)) | ||
891 | + return boolean_false_node; | ||
892 | + else | ||
893 | + /* Save partial result for later. */ | ||
894 | + partial = t; | ||
895 | + } | ||
896 | + } | ||
897 | + | ||
898 | + /* Compute the second partial result, (inner2 OR (op2a code op2b)) */ | ||
899 | + if (TREE_CODE (inner2) == SSA_NAME | ||
900 | + && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) | ||
901 | + && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison | ||
902 | + && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), | ||
903 | + gimple_assign_rhs1 (s), | ||
904 | + gimple_assign_rhs2 (s), | ||
905 | + code2, op2a, op2b))) | ||
906 | + { | ||
907 | + /* Handle the OR case, where we are reassociating: | ||
908 | + (inner1 OR inner2) OR (op2a code2 op2b) | ||
909 | + => (inner1 OR t) */ | ||
910 | + if (innercode == TRUTH_OR_EXPR) | ||
911 | + { | ||
912 | + if (integer_zerop (t)) | ||
913 | + return inner1; | ||
914 | + else if (integer_onep (t)) | ||
915 | + return boolean_true_node; | ||
916 | + } | ||
917 | + | ||
918 | + /* Handle the AND case, where we are redistributing: | ||
919 | + (inner1 AND inner2) OR (op2a code2 op2b) | ||
920 | + => (t AND (inner1 OR (op2a code2 op2b))) | ||
921 | + => (t AND partial) */ | ||
922 | + else | ||
923 | + { | ||
924 | + if (integer_zerop (t)) | ||
925 | + return boolean_false_node; | ||
926 | + else if (partial) | ||
927 | + { | ||
928 | + /* We already got a simplification for the other | ||
929 | + operand to the redistributed AND expression. The | ||
930 | + interesting case is when at least one is true. | ||
931 | + Or, if both are the same, we can apply the identity | ||
932 | + (x AND x) == true. */ | ||
933 | + if (integer_onep (partial)) | ||
934 | + return t; | ||
935 | + else if (integer_onep (t)) | ||
936 | + return partial; | ||
937 | + else if (same_bool_result_p (t, partial)) | ||
938 | + return boolean_true_node; | ||
939 | + } | ||
940 | + } | ||
941 | + } | ||
942 | + } | ||
943 | + return NULL_TREE; | ||
944 | +} | ||
945 | + | ||
946 | +/* Try to simplify the OR of two comparisons defined by | ||
947 | + (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. | ||
948 | + If this can be done without constructing an intermediate value, | ||
949 | + return the resulting tree; otherwise NULL_TREE is returned. | ||
950 | + This function is deliberately asymmetric as it recurses on SSA_DEFs | ||
951 | + in the first comparison but not the second. */ | ||
952 | + | ||
953 | +static tree | ||
954 | +or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, | ||
955 | + enum tree_code code2, tree op2a, tree op2b) | ||
956 | +{ | ||
957 | + /* First check for ((x CODE1 y) OR (x CODE2 y)). */ | ||
958 | + if (operand_equal_p (op1a, op2a, 0) | ||
959 | + && operand_equal_p (op1b, op2b, 0)) | ||
960 | + { | ||
961 | + tree t = combine_comparisons (UNKNOWN_LOCATION, | ||
962 | + TRUTH_ORIF_EXPR, code1, code2, | ||
963 | + boolean_type_node, op1a, op1b); | ||
964 | + if (t) | ||
965 | + return t; | ||
966 | + } | ||
967 | + | ||
968 | + /* Likewise the swapped case of the above. */ | ||
969 | + if (operand_equal_p (op1a, op2b, 0) | ||
970 | + && operand_equal_p (op1b, op2a, 0)) | ||
971 | + { | ||
972 | + tree t = combine_comparisons (UNKNOWN_LOCATION, | ||
973 | + TRUTH_ORIF_EXPR, code1, | ||
974 | + swap_tree_comparison (code2), | ||
975 | + boolean_type_node, op1a, op1b); | ||
976 | + if (t) | ||
977 | + return t; | ||
978 | + } | ||
979 | + | ||
980 | + /* If both comparisons are of the same value against constants, we might | ||
981 | + be able to merge them. */ | ||
982 | + if (operand_equal_p (op1a, op2a, 0) | ||
983 | + && TREE_CODE (op1b) == INTEGER_CST | ||
984 | + && TREE_CODE (op2b) == INTEGER_CST) | ||
985 | + { | ||
986 | + int cmp = tree_int_cst_compare (op1b, op2b); | ||
987 | + | ||
988 | + /* If we have (op1a != op1b), we should either be able to | ||
989 | + return that or TRUE, depending on whether the constant op1b | ||
990 | + also satisfies the other comparison against op2b. */ | ||
991 | + if (code1 == NE_EXPR) | ||
992 | + { | ||
993 | + bool done = true; | ||
994 | + bool val; | ||
995 | + switch (code2) | ||
996 | + { | ||
997 | + case EQ_EXPR: val = (cmp == 0); break; | ||
998 | + case NE_EXPR: val = (cmp != 0); break; | ||
999 | + case LT_EXPR: val = (cmp < 0); break; | ||
1000 | + case GT_EXPR: val = (cmp > 0); break; | ||
1001 | + case LE_EXPR: val = (cmp <= 0); break; | ||
1002 | + case GE_EXPR: val = (cmp >= 0); break; | ||
1003 | + default: done = false; | ||
1004 | + } | ||
1005 | + if (done) | ||
1006 | + { | ||
1007 | + if (val) | ||
1008 | + return boolean_true_node; | ||
1009 | + else | ||
1010 | + return fold_build2 (code1, boolean_type_node, op1a, op1b); | ||
1011 | + } | ||
1012 | + } | ||
1013 | + /* Likewise if the second comparison is a != comparison. */ | ||
1014 | + else if (code2 == NE_EXPR) | ||
1015 | + { | ||
1016 | + bool done = true; | ||
1017 | + bool val; | ||
1018 | + switch (code1) | ||
1019 | + { | ||
1020 | + case EQ_EXPR: val = (cmp == 0); break; | ||
1021 | + case NE_EXPR: val = (cmp != 0); break; | ||
1022 | + case LT_EXPR: val = (cmp > 0); break; | ||
1023 | + case GT_EXPR: val = (cmp < 0); break; | ||
1024 | + case LE_EXPR: val = (cmp >= 0); break; | ||
1025 | + case GE_EXPR: val = (cmp <= 0); break; | ||
1026 | + default: done = false; | ||
1027 | + } | ||
1028 | + if (done) | ||
1029 | + { | ||
1030 | + if (val) | ||
1031 | + return boolean_true_node; | ||
1032 | + else | ||
1033 | + return fold_build2 (code2, boolean_type_node, op2a, op2b); | ||
1034 | + } | ||
1035 | + } | ||
1036 | + | ||
1037 | + /* See if an equality test is redundant with the other comparison. */ | ||
1038 | + else if (code1 == EQ_EXPR) | ||
1039 | + { | ||
1040 | + bool val; | ||
1041 | + switch (code2) | ||
1042 | + { | ||
1043 | + case EQ_EXPR: val = (cmp == 0); break; | ||
1044 | + case NE_EXPR: val = (cmp != 0); break; | ||
1045 | + case LT_EXPR: val = (cmp < 0); break; | ||
1046 | + case GT_EXPR: val = (cmp > 0); break; | ||
1047 | + case LE_EXPR: val = (cmp <= 0); break; | ||
1048 | + case GE_EXPR: val = (cmp >= 0); break; | ||
1049 | + default: | ||
1050 | + val = false; | ||
1051 | + } | ||
1052 | + if (val) | ||
1053 | + return fold_build2 (code2, boolean_type_node, op2a, op2b); | ||
1054 | + } | ||
1055 | + else if (code2 == EQ_EXPR) | ||
1056 | + { | ||
1057 | + bool val; | ||
1058 | + switch (code1) | ||
1059 | + { | ||
1060 | + case EQ_EXPR: val = (cmp == 0); break; | ||
1061 | + case NE_EXPR: val = (cmp != 0); break; | ||
1062 | + case LT_EXPR: val = (cmp > 0); break; | ||
1063 | + case GT_EXPR: val = (cmp < 0); break; | ||
1064 | + case LE_EXPR: val = (cmp >= 0); break; | ||
1065 | + case GE_EXPR: val = (cmp <= 0); break; | ||
1066 | + default: | ||
1067 | + val = false; | ||
1068 | + } | ||
1069 | + if (val) | ||
1070 | + return fold_build2 (code1, boolean_type_node, op1a, op1b); | ||
1071 | + } | ||
1072 | + | ||
1073 | + /* Chose the less restrictive of two < or <= comparisons. */ | ||
1074 | + else if ((code1 == LT_EXPR || code1 == LE_EXPR) | ||
1075 | + && (code2 == LT_EXPR || code2 == LE_EXPR)) | ||
1076 | + { | ||
1077 | + if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) | ||
1078 | + return fold_build2 (code2, boolean_type_node, op2a, op2b); | ||
1079 | + else | ||
1080 | + return fold_build2 (code1, boolean_type_node, op1a, op1b); | ||
1081 | + } | ||
1082 | + | ||
1083 | + /* Likewise chose the less restrictive of two > or >= comparisons. */ | ||
1084 | + else if ((code1 == GT_EXPR || code1 == GE_EXPR) | ||
1085 | + && (code2 == GT_EXPR || code2 == GE_EXPR)) | ||
1086 | + { | ||
1087 | + if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) | ||
1088 | + return fold_build2 (code2, boolean_type_node, op2a, op2b); | ||
1089 | + else | ||
1090 | + return fold_build2 (code1, boolean_type_node, op1a, op1b); | ||
1091 | + } | ||
1092 | + | ||
1093 | + /* Check for singleton ranges. */ | ||
1094 | + else if (cmp == 0 | ||
1095 | + && ((code1 == LT_EXPR && code2 == GT_EXPR) | ||
1096 | + || (code1 == GT_EXPR && code2 == LT_EXPR))) | ||
1097 | + return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b); | ||
1098 | + | ||
1099 | + /* Check for less/greater pairs that don't restrict the range at all. */ | ||
1100 | + else if (cmp >= 0 | ||
1101 | + && (code1 == LT_EXPR || code1 == LE_EXPR) | ||
1102 | + && (code2 == GT_EXPR || code2 == GE_EXPR)) | ||
1103 | + return boolean_true_node; | ||
1104 | + else if (cmp <= 0 | ||
1105 | + && (code1 == GT_EXPR || code1 == GE_EXPR) | ||
1106 | + && (code2 == LT_EXPR || code2 == LE_EXPR)) | ||
1107 | + return boolean_true_node; | ||
1108 | + } | ||
1109 | + | ||
1110 | + /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where | ||
1111 | + NAME's definition is a truth value. See if there are any simplifications | ||
1112 | + that can be done against the NAME's definition. */ | ||
1113 | + if (TREE_CODE (op1a) == SSA_NAME | ||
1114 | + && (code1 == NE_EXPR || code1 == EQ_EXPR) | ||
1115 | + && (integer_zerop (op1b) || integer_onep (op1b))) | ||
1116 | + { | ||
1117 | + bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) | ||
1118 | + || (code1 == NE_EXPR && integer_onep (op1b))); | ||
1119 | + gimple stmt = SSA_NAME_DEF_STMT (op1a); | ||
1120 | + switch (gimple_code (stmt)) | ||
1121 | + { | ||
1122 | + case GIMPLE_ASSIGN: | ||
1123 | + /* Try to simplify by copy-propagating the definition. */ | ||
1124 | + return or_var_with_comparison (op1a, invert, code2, op2a, op2b); | ||
1125 | + | ||
1126 | + case GIMPLE_PHI: | ||
1127 | + /* If every argument to the PHI produces the same result when | ||
1128 | + ORed with the second comparison, we win. | ||
1129 | + Do not do this unless the type is bool since we need a bool | ||
1130 | + result here anyway. */ | ||
1131 | + if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) | ||
1132 | + { | ||
1133 | + tree result = NULL_TREE; | ||
1134 | + unsigned i; | ||
1135 | + for (i = 0; i < gimple_phi_num_args (stmt); i++) | ||
1136 | + { | ||
1137 | + tree arg = gimple_phi_arg_def (stmt, i); | ||
1138 | + | ||
1139 | + /* If this PHI has itself as an argument, ignore it. | ||
1140 | + If all the other args produce the same result, | ||
1141 | + we're still OK. */ | ||
1142 | + if (arg == gimple_phi_result (stmt)) | ||
1143 | + continue; | ||
1144 | + else if (TREE_CODE (arg) == INTEGER_CST) | ||
1145 | + { | ||
1146 | + if (invert ? integer_zerop (arg) : integer_nonzerop (arg)) | ||
1147 | + { | ||
1148 | + if (!result) | ||
1149 | + result = boolean_true_node; | ||
1150 | + else if (!integer_onep (result)) | ||
1151 | + return NULL_TREE; | ||
1152 | + } | ||
1153 | + else if (!result) | ||
1154 | + result = fold_build2 (code2, boolean_type_node, | ||
1155 | + op2a, op2b); | ||
1156 | + else if (!same_bool_comparison_p (result, | ||
1157 | + code2, op2a, op2b)) | ||
1158 | + return NULL_TREE; | ||
1159 | + } | ||
1160 | + else if (TREE_CODE (arg) == SSA_NAME) | ||
1161 | + { | ||
1162 | + tree temp = or_var_with_comparison (arg, invert, | ||
1163 | + code2, op2a, op2b); | ||
1164 | + if (!temp) | ||
1165 | + return NULL_TREE; | ||
1166 | + else if (!result) | ||
1167 | + result = temp; | ||
1168 | + else if (!same_bool_result_p (result, temp)) | ||
1169 | + return NULL_TREE; | ||
1170 | + } | ||
1171 | + else | ||
1172 | + return NULL_TREE; | ||
1173 | + } | ||
1174 | + return result; | ||
1175 | + } | ||
1176 | + | ||
1177 | + default: | ||
1178 | + break; | ||
1179 | + } | ||
1180 | + } | ||
1181 | + return NULL_TREE; | ||
1182 | +} | ||
1183 | + | ||
1184 | +/* Try to simplify the OR of two comparisons, specified by | ||
1185 | + (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. | ||
1186 | + If this can be simplified to a single expression (without requiring | ||
1187 | + introducing more SSA variables to hold intermediate values), | ||
1188 | + return the resulting tree. Otherwise return NULL_TREE. | ||
1189 | + If the result expression is non-null, it has boolean type. */ | ||
1190 | + | ||
1191 | +tree | ||
1192 | +maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b, | ||
1193 | + enum tree_code code2, tree op2a, tree op2b) | ||
1194 | +{ | ||
1195 | + tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); | ||
1196 | + if (t) | ||
1197 | + return t; | ||
1198 | + else | ||
1199 | + return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); | ||
1200 | +} | ||
1201 | + | ||
1202 | /* Try to optimize out __builtin_stack_restore. Optimize it out | ||
1203 | if there is another __builtin_stack_restore in the same basic | ||
1204 | block and no calls or ASM_EXPRs are in between, or if this block's | ||
1205 | |||
1206 | === modified file 'gcc/tree-ssa-ifcombine.c' | ||
1207 | --- old/gcc/tree-ssa-ifcombine.c 2009-11-25 10:55:54 +0000 | ||
1208 | +++ new/gcc/tree-ssa-ifcombine.c 2010-07-30 13:21:51 +0000 | ||
1209 | @@ -366,21 +366,16 @@ | ||
1210 | |||
1211 | /* See if we have two comparisons that we can merge into one. */ | ||
1212 | else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison | ||
1213 | - && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison | ||
1214 | - && operand_equal_p (gimple_cond_lhs (inner_cond), | ||
1215 | - gimple_cond_lhs (outer_cond), 0) | ||
1216 | - && operand_equal_p (gimple_cond_rhs (inner_cond), | ||
1217 | - gimple_cond_rhs (outer_cond), 0)) | ||
1218 | + && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison) | ||
1219 | { | ||
1220 | - enum tree_code code1 = gimple_cond_code (inner_cond); | ||
1221 | - enum tree_code code2 = gimple_cond_code (outer_cond); | ||
1222 | tree t; | ||
1223 | |||
1224 | - if (!(t = combine_comparisons (UNKNOWN_LOCATION, | ||
1225 | - TRUTH_ANDIF_EXPR, code1, code2, | ||
1226 | - boolean_type_node, | ||
1227 | - gimple_cond_lhs (outer_cond), | ||
1228 | - gimple_cond_rhs (outer_cond)))) | ||
1229 | + if (!(t = maybe_fold_and_comparisons (gimple_cond_code (inner_cond), | ||
1230 | + gimple_cond_lhs (inner_cond), | ||
1231 | + gimple_cond_rhs (inner_cond), | ||
1232 | + gimple_cond_code (outer_cond), | ||
1233 | + gimple_cond_lhs (outer_cond), | ||
1234 | + gimple_cond_rhs (outer_cond)))) | ||
1235 | return false; | ||
1236 | t = canonicalize_cond_expr_cond (t); | ||
1237 | if (!t) | ||
1238 | @@ -518,22 +513,17 @@ | ||
1239 | /* See if we have two comparisons that we can merge into one. | ||
1240 | This happens for C++ operator overloading where for example | ||
1241 | GE_EXPR is implemented as GT_EXPR || EQ_EXPR. */ | ||
1242 | - else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison | ||
1243 | - && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison | ||
1244 | - && operand_equal_p (gimple_cond_lhs (inner_cond), | ||
1245 | - gimple_cond_lhs (outer_cond), 0) | ||
1246 | - && operand_equal_p (gimple_cond_rhs (inner_cond), | ||
1247 | - gimple_cond_rhs (outer_cond), 0)) | ||
1248 | + else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison | ||
1249 | + && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison) | ||
1250 | { | ||
1251 | - enum tree_code code1 = gimple_cond_code (inner_cond); | ||
1252 | - enum tree_code code2 = gimple_cond_code (outer_cond); | ||
1253 | tree t; | ||
1254 | |||
1255 | - if (!(t = combine_comparisons (UNKNOWN_LOCATION, | ||
1256 | - TRUTH_ORIF_EXPR, code1, code2, | ||
1257 | - boolean_type_node, | ||
1258 | - gimple_cond_lhs (outer_cond), | ||
1259 | - gimple_cond_rhs (outer_cond)))) | ||
1260 | + if (!(t = maybe_fold_or_comparisons (gimple_cond_code (inner_cond), | ||
1261 | + gimple_cond_lhs (inner_cond), | ||
1262 | + gimple_cond_rhs (inner_cond), | ||
1263 | + gimple_cond_code (outer_cond), | ||
1264 | + gimple_cond_lhs (outer_cond), | ||
1265 | + gimple_cond_rhs (outer_cond)))) | ||
1266 | return false; | ||
1267 | t = canonicalize_cond_expr_cond (t); | ||
1268 | if (!t) | ||
1269 | |||
1270 | === modified file 'gcc/tree-ssa-reassoc.c' | ||
1271 | --- old/gcc/tree-ssa-reassoc.c 2010-01-13 15:04:38 +0000 | ||
1272 | +++ new/gcc/tree-ssa-reassoc.c 2010-07-30 13:21:51 +0000 | ||
1273 | @@ -1159,6 +1159,117 @@ | ||
1274 | return changed; | ||
1275 | } | ||
1276 | |||
1277 | +/* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison | ||
1278 | + expression, examine the other OPS to see if any of them are comparisons | ||
1279 | + of the same values, which we may be able to combine or eliminate. | ||
1280 | + For example, we can rewrite (a < b) | (a == b) as (a <= b). */ | ||
1281 | + | ||
1282 | +static bool | ||
1283 | +eliminate_redundant_comparison (enum tree_code opcode, | ||
1284 | + VEC (operand_entry_t, heap) **ops, | ||
1285 | + unsigned int currindex, | ||
1286 | + operand_entry_t curr) | ||
1287 | +{ | ||
1288 | + tree op1, op2; | ||
1289 | + enum tree_code lcode, rcode; | ||
1290 | + gimple def1, def2; | ||
1291 | + int i; | ||
1292 | + operand_entry_t oe; | ||
1293 | + | ||
1294 | + if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR) | ||
1295 | + return false; | ||
1296 | + | ||
1297 | + /* Check that CURR is a comparison. */ | ||
1298 | + if (TREE_CODE (curr->op) != SSA_NAME) | ||
1299 | + return false; | ||
1300 | + def1 = SSA_NAME_DEF_STMT (curr->op); | ||
1301 | + if (!is_gimple_assign (def1)) | ||
1302 | + return false; | ||
1303 | + lcode = gimple_assign_rhs_code (def1); | ||
1304 | + if (TREE_CODE_CLASS (lcode) != tcc_comparison) | ||
1305 | + return false; | ||
1306 | + op1 = gimple_assign_rhs1 (def1); | ||
1307 | + op2 = gimple_assign_rhs2 (def1); | ||
1308 | + | ||
1309 | + /* Now look for a similar comparison in the remaining OPS. */ | ||
1310 | + for (i = currindex + 1; | ||
1311 | + VEC_iterate (operand_entry_t, *ops, i, oe); | ||
1312 | + i++) | ||
1313 | + { | ||
1314 | + tree t; | ||
1315 | + | ||
1316 | + if (TREE_CODE (oe->op) != SSA_NAME) | ||
1317 | + continue; | ||
1318 | + def2 = SSA_NAME_DEF_STMT (oe->op); | ||
1319 | + if (!is_gimple_assign (def2)) | ||
1320 | + continue; | ||
1321 | + rcode = gimple_assign_rhs_code (def2); | ||
1322 | + if (TREE_CODE_CLASS (rcode) != tcc_comparison) | ||
1323 | + continue; | ||
1324 | + | ||
1325 | + /* If we got here, we have a match. See if we can combine the | ||
1326 | + two comparisons. */ | ||
1327 | + if (opcode == BIT_IOR_EXPR) | ||
1328 | + t = maybe_fold_or_comparisons (lcode, op1, op2, | ||
1329 | + rcode, gimple_assign_rhs1 (def2), | ||
1330 | + gimple_assign_rhs2 (def2)); | ||
1331 | + else | ||
1332 | + t = maybe_fold_and_comparisons (lcode, op1, op2, | ||
1333 | + rcode, gimple_assign_rhs1 (def2), | ||
1334 | + gimple_assign_rhs2 (def2)); | ||
1335 | + if (!t) | ||
1336 | + continue; | ||
1337 | + | ||
1338 | + /* maybe_fold_and_comparisons and maybe_fold_or_comparisons | ||
1339 | + always give us a boolean_type_node value back. If the original | ||
1340 | + BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type, | ||
1341 | + we need to convert. */ | ||
1342 | + if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t))) | ||
1343 | + t = fold_convert (TREE_TYPE (curr->op), t); | ||
1344 | + | ||
1345 | + if (dump_file && (dump_flags & TDF_DETAILS)) | ||
1346 | + { | ||
1347 | + fprintf (dump_file, "Equivalence: "); | ||
1348 | + print_generic_expr (dump_file, curr->op, 0); | ||
1349 | + fprintf (dump_file, " %s ", op_symbol_code (opcode)); | ||
1350 | + print_generic_expr (dump_file, oe->op, 0); | ||
1351 | + fprintf (dump_file, " -> "); | ||
1352 | + print_generic_expr (dump_file, t, 0); | ||
1353 | + fprintf (dump_file, "\n"); | ||
1354 | + } | ||
1355 | + | ||
1356 | + /* Now we can delete oe, as it has been subsumed by the new combined | ||
1357 | + expression t. */ | ||
1358 | + VEC_ordered_remove (operand_entry_t, *ops, i); | ||
1359 | + reassociate_stats.ops_eliminated ++; | ||
1360 | + | ||
1361 | + /* If t is the same as curr->op, we're done. Otherwise we must | ||
1362 | + replace curr->op with t. Special case is if we got a constant | ||
1363 | + back, in which case we add it to the end instead of in place of | ||
1364 | + the current entry. */ | ||
1365 | + if (TREE_CODE (t) == INTEGER_CST) | ||
1366 | + { | ||
1367 | + VEC_ordered_remove (operand_entry_t, *ops, currindex); | ||
1368 | + add_to_ops_vec (ops, t); | ||
1369 | + } | ||
1370 | + else if (!operand_equal_p (t, curr->op, 0)) | ||
1371 | + { | ||
1372 | + tree tmpvar; | ||
1373 | + gimple sum; | ||
1374 | + enum tree_code subcode; | ||
1375 | + tree newop1; | ||
1376 | + tree newop2; | ||
1377 | + tmpvar = create_tmp_var (TREE_TYPE (t), NULL); | ||
1378 | + add_referenced_var (tmpvar); | ||
1379 | + extract_ops_from_tree (t, &subcode, &newop1, &newop2); | ||
1380 | + sum = build_and_add_sum (tmpvar, newop1, newop2, subcode); | ||
1381 | + curr->op = gimple_get_lhs (sum); | ||
1382 | + } | ||
1383 | + return true; | ||
1384 | + } | ||
1385 | + | ||
1386 | + return false; | ||
1387 | +} | ||
1388 | |||
1389 | /* Perform various identities and other optimizations on the list of | ||
1390 | operand entries, stored in OPS. The tree code for the binary | ||
1391 | @@ -1220,7 +1331,8 @@ | ||
1392 | if (eliminate_not_pairs (opcode, ops, i, oe)) | ||
1393 | return; | ||
1394 | if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast) | ||
1395 | - || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))) | ||
1396 | + || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)) | ||
1397 | + || (!done && eliminate_redundant_comparison (opcode, ops, i, oe))) | ||
1398 | { | ||
1399 | if (done) | ||
1400 | return; | ||
1401 | |||